From 00d281d916021f9efa1c922e0dec338ae474817b Mon Sep 17 00:00:00 2001
From: Doresic <85789271+Doresic@users.noreply.github.com>
Date: Tue, 12 Dec 2023 13:06:46 +0100
Subject: [PATCH] Hierarchical optimization: Support for box constraints on
offset and scaling parameters (#1238)
* Initial working
Implemented scaling and offset bounds for the analytical and numerical solver of the hierarchical problem.
* Fix hierarchical test
* Add test_constrained_inner_solver
* Add tests for non coupled parameters
* intentional failure
* intentional failure
* intentional failure
* Test fix
It seems L-BFGS-B would not converge to optimum in some cases if it was provided with the big bounds [-1e20, 1e20]. It seems like it is a scipy issue? Not sure.
In any case, the numerical optimizer is better if the optimization is not provided with these dummy bounds. But in this case, we need to sample the bounds outside of the pypesto minimize function and provide it as x_guesses.
* Add notebook changes
* Update C.py
* Revert "Update C.py"
This reverts commit f099a2b1e053502da3267e4cf8f152e5ac334a0f.
* Fix sampling + test
* Cleanup
* Some updates
* Some more small updates
* Add inner bounds to parameter plot
* Fix import issues
* Fix hier test
* Fix parameter plot test
* Remove figures
* DIlan&Daniel review changes
* Update parameters.py
* Update solver.py
---
doc/example/hierarchical.ipynb | 224 ++++++++++++++-----------
pypesto/hierarchical/parameter.py | 34 +++-
pypesto/hierarchical/petab.py | 5 +
pypesto/hierarchical/problem.py | 27 ++-
pypesto/hierarchical/solver.py | 110 +++++++++---
pypesto/hierarchical/util.py | 154 ++++++++++++++++-
pypesto/visualize/parameters.py | 42 ++++-
test/hierarchical/test_hierarchical.py | 204 +++++++++++++++++++++-
8 files changed, 649 insertions(+), 151 deletions(-)
diff --git a/doc/example/hierarchical.ipynb b/doc/example/hierarchical.ipynb
index 7664a3e29..684433e9b 100644
--- a/doc/example/hierarchical.ipynb
+++ b/doc/example/hierarchical.ipynb
@@ -18,9 +18,11 @@
"\n",
"However, the current implementation only supports:\n",
"- Gaussian (normal) noise distributions\n",
- "- unbounded inner parameters $\\eta$\n",
+ "- unbounded inner noise parameters $\\sigma$\n",
"- linearly-scaled inner parameters $\\eta$\n",
"\n",
+ "Scaling $s$ and offset $b$ parameters can be bounded arbitrarily.\n",
+ "\n",
"In the following we will demonstrate how to use hierarchical optimization, and we will compare optimization results for the following scenarios:\n",
"\n",
"* Standard non-hierarchical gradient-based optimization with adjoint sensitivity analysis\n",
@@ -31,7 +33,7 @@
},
{
"cell_type": "code",
- "execution_count": 1,
+ "execution_count": 2,
"metadata": {},
"outputs": [],
"source": [
@@ -62,12 +64,12 @@
"\n",
"We consider a version of the [Boehm et al.; Journal of Proeome Research 2014] model, modified to include scalings $s$, offsets $b$, and noise parameters $\\sigma^2$.\n",
"\n",
- "NB: We load two PEtab problems here, because the employed standard and hierarchical optimization methods have different expectations for parameter bounds. The difference between the two PEtab problems is that the `corrected_bounds` version estimates inner parameters ($\\eta$) in $[-\\infty, \\infty]$ for offset and scaling parameters, and in $[0, \\infty]$ for sigma parameters."
+ "NB: We load two PEtab problems here, because the employed standard and hierarchical optimization methods have different expectations for parameter bounds. The difference between the two PEtab problems is that the `corrected_bounds` version estimates inner noise parameters ($\\sigma$) in $[0, \\infty]$."
]
},
{
"cell_type": "code",
- "execution_count": 2,
+ "execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
@@ -88,12 +90,12 @@
"cell_type": "markdown",
"metadata": {},
"source": [
- "The PEtab observable table contains placeholders for scaling parameters $s$ (`observableParameter1_{pSTAT5A_rel,pSTAT5B_rel,rSTAT5A_rel}`), offsets $b$ (`observableParameter2_{pSTAT5A_rel,pSTAT5B_rel,rSTAT5A_rel}`), and noise parameters $\\sigma^2$ (`noiseParameter1_{pSTAT5A_rel,pSTAT5B_rel,rSTAT5A_rel}`) that are overridden by the `{observable,noise}Parameters` column in the measurement table. When using hierarchical optimization, the nine overriding parameters `{offset,scaling,sd}_{pSTAT5A_rel,pSTAT5B_rel,rSTAT5A_rel}` are to estimated in the inner problem."
+ "The PEtab observable table contains placeholders for scaling parameters $s$ (`observableParameter1_{pSTAT5A_rel,pSTAT5B_rel,rSTAT5A_rel}`), offsets $b$ (`observableParameter2_{pSTAT5A_rel,pSTAT5B_rel,rSTAT5A_rel}`), and noise parameters $\\sigma^2$ (`noiseParameter1_{pSTAT5A_rel,pSTAT5B_rel,rSTAT5A_rel}`) that are overridden by the `{observable,noise}Parameters` column in the measurement table. When using hierarchical optimization, the nine overriding parameters `{offset,scaling,sd}_{pSTAT5A_rel,pSTAT5B_rel,rSTAT5A_rel}` are to be estimated in the inner problem."
]
},
{
"cell_type": "code",
- "execution_count": 3,
+ "execution_count": 4,
"metadata": {},
"outputs": [
{
@@ -207,7 +209,7 @@
},
{
"cell_type": "code",
- "execution_count": 4,
+ "execution_count": 5,
"metadata": {},
"outputs": [
{
@@ -365,8 +367,8 @@
"
offset_pSTAT5A_rel
\n",
"
NaN
\n",
"
lin
\n",
- "
-inf
\n",
- "
inf
\n",
+ "
-100.00000
\n",
+ "
100.0
\n",
"
0.000000
\n",
"
1
\n",
"
offset
\n",
@@ -375,8 +377,8 @@
"
offset_pSTAT5B_rel
\n",
"
NaN
\n",
"
lin
\n",
- "
-inf
\n",
- "
inf
\n",
+ "
-100.00000
\n",
+ "
100.0
\n",
"
0.000000
\n",
"
1
\n",
"
offset
\n",
@@ -385,8 +387,8 @@
"
offset_rSTAT5A_rel
\n",
"
NaN
\n",
"
lin
\n",
- "
-inf
\n",
- "
inf
\n",
+ "
-100.00000
\n",
+ "
100.0
\n",
"
0.000000
\n",
"
1
\n",
"
offset
\n",
@@ -395,8 +397,8 @@
"
scaling_pSTAT5A_rel
\n",
"
NaN
\n",
"
lin
\n",
- "
-inf
\n",
- "
inf
\n",
+ "
0.00001
\n",
+ "
100000.0
\n",
"
3.852612
\n",
"
1
\n",
"
scaling
\n",
@@ -405,8 +407,8 @@
"
scaling_pSTAT5B_rel
\n",
"
NaN
\n",
"
lin
\n",
- "
-inf
\n",
- "
inf
\n",
+ "
0.00001
\n",
+ "
100000.0
\n",
"
6.591478
\n",
"
1
\n",
"
scaling
\n",
@@ -415,8 +417,8 @@
"
scaling_rSTAT5A_rel
\n",
"
NaN
\n",
"
lin
\n",
- "
-inf
\n",
- "
inf
\n",
+ "
0.00001
\n",
+ "
100000.0
\n",
"
3.152713
\n",
"
1
\n",
"
scaling
\n",
@@ -439,12 +441,12 @@
"sd_pSTAT5B_rel \\sigma_{pSTAT5B,rel} lin 0.00000 \n",
"sd_rSTAT5A_rel \\sigma_{rSTAT5A,rel} lin 0.00000 \n",
"specC17 specC17 lin -5.00000 \n",
- "offset_pSTAT5A_rel NaN lin -inf \n",
- "offset_pSTAT5B_rel NaN lin -inf \n",
- "offset_rSTAT5A_rel NaN lin -inf \n",
- "scaling_pSTAT5A_rel NaN lin -inf \n",
- "scaling_pSTAT5B_rel NaN lin -inf \n",
- "scaling_rSTAT5A_rel NaN lin -inf \n",
+ "offset_pSTAT5A_rel NaN lin -100.00000 \n",
+ "offset_pSTAT5B_rel NaN lin -100.00000 \n",
+ "offset_rSTAT5A_rel NaN lin -100.00000 \n",
+ "scaling_pSTAT5A_rel NaN lin 0.00001 \n",
+ "scaling_pSTAT5B_rel NaN lin 0.00001 \n",
+ "scaling_rSTAT5A_rel NaN lin 0.00001 \n",
"\n",
" upperBound nominalValue estimate parameterType \n",
"parameterId \n",
@@ -459,15 +461,15 @@
"sd_pSTAT5B_rel inf 6.591478 1 sigma \n",
"sd_rSTAT5A_rel inf 3.152713 1 sigma \n",
"specC17 5.0 0.107000 0 None \n",
- "offset_pSTAT5A_rel inf 0.000000 1 offset \n",
- "offset_pSTAT5B_rel inf 0.000000 1 offset \n",
- "offset_rSTAT5A_rel inf 0.000000 1 offset \n",
- "scaling_pSTAT5A_rel inf 3.852612 1 scaling \n",
- "scaling_pSTAT5B_rel inf 6.591478 1 scaling \n",
- "scaling_rSTAT5A_rel inf 3.152713 1 scaling "
+ "offset_pSTAT5A_rel 100.0 0.000000 1 offset \n",
+ "offset_pSTAT5B_rel 100.0 0.000000 1 offset \n",
+ "offset_rSTAT5A_rel 100.0 0.000000 1 offset \n",
+ "scaling_pSTAT5A_rel 100000.0 3.852612 1 scaling \n",
+ "scaling_pSTAT5B_rel 100000.0 6.591478 1 scaling \n",
+ "scaling_rSTAT5A_rel 100000.0 3.152713 1 scaling "
]
},
- "execution_count": 4,
+ "execution_count": 5,
"metadata": {},
"output_type": "execute_result"
}
@@ -478,13 +480,14 @@
},
{
"cell_type": "code",
- "execution_count": 5,
+ "execution_count": 7,
"metadata": {},
"outputs": [],
"source": [
"# Create a pypesto problem with hierarchical optimization (`problem`)\n",
"importer = PetabImporter(petab_problem_hierarchical, hierarchical=True)\n",
- "objective = importer.create_objective()\n",
+ "model = importer.create_model(verbose=False)\n",
+ "objective = importer.create_objective(model=model)\n",
"problem = importer.create_problem(objective)\n",
"# set option to compute objective function gradients using adjoint sensitivity analysis\n",
"problem.objective.amici_solver.setSensitivityMethod(\n",
@@ -493,7 +496,8 @@
"\n",
"# ... and create another pypesto problem without hierarchical optimization (`problem2`)\n",
"importer2 = PetabImporter(petab_problem, hierarchical=False)\n",
- "objective2 = importer2.create_objective()\n",
+ "model2 = importer2.create_model(verbose=False)\n",
+ "objective2 = importer2.create_objective(model=model2)\n",
"problem2 = importer2.create_problem(objective2)\n",
"problem2.objective.amici_solver.setSensitivityMethod(\n",
" amici.SensitivityMethod.adjoint\n",
@@ -533,7 +537,7 @@
},
{
"cell_type": "code",
- "execution_count": 6,
+ "execution_count": 9,
"metadata": {
"scrolled": true
},
@@ -542,27 +546,41 @@
"name": "stderr",
"output_type": "stream",
"text": [
- "Performing parallel task execution on 3 processes.\n",
- "100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1645.47it/s]\n",
- "2022-11-14 23:22:49 fides(WARNING) Stopping as trust region radius 9.72E-17 is smaller than machine precision.\n",
- "2022-11-14 23:22:49 fides(WARNING) Stopping as trust region radius 7.82E-17 is smaller than machine precision.\n",
- "2022-11-14 23:22:50 fides(WARNING) Stopping as trust region radius 1.57E-16 is smaller than machine precision.\n"
+ " 0%| | 0/3 [00:00, ?it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2023-12-07 17:21:38 fides(WARNING) Stopping as function difference 3.83E-11 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
+ "2023-12-07 17:21:41 fides(WARNING) Stopping as trust region radius 9.14E-17 is smaller than machine precision.\n",
+ " 33%|███▎ | 1/3 [00:04<00:09, 4.68s/it]2023-12-07 17:21:42 fides(WARNING) Stopping as trust region radius 6.74E-17 is smaller than machine precision.\n",
+ "100%|██████████| 3/3 [00:05<00:00, 1.77s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "result_num.optimize_result.get_for_key('fval')=[271.9495064265798, 299.76215212064346, 331.72519519243633]\n",
- "time_num=2.5033538341522217\n"
+ "result_num.optimize_result.get_for_key('fval')=[142.53056857100609, 161.21291463119812, 206.9929627372532]\n",
+ "time_num=5.347311973571777\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
]
}
],
"source": [
"# Run hierarchical optimization using NumericalInnerSolver\n",
"start_time = time.time()\n",
- "problem.objective.calculator.inner_solver = NumericalInnerSolver()\n",
- "problem.objective.calculator.inner_solver.n_starts = 1\n",
+ "problem.objective.calculator.inner_solver = NumericalInnerSolver(\n",
+ " minimize_kwargs={'n_starts': 1}\n",
+ ")\n",
"result_num = pypesto.optimize.minimize(problem, **minimize_kwargs)\n",
"print(f\"{result_num.optimize_result.get_for_key('fval')=}\")\n",
"time_num = time.time() - start_time\n",
@@ -571,26 +589,39 @@
},
{
"cell_type": "code",
- "execution_count": 7,
+ "execution_count": 10,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Performing parallel task execution on 3 processes.\n",
- "100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 2427.26it/s]\n",
- "2022-11-14 23:22:51 fides(WARNING) Stopping as function difference 3.02E-07 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
- "2022-11-14 23:22:52 fides(WARNING) Stopping as function difference 8.07E-09 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
- "2022-11-14 23:22:52 fides(WARNING) Stopping as trust region radius 2.06E-16 is smaller than machine precision.\n"
+ " 0%| | 0/3 [00:00, ?it/s]"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "2023-12-07 17:22:06 fides(WARNING) Stopping as gradient norm satisfies absolute convergence criteria: 5.00E-15 < 1.00E-06\n",
+ "2023-12-07 17:22:08 fides(WARNING) Stopping as trust region radius 1.86E-16 is smaller than machine precision.\n",
+ "2023-12-07 17:22:09 fides(WARNING) Stopping as function difference 1.38E-06 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
+ "100%|██████████| 3/3 [00:04<00:00, 1.58s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "result_ana.optimize_result.get_for_key('fval')=[153.00723071231897, 328.58447642228583, 359.73451610364583]\n",
- "time_ana=2.2439095973968506\n"
+ "result_ana.optimize_result.get_for_key('fval')=[132.12474804019374, 161.19211137109636, 206.99296273527213]\n",
+ "time_ana=4.7687318325042725\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
]
}
],
@@ -606,12 +637,12 @@
},
{
"cell_type": "code",
- "execution_count": 8,
+ "execution_count": 11,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABNUAAAIjCAYAAAAkzS0sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACP90lEQVR4nOzdeXxcdaH+8efMJJns+55MZtKErQhlq0oFWrBAqWChIgp6oeKKqAUEhQsKlk0RpUWjeHFhUbxUfoUrAkWorBUQxBYEtDTNTPakSZqZ7Jnl/P7oTW7Tpu1MMpOT5fN+vfJq5pyZM0/Spp15+l0M0zRNAQAAAAAAAIiYzeoAAAAAAAAAwExDqQYAAAAAAABEiVINAAAAAAAAiBKlGgAAAAAAABAlSjUAAAAAAAAgSpRqAAAAAAAAQJQo1QAAAAAAAIAoUaoBAAAAAAAAUaJUAwAAAAAAAKJEqQYAADAHtbW16fzzz1deXp4Mw9DatWsjfqzH45FhGLrvvvtGj910000yDCNm+cZ7DgAAgOmEUg0AACBC69evl2EYevTRR/c5t2DBAhmGoeeee26fcxUVFVq0aFFUz/Wzn/0sroXSlVdeqaefflrXXXedHnzwQS1btixuzzXV/vrXv+qmm25Sd3e31VEAAMAsRqkGAAAQoZNOOkmS9PLLL4857vf79c9//lMJCQnavHnzmHMNDQ1qaGgYfWyk4l2q/eUvf9GKFSt09dVX67Of/awOP/zwuD3XVPvrX/+q733ve5RqAAAgrijVAAAAIlRaWqrKysp9SrVXXnlFpmnqk5/85D7nRm5HW6rFQzAY1PDwsCSpvb1d2dnZ1gYCAACYwSjVAAAAonDSSSfpH//4hwYGBkaPbd68WUceeaTOOussvfrqqwqHw2POGYahj3zkI5Kk3/zmNzrttNNUWFgoh8Oh+fPn6+c///mY53C73XrnnXf0wgsvyDAMGYahJUuWjJ7v7u7WFVdcIafTKYfDoerqav3gBz8Y87wja5LdeeedWrt2raqqquRwOPSzn/1MhmHINE3V1NSMXl+Surq6dPXVV+uoo45Senq6MjMzddZZZ2nr1q0x+/4tWbJEH/jAB/T3v/9dixYtUkpKiiorK3XPPfdE9Pi//OUvOvnkk5WWlqbs7GytWLFC77333uj5m266Sddcc40kqbKycvTr83g8MfsaAAAAJCnB6gAAAAAzyUknnaQHH3xQr7322mjRtXnzZi1atEiLFi2Sz+fTP//5Tx199NGj5w4//HDl5eVJkn7+85/ryCOP1Mc//nElJCTo8ccf11e/+lWFw2FdfvnlkqS1a9fq61//utLT03X99ddLkoqKiiRJ/f39Wrx4sZqamvTlL39ZFRUV+utf/6rrrrtOLS0t+2w48Jvf/EaDg4P60pe+JIfDoeOOO04PPvig/uM//kOnn366Lr744tH77tixQ4899pg++clPqrKyUm1tbfrFL36hxYsX691331VpaWlMvoe7du3S8uXLdcEFF+jCCy/U+vXrddlllykpKUmXXnrpfh/37LPP6qyzztK8efN00003aWBgQD/5yU/0kY98RG+++abcbrdWrlypbdu26fe//73uuusu5efnS5IKCgpikh0AAGCUCQAAgIi98847piTz5ptvNk3TNAOBgJmWlmbef//9pmmaZlFRkVlTU2Oapmn6/X7TbrebX/ziF0cf39/fv881zzzzTHPevHljjh155JHm4sWL97nvzTffbKalpZnbtm0bc/zaa6817Xa7WV9fb5qmadbV1ZmSzMzMTLO9vX2f60gyL7/88jHHBgcHzVAoNOZYXV2d6XA4zDVr1ow5Jsn8zW9+M3rsxhtvNCN5abl48WJTkvmjH/1o9NjQ0JB5zDHHmIWFhebw8PB+n2PkPp2dnaPHtm7datpsNvPiiy8ePfbDH/7QlGTW1dUdNA8AAMBEMf0TAAAgCkcccYTy8vJG10rbunWr+vr6Rnf3XLRo0ehmBa+88opCodCY9dRSUlJGP/f5fOro6NDixYu1Y8cO+Xy+gz7/H/7wB5188snKyclRR0fH6MfSpUsVCoX04osvjrn/Jz7xiYhHaTkcDtlsu18ehkIhdXZ2Kj09XYcddpjefPPNiK4RiYSEBH35y18evZ2UlKQvf/nLam9v19///vdxH9PS0qItW7Zo1apVys3NHT1+9NFH6/TTT9eTTz4Zs3wAAACRoFQDAACIgmEYWrRo0ejaaZs3b1ZhYaGqq6sljS3VRn7ds1TbvHmzli5dOromWEFBgf7zP/9TkiIq1d5//31t3LhRBQUFYz6WLl0qafcGBHuqrKyM+GsLh8O66667dMghh8jhcCg/P18FBQV66623IsoWqdLSUqWlpY05duihh0rSftc+83q9kqTDDjtsn3NHHHGEOjo61NfXF7OMAAAAB8OaagAAAFE66aST9Pjjj+vtt98eXU9txKJFi3TNNdeoqalJL7/8skpLSzVv3jxJUm1trT760Y/q8MMP149//GM5nU4lJSXpySef1F133TVmo4H9CYfDOv300/Wtb31r3PMj5dSIPUfGHcxtt92m73znO7r00kt18803Kzc3VzabTVdccUVE2QAAAOYSSjUAAIAojYw8e/nll7V582ZdccUVo+eOP/54ORwOPf/883rttde0fPny0XOPP/64hoaG9Mc//lEVFRWjx5977rl9nmNkR869VVVVqbe3d3RkWiw98sgjOvXUU/WrX/1qzPHu7u7RBf9jobm5WX19fWNGq23btk3S7p1Px+NyuSRJ//73v/c5969//Uv5+fmj19vf9w4AACCWmP4JAAAQpRNOOEHJycn63e9+p6ampjEj1UZ22KypqVFfX9+YqZ92u12SZJrm6DGfz6ff/OY3+zxHWlqauru79zl+wQUX6JVXXtHTTz+9z7nu7m4Fg8EJf112u31MNmn3Gm5NTU0TvuZ4gsGgfvGLX4zeHh4e1i9+8QsVFBTo+OOPH/cxJSUlOuaYY3T//feP+b7885//1J///Ocx5eVIuTbe9w8AACBWGKkGAAAQpaSkJC1cuFAvvfSSHA7HPkXQokWL9KMf/UjS2PXUzjjjDCUlJemcc87Rl7/8ZfX29uree+9VYWGhWlpaxlzj+OOP189//nPdcsstqq6uVmFhoU477TRdc801+uMf/6izzz5bq1at0vHHH6++vj69/fbbeuSRR+TxeCY8quzss8/WmjVr9LnPfU6LFi3S22+/rd/97nej01djpbS0VD/4wQ/k8Xh06KGH6uGHH9aWLVv0X//1X0pMTNzv4374wx/qrLPO0oknnqjPf/7zGhgY0E9+8hNlZWXppptuGr3fyO/H9ddfr09/+tNKTEzUOeecs886bgAAAJPBSDUAAIAJGCnLRqZ77ukjH/mIJCkjI0MLFiwYPX7YYYfpkUcekWEYuvrqq3XPPffoS1/6klavXr3P9b/73e9q+fLluuOOO3ThhRdqzZo1kqTU1FS98MILuuaaa/T8889r9erV+v73v6/3339f3/ve95SVlTXhr+k///M/9c1vflNPP/20Vq9erTfffFNPPPGEnE7nhK85npycHD355JN64403dM0116ihoUE//elP9cUvfvGAj1u6dKk2btyovLw8ffe739Wdd96pD3/4w9q8efOYDRkWLlyom2++WVu3btWqVat04YUXaufOnTH9GgAAAAxz7zH+AAAAQJwsWbJEHR0d+uc//2l1FAAAgElhpBoAAAAAAAAQJUo1AAAAAAAAIEqUagAAAAAAAECUWFMNAAAAAAAAiBIj1QAAAAAAAIAoUaoBAAAAAAAAUUqwOoDVwuGwmpublZGRIcMwrI4DAAAAAAAAi5imqZ6eHpWWlspmO/BYtDlfqjU3N8vpdFodAwAAAAAAANNEQ0ODysvLD3ifOV+qZWRkSNr9zcrMzLQ4DQAAAAAAs4NpmuN+hMPhcT8/2Mfe9x3vseFweJ/nHu9+M4FhGLLZbDIMY5/PR87vfXx/x8Z7bLSPMwxD9S/X66GzHzpo9ov+dJFcJ7vi+v2JF7/fL6fTOdoXHcicL9VG/kBlZmZSqgEAAAAAZqSJlE97F1GRlF3RXnsqGYYhu90+ocdFWiqNTAc82P0OVIhF+rjp6MhlR6qwvFD+Jr803m+vIWWWZ+rIZUfKZp/Zy/hH8nswZ0u1mpoa1dTUKBQKWR0FAAAAADBDHKxkivRYrEqrkc9ngmhLpWgKqcncZ7oWWNORzW7TsnXLtP789ZKhscXa/34bl61dNuMLtUgZ5kz56YsTv9+vrKws+Xw+RqoBAAAAwDQx8lY10oJq7/vGs9iaCaIpqCZabE3kcZgd3tvwnjau3ih/o3/0WKYzU8vWLtMRK4+wMNnkRdMTzdmRagAAAACA3SY7WmoyjzvQfWYCKwsqRl/BKkesPEKHrThM9S/Vq6elRxklGao4uWLOjFAbQakGAAAAAFNkvFFRsSyoJvO4mWA6lFbj3QeYi2x2m9xL3FbHsBSl2iwSCof0Uv1LaulpUUlGiU6uOFl2W/SLNAIAAACzQTwKqVhcZyaY7PpW8Si2RnIBwHRBqTZLbHhvg1ZvXK1Gf+PosfLMcq1btk4rj1hpYTIAAADMdpGMvop07apYFlszqcCayILr0sF3IJxosUV5BQAHR6k2C2x4b4POX3++zL32s23yN+n89efrkQseoVgDAAD7FQ6F5/yaKDPJSIEkHXxR9kiKrVjtQDgTTHa0VCSPZeF2AJg7KNVmuFA4pNUbV+9TqEmSKVOGDF2x8QqtOGwFU0EBAMA+xt29qzxTy9bN/N27JmsiI6piPcpqvEJsJpjoyKjJLMoeyUgvCiwAQCxRqs1wL9W/NGbK595MmWrwN+jJd57UYtdi2e32MR+8uAAAYO56b8N7Wn/+eu39f3P+Jr/Wn79eFzxywZQUayNF0VQu1B7pSK+ZIN7rWU30OgAAzHaUajNcS09LRPd7t/5duUzXPscNw9inaBvvIyEhQTabbcyxkRdOAABg5gmHwtq4euM+hZqk3ccM6clvPKniJcWSEZ8F3+fC6Kt4F1sjuQAAwNSjVJvhSjJKIrqfM8ep1NRUhUIhBYPBMS9qg8GggsFg1M8daSE33geFHAAA1qp/qX7MlM99mFJvU6/efPRNFSwsmLpg/2u86XzSwRdlj2exxWsXAACwJ0q1Ge7kipNVnlmuJn/TuOuqGTJUnlmuT334U2PWVBv5n+FQKDShDwo5AABmtp6WnojuZ/aYSk9Pn1SxNZEF3wEAAKY7SrUZzm6za92ydTp//fkyZIwp1gztfkG6dtnafTYp2LPUipbVhZykiKesUsgBADC+1MLUiO5XfUy13PPc8Q0DAAAwA1GqzQIrj1ipRy54RKs3rh6zaUF5ZrnWLlurlUesjOnzxaKQGynlRqai7lm6BYPBAxZykkZvT8RER8iNbOwAAMBMFwgEFCwLKrkoWYPtg+Ovq2bs3gW04uSKKc8HAAAwExjmTFkZNk78fr+ysrLk8/mUmZlpdZxJCYVDeqn+JbX0tKgko0QnV5y8zwi1mW6iI+SCwWBMFkGmkAMAzHQDAwPyeDwKBAJq/UurXrnqld0n9vxn8n//yZqq3T8BAACmi2h6IkaqzSJ2m11L3EusjhFXNptNNptNiYmJUT92MlNWw+GwpMmNkNt799SR6al7Hh9vyiqFHAAgVvx+v+rr6xUOh+VwOLT4ssVyVji1cfXGMZsWZJZnatnaZRRqAAAAB8BItVk0Ug3xs/eU1YkUcpOxdyEX7cYOAIC5zTRNdXR0qKWlRZKUnp4ul8s1upRDOBRW/Uv16mnpUUZJhipOrpDNzr8fAABg7mGkGhBjIyPkEhIS5HA4onqsaZr7nZI6Urrt7/xIITdS6gUCgQllp5ADgLnLNE01NTWpq6tLkpSbm6uysrIxo6BtdpvcS9wWJQQAAJiZKNWAODMMQwkJCUpIiP7HbX+FXKQf0uQKuT03pTjQ9FQKOQCYnkKhkLxer3p7eyVJJSUlys/PZ1kBAACAGKBUA6axyRZyE52yOlLImaapYDCoYDA4oeyRlG8JCQn7jKaz2Wy84QOASRoaGpLH49HQ0JBsNpsqKipY6gIAACCGKNWAWWrPUispKSmqx+5ZyI03JXXvom7PY+FwWKZpTkkht78RchRyAOa63t5eeb1ehUIhJSYmyu12KyUlxepYAAAAswqlGoB97FlqRWt/hVykHxRyADA5u3btUmNjo0zTVEpKitxu94R2zQYAADiQUDikl+pfUktPi0oySnRyxcmy26J/DzmTUaoBiKmZXsiNbEgxUrLtb8oqhRyA6cY0TbW1tam9vV2SlJWVJafTyRqXAAAg5ja8t0GrN65Wo79x9Fh5ZrnWLVunlUestDDZ1DJM0zStDmGlaLZKBTB9jVfIhcPh/U5ZHa+Qm6yJjpCz2+0UcgAmJRwOq6GhQT6fT5JUUFCg4uJi/m4BAAAxt+G9DTp//fkyNfY9lKHdrzseueCRGV2sRdMTMVINwKwwmRFykqIaITdSzo2UdiOF3J6bPESLQg7ARAUCAXm9XvX398swDJWVlSk3N9fqWAAAYBYKhUNavXH1PoWaJJkyZcjQFRuv0IrDVsyJqaCUagAgyWazyWazTWjdoclMWQ2Hw5ImV8iNTFkdma463vTV8aasUsgBM9/AwIA8Ho8CgYDsdrtcLpfS09OtjgUAAKahkdk9e/863rH9/bq5afOYKZ/7PIdMNfgb9FL9S1riXjJ1X5xFKNUAYJKsLuTC4bCGh4cnnH0yGzsAsI7f71d9fb3C4bAcDofcbrccDofVsQAAwEGMzHSJtNCa6Lm97xOLJW92tO+I6H4tPS2Tfq6ZgFINACw0mULONM0DTk8dKd7GW09uz0IuHA4rEAhMKDuFHDD1TNNUZ2enmpubJUnp6emqqKhQQgIv6wAAiNZI2RSvImt/56w2sknb/n7d37lDgodEdP2SjJI4fwXTA6++AGCGMgxDCQkJE3ojvb9CLtIPaXKF3Ej2kYJtf9NTKeSAsUzTVHNzszo7OyVJubm5Ki0t5ecCADAr7FluTeUILqsdrMiKpOyK9PF7/joRK4pWqPyFcjX5m8ZdV82QofLMcp1ccfJkvy0zAqUaAMxBVhdypmkqEAhMuJDbX+G2dzm392i6ybyAAKwWCoXk9XrV29srSSopKVF+fj5/pgEAcRHvImt/v1rtYCVVNMXVyOd73t77fiMfM4XdZte6Zet0/vrzZcgYU6yN7P65dtnaObFJgUSpBgCI0mQLufHWkdt7eureU1VHzo9cIxgMKhgMTij7ZKaszqQXPJhdhoeHVVdXp6GhIdlsNjmdTmVlZVkdCwAwBfY3PTHeI7qsLrj2LqOiLbImUoTNtILLKiuPWKlHLnhEqzeuHrNpQXlmudYuW6uVR6y0MN3UMkyrf1Is5vf7lZWVJZ/Pp8zMTKvjAAD2Y3+FXKQfk/3njkIOVunr65PX61UwGFRiYqLcbrdSUlKsjgUAc1Ik5dZ4ZVU0uyuO9xirxXtKYiynJ2LqhMIhvVT/klp6WlSSUaKTK06eFSPUoumJGKkGAJgR9iy1ohWLQm6yI+T2XDtuz2mpB1tbjheVc9uuXbvU2Ngo0zSVkpIit9s9oY1NAGA2muw0w4nex2rjFVHjTTOMZRHGaxGMx26za4l7idUxLEWpBgCY9WJdyO05JTXSQm7PNeWiFe3IuD2LOl4Ez0ymaaq9vV1tbW2SpMzMTDmdzgn9GQaAqTDVOydOt+mJUzWCi4ILmF4o1QAAOIDJFHKSohoht3dRN/JmYSoLuT0/eNFujXA4rMbGRnV3d0uSCgoKVFxczO8HgIjsb/2teO+kOJ0KrnhNRRzvHIC5jVINAIA4GnkBPpEpe5OZsjqy/spkCrn9TUmlkIufQCAgr9er/v5+GYahsrIy5ebmWh0LwARFW25FU3wdaN0uq8W7yGL9LQDTBaUaAADTlNWFXDgc1vDw8ISzT2TK6lwu5AYHB+XxeDQ8PCy73S6Xy6X09HSrYwGzxlTvnDhdCq6JlFP7e0yk63bN1b/HAcw9lGoAAMxCkynk9lwDbn/TU0dKu72nrO5ZyIXDYQUCgQlln8xOqzNRT0+PvF6vwuGwkpKSVFlZKYfDYXUsIC72Nz0x3mtyWV1wHWj9rXhNV6TgAoD4olQDAABjGIahhIQEJSRE/zJhf4VcpB/S5Aq5kewzqZDr6OhQc3OzJCktLU0ul2tC33tgIvYuuCKdZhjNfcY7Z7XJTEWcTBEGAJhdeMUGAABixupCzjRNBQKBCRdykUxPHSng9p6yGu0bZtM01dzcrM7OTklSTk6OysrKLCn3QuGQXqp/SS09LSrJKNHJFSfLbmOn0al2sJFXsRrBNV3X35qKdbeYnggAiCVKNQAAMC1MtpAbbx25vaenHqyQCwaDCgaDE8oezag4SWptbVVfX58Mw1BxcbEKCgoseaO/4b0NWr1xtRr9jaPHyjPLtW7ZOq08YuWU55kuoimtJlJk7W+0l9XiMRVxz+NMTwQAzCaGOR3+9baQ3+9XVlaWfD6fMjMzrY4DAACm2P4KuUg/on0pFQqF1NvbO1rmpaenKzU1dcJTVidTSGx4b4POX3++TI39GgztvuYjFzxiebG2v/W3YlVk7e9Xq18iR7IYfKSlV6SPp+ACACC6noiRagAAYE7bc5RZtKIt5AYGBuT3+xUOh2Wz2ZSenq6EhIRJjZDbcyrqnps8HGxtOVOmVm9cvU+hJkmmTBkydMXGK7TisBWjU0EPtLj8eGtrRVN8zbb1tyZbhFFuAQAw/VGqAQAATFA0hVx3d7d6e3uVmZmp5OTk0Q0J9t49NdIpqyMF1p5TWKPx+s7Xx0z53JspUw3+Bj344oNaWLBwWq6/daBphrFcm4uCCwAAjIdSDQAAII5M01R7e7va2tokSZmZmXI6naNF3ERHyEWzscPeRZ1pmuoY7Ijoudr62hTK3be027PEivei8kxPBAAA0xGlGgAAQJyEw2E1Njaqu7tbkpSfn6+SkpJJF0N7FlqJiYkTytWe2i69cfD7HlN9jA51HTpuyQUAADCXUaoBAADEQTAYlMfjUX9/vwzDUGlpqfLy8qyOJWn3Do+nzjtV5ZnlavI3jbuumiFD5ZnlWnrI0tE11QAAAPB/bFYHAAAAmG0GBwe1fft29ff3y263y+12T5tCbYTdZte6Zesk/d9unyNGbq9dtpZCDQAAYD8o1QAAAGKop6dHtbW1Gh4eVlJSkqqqqpSRkWF1rHGtPGKlHrngEZVllo05Xp5ZrkcueEQrj1hpUTIAAIDpzzCnwzZOFvL7/crKypLP51NmZqbVcQAAwAzW2dmp5uZmmaap1NRUud1uJSRM/9U2QuGQXqp/SS09LSrJKNHJFSczQg0AAMxJ0fRE0/9VHgAAwDRnmqZaWlrU0bF7R83s7GyVl5fLZpsZkwLsNruWuJdYHQMAAGBGoVQDAACYhFAopIaGBvn9fklSUVGRCgsL2R0TAABglqNUAwAAmKDh4WF5PB4NDg7KMAw5nU5lZ2dbHQsAAABTgFINAABgAvr7++XxeBQMBpWQkCCXy6W0tDSrYwEAAGCKzIyFPg6goaFBS5Ys0fz583X00UfrD3/4g9WRAADALOfz+VRbW6tgMKjk5GRVV1dTqAEAAMwxM36kWkJCgtauXatjjjlGra2tOv7447V8+XJe2AIAgJgzTVM7d+5Ua2urJCkjI0MVFRWy29kpEwAAYK6Z8aVaSUmJSkpKJEnFxcXKz89XV1cXpRoAAIipcDispqYm7dq1S5KUl5en0tJSNiQAAACYoyyf/vniiy/qnHPOGX1R+thjj+1zn5qaGrndbiUnJ+tDH/qQ/va3v417rb///e8KhUJyOp1xTg0AAOaSYDCourq60UKttLRUZWVlFGoAAABzmOWlWl9fnxYsWKCamppxzz/88MO66qqrdOONN+rNN9/UggULdOaZZ6q9vX3M/bq6unTxxRfrv/7rv6YiNgAAmCOGhoZUW1urvr4+2Ww2ud1u5efnWx0LAAAAFjNM0zStDjHCMAw9+uijOvfcc0ePfehDH9LChQv105/+VNLuqRdOp1Nf//rXde2110ra/WL39NNP1xe/+EX9x3/8xwGfY2hoSENDQ6O3/X6/nE6nfD6fMjMzY/9FAQCAGau3t1der1ehUEhJSUmjI+cBAAAwO/n9fmVlZUXUE1k+Uu1AhoeH9fe//11Lly4dPWaz2bR06VK98sorknYvGLxq1SqddtppBy3UJOn2229XVlbW6AdTRQEAwHi6urpUV1enUCik1NRUVVVVUagBAABg1LQu1To6OhQKhVRUVDTmeFFR0eiuW5s3b9bDDz+sxx57TMccc4yOOeYYvf322/u95nXXXSefzzf60dDQENevAQAAzCymaaqlpUWNjY0yTVNZWVmaN2+eEhMTrY4GAACAaWTG7/550kknKRwOR3x/h8Mhh8MRx0QAAGCmCoVCamhokN/vl7T7P/IKCwvZkAAAAAD7mNalWn5+vux2u9ra2sYcb2trU3FxsUWpAADAbBQIBOTxeDQwMCDDMFReXq6cnByrYwEAAGCamtbTP5OSknT88cdr06ZNo8fC4bA2bdqkE0880cJkAABgNhkYGND27ds1MDCghIQEzZs3j0INAAAAB2T5SLXe3l5t37599HZdXZ22bNmi3NxcVVRU6KqrrtIll1yiE044QR/84Ae1du1a9fX16XOf+5yFqQEAwGzh9/tVX1+vcDgsh8OhyspKJSUlWR0LAAAA05zlpdobb7yhU089dfT2VVddJUm65JJLdN999+lTn/qUdu7cqe9+97tqbW3VMccco40bN+6zeQEAAEA0TNNUR0eHWlpaJEnp6elyuVyy2+0WJwMAAMBMYJimaVodwkp+v19ZWVny+XzKzMy0Og4AAJgCpmmqqalJXV1dkqTc3FyVlZWxIQEAAMAcF01PZPlINQAAgKkUCoXk9XrV29srSSotLVVeXh6FGgAAAKIyZ0u1mpoa1dTUKBQKWR0FAABMkaGhIXk8Hg0NDclms6miooKR6gAAAJgQpn8y/RMAgDmht7dXXq9XoVBIiYmJcrvdSklJsToWAAAAphGmfwIAAOxh165damxslGmaSk1NlcvlUmJiotWxAAAAMINRqgEAgFnLNE21tbWpvb1dkpSVlSWn0ymbzWZxMgAAAMx0lGoAAGBWCofDamhokM/nkyQVFhaqqKiIDQkAAAAQE5RqAABg1gkEAvJ6verv75dhGCovL1dOTo7VsQAAADCLUKoBAIBZZWBgQB6PR4FAQHa7XS6XS+np6VbHAgAAwCxDqQYAAGYNv9+v+vp6hcNhORwOud1uORwOq2MBAABgFqJUAwAAM55pmurs7FRzc7MkKT09XS6XS3a73eJkAAAAmK0o1QAAwIxmmqaamprU1dUlScrNzVVZWRkbEgAAACCu5ux+8jU1NZo/f74WLlxodRQAADBBoVBIdXV1o4VaSUkJhRoAAACmhGGapml1CCv5/X5lZWXJ5/MpMzPT6jgAACBCw8PDqqur09DQkGw2m5xOp7KysqyOBQAAgBksmp6I6Z8AAGDG6evrk9frVTAYVGJiotxut1JSUqyOBQAAgDmEUg0AAMwou3btUmNjo0zTVEpKitxutxITE62OBQAAgDmGUg0AAMwIpmmqra1N7e3tkqTMzEw5nU52+AQAAIAlKNUAAMC0Fw6H1dDQIJ/PJ0kqKChQcXExGxIAAADAMpRqAABgWgsEAvJ6verv75dhGCorK1Nubq7VsQAAADDHUaoBAIBpa3BwUB6PR8PDw7Lb7XK5XEpPT7c6FgAAAECpBgAApqeenh55vV6Fw2E5HA653W45HA6rYwEAAACSKNUAAMA01NHRoebmZklSWlqaXC6XEhJ42QIAAIDpg1enAABg2jBNU83Nzers7JQk5eTkqKysTDabzeJkAAAAwFiUagAAYFoIhUKqr69XT0+PJKm4uFgFBQXs8AkAAIBpac6WajU1NaqpqVEoFLI6CgAAc97w8LA8Ho8GBwdlGIYqKiqUlZVldSwAAABgvwzTNE2rQ1jJ7/crKytLPp9PmZmZVscBAGDO6evrk9frVTAYVEJCgtxut1JTU62OBQAAgDkomp5ozo5UAwAA1uvu7lZDQ4NM01RycrLcbreSkpKsjgUAAAAcFKUaAACYcqZpqr29XW1tbZKkzMxMOZ1O2e12i5MBAAAAkaFUAwAAUyocDquxsVHd3d2SpPz8fJWUlLAhAQAAAGYUSjUAADBlgsGgPB6P+vv7ZRiGSktLlZeXZ3UsAAAAIGqUagAAYEoMDg7K4/FoeHhYdrtdFRUVysjIsDoWAAAAMCGUagAAIO56enpUX1+vUCikpKQkud1uJScnWx0LAAAAmDBKNQAAEFednZ1qbm6WaZpKS0uTy+VSQgIvQQAAADCz8YoWAADEhWmaamlpUUdHhyQpOztb5eXlstlsFicDAAAAJo9SDQAAxFwoFFJDQ4P8fr8kqaioSIWFhezwCQAAgFkjqlItHA7rhRde0EsvvSSv16v+/n4VFBTo2GOP1dKlS+V0OuOVEwAAzBDDw8PyeDwaHByUYRhyOp3Kzs62OhYAAAAQUxHNvxgYGNAtt9wip9Op5cuX66mnnlJ3d7fsdru2b9+uG2+8UZWVlVq+fLleffXVeGcGAADTVH9/v7Zv367BwUElJCSoqqqKQg0AAACzUkQj1Q499FCdeOKJuvfee3X66acrMTFxn/t4vV499NBD+vSnP63rr79eX/ziF2MeNpZqampUU1OjUChkdRQAAGYFn8+n+vp6maap5ORkud1uJSUlWR0LAAAAiAvDNE3zYHd67733dMQRR0R0wUAgoPr6elVVVU063FTw+/3KysqSz+dTZmam1XEAAJhxTNPUzp071draKknKyMhQRUWF7Ha7xckAAACA6ETTE0U0Ui3SQk2SEhMTZ0yhBgAAJiccDqupqUm7du2SJOXl5am0tJQNCQAAADDrRb2nfTgc3u/x+vr6SQcCAAAzQzAYVF1d3WihVlpaqrKyMgo1AAAAzAkRl2p+v18XXHCB0tLSVFRUpO9+97tj1iPbuXOnKisr4xISAABML0NDQ6qtrVVfX59sNpsqKyuVn59vdSwAAABgykQ0/VOSvvOd72jr1q168MEH1d3drVtuuUVvvvmmNmzYMLoIcQTLswEAgBmut7dXXq9XoVBISUlJcrvdSk5OtjoWAAAAMKUiHqn22GOP6Re/+IXOP/98feELX9Abb7yhnTt36pxzztHQ0JAkMd0DAIBZrqurS3V1dQqFQkpNTVV1dTWFGgAAAOakiEu1nTt3yuVyjd7Oz8/Xs88+q56eHi1fvlz9/f1xCQgAAKxnmqZaWlrU2Ngo0zSVnZ2tefPmKSEh4kHvAAAAwKwScalWUVGh9957b8yxjIwM/fnPf9bAwIDOO++8mIcDAADWC4VC8nq92rlzpySpqKhITqdTNlvU+x0BAAAAs0bEr4bPOOMM/eY3v9nneHp6up5++mmmfgAAMAsFAgHt2LFDfr9fhmHI6XSqqKiIJR8AAAAw50U8Z+N73/uempubxz2XkZGhZ555Rm+++WbMggEAAGsNDAzI4/EoEAgoISFBLpdLaWlpVscCAAAApoWIS7WcnBzl5OTs93xGRoYWL14ck1AAAMBaPp9PDQ0NCofDcjgcqqysHN3tGwAAAEAUpZokdXR06Ne//rVeeeUVtba2SpKKi4u1aNEirVq1SgUFBXEJCQAApoZpmuro6FBLS4uk3cs8uFwu2e12i5MBAAAA04thmqYZyR1ff/11nXnmmUpNTdXSpUtVVFQkSWpra9OmTZvU39+vp59+WieccEJcA8ea3+9XVlaWfD6fMjMzrY4DAIBlwuGwmpub1dXVJUnKy8tTaWkp66cBAABgzoimJ4q4VPvwhz+sBQsW6J577tnnxbVpmvrKV76it956S6+88srEk1uAUg0AgP/b4bO3t1eSVFpaqry8PAo1AAAAzCnR9EQRT//cunWr7rvvvnFfXBuGoSuvvFLHHnts9GkBAIClhoaG5PF4NDQ0JJvNpoqKCv6jCQAAADgIW6R3LC4u1t/+9rf9nv/b3/42OiV0JqipqdH8+fO1cOFCq6MAAGCZ3t5ebd++XUNDQ0pMTFRVVRWFGgAAABCBiEeqXX311frSl76kv//97/roRz+6z5pq9957r+688864BY21yy+/XJdffvnosD4AAOaarq4uNTU1yTRNpaamyuVyKTEx0epYAAAAwIwQcal2+eWXKz8/X3fddZd+9rOfKRQKSZLsdruOP/543XfffbrgggviFhQAAMSGaZpqbW3Vzp07JUlZWVlyOp2y2SIewA4AAADMeRFvVLCnQCCgjo4OSVJ+fv6M/l9tNioAAMwl4XBYDQ0N8vl8kqTCwkIVFRWxIQEAAACgOG1UsKfExESVlJRMKBwAALBGIBCQx+PRwMCADMNQeXm5cnJyrI4FAAAAzEiTmufx/e9/X93d3TGKAgAA4mVgYEDbt2/XwMCA7Ha7KisrKdQAAACASZhUqXbbbbepq6srVlkAAEAc+P1+1dbWKhAIyOFwqLq6Wunp6VbHAgAAAGa0CU3/HDGB5dgAAMAUMU1THR0damlpkSSlp6fL5XLJbrdbnAwAAACY+SZVqkliYWMAAKYh0zTV1NQ0OqI8NzdXZWVl/LsNAAAAxEhUpdqpp5465sX4wMCALrroIqWkpIwe+8tf/hK7dAAAIGqhUEher1e9vb2SpJKSEuXn51OoAQAAADEUVam2atWq0c9N09Qrr7yilStXqrCwMNa5AADABAwNDcnj8WhoaEg2m00VFRUH3QocAAAAQPQMcxILo2VkZGjr1q2aN29eLDNNKb/fr6ysLPl8Pt50AABmtL6+Pnk8HoVCISUmJsrtdo8ZTQ4AAADgwKLpiSa1phrTSAAAmB527dqlxsZGmaaplJQUud1uJSYmWh0LAAAAmLXY/RMAgBnMNE21tbWpvb1dkpSVlaXy8nJ2+AQAAADibFKl2rvvvqvS0tJYZQEAAFEIh8NqaGiQz+eTJBUUFKi4uJiR5AAAAMAUmFSp5nQ6Y5UDAABEIRAIyOv1qr+/X4ZhqKysTLm5uVbHAgAAAOYM20QeVFtbqxtuuEEXXnjh6HSTp556Su+8805MwwEAgH0NDAxo+/bt6u/vl91uV2VlJYUaAAAAMMWiLtVeeOEFHXXUUXrttde0YcMG9fb2SpK2bt2qG2+8MeYBAQDA//H7/aqtrVUgEJDD4VB1dbXS09OtjgUAAADMOVGXatdee61uueUWPfPMM0pKSho9ftppp+nVV1+NaTgAAPB/Ojo65PF4FA6HlZaWpqqqKjkcDqtjAQAAAHNS1KXa22+/rfPOO2+f44WFhero6IhJqKlQU1Oj+fPna+HChVZHAQDggEzTVFNTk5qbmyVJOTk5qqysVELCpJZGBQAAADAJUZdq2dnZamlp2ef4P/7xD5WVlcUk1FS4/PLL9e677+r111+3OgoAAPsVCoXk8XjU2dkpSSouLlZ5eblstgktiwoAAAAgRqJ+Rf7pT39a3/72t9Xa2irDMBQOh7V582ZdffXVuvjii+OREQCAOWl4eFi1tbXq6emRYRhyuVwqLCyUYRhWRwMAAADmvKhLtdtuu02HH364nE6nent7NX/+fJ1yyilatGiRbrjhhnhkBABgzunr69P27ds1ODiohIQEVVVVKSsry+pYAAAAAP6XYZqmOZEH1tfX65///Kd6e3t17LHH6pBDDol1tinh9/uVlZUln8+nzMxMq+MAAKDu7m41NDTINE2lpKTI5XKN2RwIAAAAQHxE0xNNeIXjiooKVVRUTPThAABgL6Zpqr29XW1tbZKkzMxMOZ1O2e12i5MBAAAA2FtU0z/fffddffWrX9Wxxx6rkpISlZSU6Nhjj9VXv/pVvfvuu/HKCADArBcOh9XQ0DBaqOXn58vlclGoAQAAANNUxCPVnnrqKZ177rk67rjjtGLFChUVFUmS2tra9Mwzz+i4447T//zP/+jMM8+MW1gAAGajYDAoj8ej/v5+GYah0tJS5eXlWR0LAAAAwAFEvKbaggULtGLFCq1Zs2bc8zfddJM2bNigt956K6YB44011QAAVhocHJTH49Hw8LDsdrtcLpfS09OtjgUAAADMSdH0RBFP/9y2bZs+85nP7Pf8hRdeqPfffz/ylAAAzHE9PT3avn27hoeHlZSUpKqqKgo1AAAAYIaIuFRzu9164okn9nv+iSeekMvlikkoAABmu87OTnk8HoXDYaWlpam6ulrJyclWxwIAAAAQoYjXVFuzZo0uuugiPf/881q6dOmYNdU2bdqkjRs36qGHHopbUAAAZgPTNNXS0qKOjg5JUk5OjsrKymSzRbV3EAAAAACLRVyqffKTn1RZWZnuvvtu/ehHP1Jra6skqbi4WCeeeKKef/55nXjiiXELCgDATBcKhVRfX6+enh5JUlFRkQoLC2UYhsXJAAAAAEQr4lJNkhYtWqRFixbFKwsAALPW8PCwPB6PBgcHZRiGnE6nsrOzrY4FAAAAYIKiKtUAAED0+vv75fF4FAwGlZCQILfbrdTUVKtjAQAAAJiEqBZwefLJJ/WFL3xB3/rWt/Tee++NObdr1y6ddtppMQ0HAMBM5/P5VFtbq2AwqOTkZFVXV1OoAQAAALNAxKXaQw89pI9//ONqbW3VK6+8ouOOO06/+93vRs8PDw/rhRdeiEtIAABmGtM01d7eLq/XK9M0lZGRoaqqKiUlJVkdDQAAAEAMRDz984c//KF+/OMf6xvf+IYkaf369br00ks1ODioz3/+83ELCADATBMOh9XU1KRdu3ZJkvLz81VSUsKGBAAAAMAsEnGp9v777+ucc84ZvX3BBReooKBAH//4xxUIBHTeeefFJSAAADNJMBiU1+tVX1+fDMNQaWmp8vLyrI4FAAAAIMYiLtUyMzPV1tamysrK0WOnnnqq/vSnP+nss89WY2NjXAICADBTDA4OyuPxaHh4WDabTS6XSxkZGVbHAgAAABAHEa+p9sEPflBPPfXUPscXL16sxx9/XGvXro1lLgAAZpTe3l7V1tZqeHhYSUlJqq6uplADAAAAZrGIS7Urr7xSycnJ455bsmSJHn/8cV188cUxCwYAwEzR2dmpuro6hUIhpaamqrq6er//ZgIAAACYHQzTNE2rQ1jJ7/crKytLPp9PmZmZVscBAMwgpmmqpaVFHR0dkqTs7GyVl5fLZov4/6wAAAAATCPR9ESTetUfCAT0/vvvy+fzTeYyAADMOKFQSF6vd7RQKyoqktPppFADAAAA5oiIX/nfcccdGhgYkLT7jcTVV1+t9PR0HX744crPz9ell16qQCAQt6AAAEwXw8PD2rFjh/x+vwzDUEVFhYqKimQYhtXRAAAAAEyRiEu16667Tj09PZKku+66S7/+9a91zz336O2339Z9992nJ554QnfddVfcgsZaTU2N5s+fr4ULF1odBQAwg/T396u2tlYDAwNKSEjQvHnzlJ2dbXUsAAAAAFMs4jXVbDabWltbVVhYqOOOO05f+cpX9KUvfWn0/O9+9zvdfvvt+uc//xm3sPHAmmoAgEj5fD41NDQoHA4rOTlZbrdbSUlJVscCAAAAECPR9EQJ0Vx4ZFpLfX29Fi1aNObcokWLVFdXF2VUAACmP9M0tXPnTrW2tkqSMjIyVFFRIbvdbnEyAAAAAFaJqlS79957lZ6erqSkJHV1dY0519PTI4fDEdNwAABYLRwOq7m5efTfvby8PJWWlrJ+GgAAADDHRVyqVVRU6N5775UkORwOvfnmmzrllFNGzz/33HM67LDDYp8QAACLBINBeb1e9fX1SZJKS0uVn59vcSoAAAAA00HEpZrH4zng+Q996ENjSjYAAGayoaEheTweDQ0NyWazqaKigrU3AQAAAIyKavrngXz4wx+O1aUAALBUb2+vvF6vQqGQEhMT5Xa7lZKSYnUsAAAAANNIzEq1lpYWBQIBVVRUxOqSAABMua6uLjU1Nck0TaWmpsrlcikxMdHqWAAAAACmmZiVaqeddpq2bdumUCgUq0sCADBlTNNUa2urdu7cKUnKysqS0+mUzWazOBkAAACA6ShmpdoDDzyg/v7+WF0OAIApEw6H1dDQIJ/PJ0kqLCxUUVERO3wCAAAA2K+YlWoLFy6M1aUAAJgygUBAHo9HAwMDMgxD5eXlysnJsToWAAAAgGkuZqUaAAAzzcDAgDwejwKBgOx2u9xut9LS0qyOBQAAAGAGiNlCMVu3bpXdbo/V5QAAiCu/36/a2loFAgE5HA5VV1dTqAEAAACIWExHqpmmGcvLAQAQc6ZpqqOjQy0tLZKk9PR0uVwu/mMIAAAAQFQiLtVWrlx5wPM+n48FnQEA05ppmmpqalJXV5ckKTc3V2VlZfz7BQAAACBqEZdqjz/+uE4//XQVFRWNez4UCsUsFAAAsRYKheT1etXb2ytJKikpUX5+PoUaAAAAgAmJuFQ74ogj9IlPfEKf//znxz2/ZcsW/elPf4pZMAAAYmVoaEgej0dDQ0Oy2WyqqKhQZmam1bEAAAAAzGARb1Rw/PHH680339zveYfDoYqKipiEAgAgVnp7e7V9+3YNDQ0pMTFRVVVVFGoAAAAAJs0wI9xdYGhoSKFQSKmpqfHONKX8fr+ysrLk8/l4kwUAs8yuXbvU2Ngo0zSVkpIit9utxMREq2MBAAAAmKai6Ykinv7pcDgmHQwAgKlgmqba2trU3t4uScrKypLT6ZTNFvEAbQAAAAA4oEm9u/jYxz6mlpaWWGUBAGDSwuGw6uvrRwu1goICVVRUUKgBAAAAiKmIR6qN58UXX9TAwECssgAAMCmBQEBer1f9/f0yDENlZWXKzc21OhYAAACAWWhSpRoAANPFwMCAPB6PAoGA7Ha7XC6X0tPTrY4FAAAAYJaaVKnmcrlY8BkAYDm/36/6+nqFw2E5HA653W7WAgUAAAAQV5Mq1f75z3/GKgcAAFEzTVOdnZ1qbm6WJKWlpcnlcikhgYHYAAAAAOKLdx0AgBnJNE01Nzers7NTkpSbm6vS0lI2JAAAAAAwJSb0ziMzM1M7duzY53MAAKZCKBSSx+MZLdSKi4tVVlZGoQYAAABgykxopJppmuN+DgBAvA0PD6uurk5DQ0Oy2WxyOp3KysqyOhYAAACAOYbpnwCAGaOvr09er1fBYFCJiYlyu91KSUmxOhYAAACAOYhSDQAwI3R3d6uhoUGmaSolJUVut5sdqAEAAABYhlINADCtmaap9vZ2tbW1Sdq9lqfT6ZTdbrc4GQAAAIC5jFINADBthcNhNTY2qru7W5JUUFCg4uJiGYZhbTAAAAAAcx6lGgBgWgoGg/J4POrv75dhGCorK1Nubq7VsQAAAABAEqUaAGAaGhwclMfj0fDwsOx2u1wul9LT062OBQAAAACjJlSqffazn1VmZuY+nwMAMFk9PT3yer0Kh8NKSkqS2+1WcnKy1bEAAAAAYAzDNE3T6hBWqKmpUU1NjUKhkLZt2yafz0c5CAAW6+joUEtLi0zTVFpamlwulxISGFQNAAAAYGr4/X5lZWVF1BPZor34mjVr1N/fv8/xgYEBrVmzJtrLWebyyy/Xu+++q9dff93qKAAw55mmqebmZjU3N8s0TeXk5KiyspJCDQAAAMC0FfVINbvdrpaWFhUWFo453tnZqcLCQoVCoZgGjLdoGkgAQOyFQiHV19erp6dHklRcXKyCggJ2+AQAAAAw5aLpiaIeAmCa5rhvdLZu3cqubACAqAwPD8vj8WhwcFCGYaiiokJZWVlWxwIAAACAg4q4VMvJyZFhGDIMQ4ceeuiYYi0UCqm3t1df+cpX4hISADD79Pf3y+PxKBgMKiEhQW63W6mpqVbHAgAAAICIRFyqrV27VqZp6tJLL9X3vve9MSMJRnZnO/HEE+MSEgAwu3R3d6uhoUGmaSo5OVlut1tJSUlWxwIAAACAiEVcql1yySWSpMrKSn3kIx9h8WgAQNRM01R7e7va2tokSRkZGaqoqJDdbrc4GQAAAABEJ+rdPxcvXiyv16sbbrhBF154odrb2yVJTz31lN55552YBwQAzA7hcFiNjY2jhVp+fr7cbjeFGgAAAIAZKepS7YUXXtBRRx2l1157TRs2bFBvb6+k3RsV3HjjjTEPCACY+YLBoOrq6rRr1y4ZhqGysjKVlpaywycAAACAGSvqUu3aa6/VLbfcomeeeWbM+jennXaaXn311ZiGAwDMfIODg9q+fbv6+vpks9nkdruVl5dndSwAAAAAmJSoF0Z7++239dBDD+1zvLCwUB0dHTEJBQCYHXp6elRfX69QKDS6qU1ycrLVsQAAAABg0qIeqZadna2WlpZ9jv/jH/9QWVlZTEIBAGa+zs5OeTwehUIhpaamqrq6mkINAAAAwKwRdan26U9/Wt/+9rfV2toqwzAUDoe1efNmXX311br44ovjkREAMIOYpqnm5mY1NTXJNE1lZ2dr3rx57BoNAAAAYFaJulS77bbbdPjhh8vpdKq3t1fz58/XKaecokWLFumGG26IR0YAwAwRCoXk9XpHlwMoKiqS0+mUzRb1PzcAAAAAMK0ZpmmaE3lgQ0OD3n77bfX29urYY4/VIYccEutsU8Lv9ysrK0s+n0+ZmZlWxwGAGWt4eFher1cDAwMyDENOp1PZ2dlWxwIAAACAiEXTE014Lo7T6ZTT6VQoFNLbb7+tXbt2KScnZ6KXAwDMYP39/fJ4PAoGg0pISJDL5VJaWprVsQAAAAAgbqKej3PFFVfoV7/6laTd03wWL16s4447Tk6nU88//3ys8wEApjmfz6fa2loFg0ElJyerurqaQg0AAADArBd1qfbII49owYIFkqTHH39cO3bs0L/+9S9deeWVuv7662MeEAAwPZmmqfb2dnm9XpmmqYyMDFVVVSkpKcnqaAAAAAAQd1GXah0dHSouLpYkPfnkk7rgggt06KGH6tJLL9Xbb78d84AAgOknHA6rsbFRra2tkqS8vDy53W7Z7XaLkwEAAADA1Ii6VCsqKtK7776rUCikjRs36vTTT5e0ez0d3kwBwOwXDAZVV1enXbt2SZJKS0tVVlYmwzAsTgYAAAAAUyfqjQo+97nP6YILLlBJSYkMw9DSpUslSa+99poOP/zwmAcEAEwfQ0ND8ng8Ghoaks1mU0VFBTsnAwAAAJiToi7VbrrpJh111FGqr6/XJz/5STkcDkmS3W7XtddeG/OAAIDpobe3V16vV6FQSElJSXK73UpOTrY6FgAAAABYIqJSLTc3V9u2bVN+fr4uvfRSrVu3ThkZGWPuc8kll8QlIADAel1dXWpqapJpmkpNTZXL5VJiYqLVsQAAAADAMhGtqTY8PCy/3y9Juv/++zU4OBjXUACA6cE0TbW0tKixsVGmaSorK0vz5s2jUAMAAAAw50U0Uu3EE0/Uueeeq+OPP16maeob3/iGUlJSxr3vr3/965gGBABYIxQKqbGxUT6fT5JUWFiooqIiNiQAAAAAAEVYqv32t7/VXXfdpdraWkmSz+djtBoAzGKBQEAej0cDAwMyDEPl5eXKycmxOhYAAAAATBuGaZpmNA+orKzUG2+8oby8vHhlmlJ+v19ZWVny+XzsYAcAkgYGBuTxeBQIBJSQkCCXy6W0tDSrYwEAAABA3EXTE0W0plpubq46OjokSaeeeqqSkpImnxIAMO34/X7V1tYqEAjI4XCourqaQg0AAAAAxsFGBQAAmaapnTt3yuPxKBwOKz09XdXV1fwnCgAAAADsBxsVAMAcZ5qmmpqa1NXVJWn36OSysjI2JAAAAACAA4h6owLDMNioAABmiVAoJK/Xq97eXklSaWmp8vLyKNQAAAAA4CDYqICNCgDMUUNDQ/J4PBoaGpLNZlNFRQV/DwIAAACY06LpiSIaqbanurq6CQcDAEwPvb298nq9CoVCSkxMlNvt3u+0fgAAAADAviLaqGBvL7zwgs455xxVV1erurpaH//4x/XSSy/FOhsAIA527dqluro6hUIhpaSkqLq6mkINAAAAAKIUdan229/+VkuXLlVqaqq+8Y1vjG5a8NGPflQPPfRQPDICAGLANE21traqoaFBpmkqKytLVVVVSkxMtDoaAAAAAMw4Ua+pdsQRR+hLX/qSrrzyyjHHf/zjH+vee+/Ve++9F9OA8caaagDmgnA4rIaGBvl8PklSYWGhioqK2JAAAAAAAPYQTU8U9Ui1HTt26Jxzztnn+Mc//nHWWwOAaSgQCGjHjh3y+XwyDEPl5eUqLi6mUAMAAACASYi6VHM6ndq0adM+x5999lk5nc6YhAIAxMbAwIC2b9+u/v5+2e12VVZWKjc31+pYAAAAADDjRb375ze/+U194xvf0JYtW7Ro0SJJ0ubNm3Xfffdp3bp1MQ8IAJgYv9+v+vp6hcNhORwOud1uORwOq2MBAAAAwKwQdal22WWXqbi4WD/60Y+0fv16SbvXWXv44Ye1YsWKmAcEAETHNE11dnaqublZkpSeni6XyyW73W5xMgAAAACYPaLeqGC2YaMCALOJaZpqbm5WZ2enJCk3N1dlZWWsnwYAAAAAEYimJ4popJppmrwhA4BpLhQKyev1qre3V5JUUlKi/Px8/v4GAAAAgDiIaKOCI488Uv/93/+t4eHhA97v/fff12WXXabvf//7MQkHAIjM8PCwtm/frt7eXtlsNrlcLhUUFFCoAQAAAECcRDRS7Sc/+Ym+/e1v66tf/apOP/10nXDCCSotLVVycrJ27dqld999Vy+//LLeeecdfe1rX9Nll10W79wAgP/V19cnr9erYDCoxMREud1upaSkWB0LAAAAAGa1qNZUe/nll/Xwww/rpZdektfr1cDAgPLz83XsscfqzDPP1Gc+8xnl5OTEM2/MsaYagJls165damxslGmaSklJkdvtVmJiotWxAAAAAGBGiqYnYqMCSjUAM5Bpmmpvb1dbW5skKTMzU06nkx0+AQAAAGASYr5RAQBg+giHw2psbFR3d7ckqaCgQMXFxayfBgAAAABTiFINAGaQQCAgr9er/v5+GYahsrIy5ebmWh0LAAAAAOYcSjUAmCEGBwfl8Xg0PDwsu90ul8ul9PR0q2MBAAAAwJxEqQYAM0BPT4+8Xq/C4bAcDofcbrccDofVsQAAAABgzqJUA4BprqOjQ83NzZKktLQ0uVwuJSTw1zcAAAAAWMk2kQfV1tbqhhtu0IUXXqj29nZJ0lNPPaV33nknpuEAYC4zTVNNTU2jhVpOTo4qKysp1AAAAABgGoi6VHvhhRd01FFH6bXXXtOGDRvU29srSdq6datuvPHGmAcEgLkoFArJ4/Gos7NTklRcXKzy8nLZbBP6vxAAAAAAQIxF/e7s2muv1S233KJnnnlGSUlJo8dPO+00vfrqqzENBwBz0fDwsGpra9XT0yPDMORyuVRYWCjDMKyOBgAAAAD4X1HPIXr77bf10EMP7XO8sLBQHR0dMQkFAHNVf3+/PB6PgsGgEhIS5Ha7lZqaanUsAAAAAMBeoh6plp2drZaWln2O/+Mf/1BZWVlMQkXrvPPOU05Ojs4//3xLnh8AYqG7u1u1tbUKBoNKTk5WdXU1hRoAAAAATFNRl2qf/vSn9e1vf1utra0yDEPhcFibN2/W1VdfrYsvvjgeGQ9q9erVeuCBByx5bgCYLNM01dbWpvr6epmmqczMTFVVVY2ZYg8AAAAAmF6iLtVuu+02HX744XI6nert7dX8+fN1yimnaNGiRbrhhhvikfGglixZooyMDEueGwAmIxwOq6GhQW1tbZKk/Px8uVwu2e12i5MBAAAAAA4k6lItKSlJ9957r2pra/WnP/1Jv/3tb/Wvf/1LDz744ITeBL744os655xzVFpaKsMw9Nhjj+1zn5qaGrndbiUnJ+tDH/qQ/va3v0X9PAAw3QSDQe3YsUPd3d0yDENlZWWjfxcCAAAAAKa3qDcqGFFRUaGKiopJB+jr69OCBQt06aWXauXKlfucf/jhh3XVVVfpnnvu0Yc+9CGtXbtWZ555pv7973+rsLAw6ucbGhrS0NDQ6G2/3z+p/AAwEYODg/J4PBoeHpbdbldFRQUjbgEAAABgBom6VLv00ksPeP7Xv/51VNc766yzdNZZZ+33/I9//GN98Ytf1Oc+9zlJ0j333KMnnnhCv/71r3XttddG9VySdPvtt+t73/te1I8DgFjp6elRfX29QqGQkpKSRkfiAgAAAABmjqinf+7atWvMR3t7u/7yl79ow4YN6u7ujmm44eFh/f3vf9fSpUtHj9lsNi1dulSvvPLKhK553XXXyefzjX40NDTEKi4AHFRnZ6c8Ho9CoZBSU1NVXV1NoQYAAAAAM1DUI9UeffTRfY6Fw2FddtllqqqqikmoER0dHQqFQioqKhpzvKioSP/6179Gby9dulRbt25VX1+fysvL9Yc//EEnnnjiuNd0OBxyOBwxzQkAB2OaplpaWtTR0SFJys7OVnl5uWy2qP9vAwAAAAAwDUx4TbU92Ww2XXXVVVqyZIm+9a1vxeKSUXn22Wen/DkBIFKhUEgNDQ2jazgWFRWpsLCQDQkAAAAAYAaLSakmSbW1tQoGg7G6nCQpPz9fdrtdbW1tY463tbWpuLg4ps8FAPEwPDwsj8ejwcFBGYYhp9Op7Oxsq2MBAAAAACYp6lLtqquuGnN7ZErTE088oUsuuSRmwSQpKSlJxx9/vDZt2qRzzz1X0u6ppps2bdLXvva1mD4XAMRaf3+/PB6PgsGgEhIS5HK5lJaWZnUsAAAAAEAMRF2q/eMf/xhz22azqaCgQD/60Y8OujPoeHp7e7V9+/bR23V1ddqyZYtyc3NVUVGhq666SpdccolOOOEEffCDH9TatWvV19c3uhsoAExHPp9P9fX1Mk1TycnJcrvdSkpKsjoWAAAAACBGoi7VnnvuuZgGeOONN3TqqaeO3h4ZCXfJJZfovvvu06c+9Snt3LlT3/3ud9Xa2qpjjjlGGzdu3GfzAgCYDkzT1M6dO9Xa2ipJysjIUEVFhex2u8XJAAAAAACxZJimaVodwkp+v19ZWVny+XzKzMy0Og6AGSwcDqupqUm7du2SJOXl5am0tJQNCQAAAABghoimJ4popNqxxx4b8ZvCN998M6L7Wa2mpkY1NTUKhUJWRwEwCwSDQXm9XvX19UmSSktLlZ+fb3EqAAAAAEC8RFSqjWwSMJtcfvnluvzyy0cbSACYqKGhIXk8Hg0NDclms8nlcikjI8PqWAAAAACAOGL6J9M/AUxCb2+vvF6vQqGQkpKS5Ha7lZycbHUsAAAAAMAExHz6JwBgX11dXWpqapJpmkpNTZXL5VJiYqLVsQAAAAAAUyDqUi0UCumuu+7S+vXrVV9fr+Hh4THnu7q6YhYOAKYj0zTV2tqqnTt3SpKys7NVXl4um81mcTIAAAAAwFSJ+h3g9773Pf34xz/Wpz71Kfl8Pl111VVauXKlbDabbrrppjhEBIDpIxQKyev1jhZqRUVFcjqdFGoAAAAAMMdEvaZaVVWV7r77bn3sYx9TRkaGtmzZMnrs1Vdf1UMPPRSvrHHBmmoAIhUIBOTxeDQwMCDDMFReXq6cnByrYwEAAAAAYiSanijqoRWtra066qijJEnp6eny+XySpLPPPltPPPHEBOICwPQ3MDCg7du3a2BgQAkJCZo3bx6FGgAAAADMYVGXauXl5WppaZG0e9Tan//8Z0nS66+/LofDEdt0ADAN+P1+1dbWKhAIyOFwqLq6WmlpaVbHAgAAAABYKOpS7bzzztOmTZskSV//+tf1ne98R4cccoguvvhiXXrppTEPCABWMU1TO3fulMfjUTgcVnp6uqqrq5WUlGR1NAAAAACAxaJeU21vr776qv7617/qkEMO0TnnnBOrXFOGNdUAjMc0TTU1NY3uaJyXl6fS0lIZhmFxMgAAAABAvETTEyVEe/HBwUElJyeP3v7whz+sD3/4w9GntFhNTY1qamoUCoWsjgJgmhnZ4bO3t1eSVFpaqry8PAo1AAAAAMCoqEeqZWZm6rzzztNnP/tZffSjH5XNFvUM0mmFkWoA9jQ0NCSPx6OhoSHZbDZVVFTwdwMAAAAAzBFx3f3z/vvvV39/v1asWKGysjJdccUVeuONNyYcFgCmi97eXm3fvl1DQ0NKTExUVVUVhRoAAAAAYFwT2qjgD3/4g9ra2nTbbbfp3Xff1Yc//GEdeuihWrNmTTwyAkDc7dq1S3V1dQqFQkpNTVV1dbVSUlKsjgUAAAAAmKYmvVGBJL377rv6zGc+o7feemvGrVHG9E9gbjNNU21tbWpvb5ckZWVlyel0zvip7QAAAACA6MV1+ueIwcFBrV+/Xueee66OO+44dXV16Zprrpno5QBgyoXDYdXX148WaoWFhaqoqKBQAwAAAAAcVNS7fz799NN66KGH9NhjjykhIUHnn3++/vznP+uUU06JRz4AiItAICCv16v+/n4ZhqHy8nLl5ORYHQsAAAAAMENEXaqdd955Ovvss/XAAw9o+fLlSkxMjEcuAIibgYEBeTweBQIB2e12uVwupaenWx0LAAAAADCDRF2qtbW1KSMjIx5ZACDu/H6/6uvrFQ6H5XA45Ha75XA4rI4FAAAAAJhhoi7VKNQAzESmaaqzs1PNzc2SpPT0dLlcLtntdouTAQAAAABmoqhLNQCYaUzTVFNTk7q6uiRJubm5Kisrk2EYFicDAAAAAMxUc3aLu5qaGs2fP18LFy60OgqAOAqFQqqrqxst1EpKSijUAAAAAACTZpimaVodwkp+v19ZWVny+XzKzMy0Og6AGBoeHlZdXZ2GhoZks9lUUVHBzzkAAAAAYL+i6YkmPFJt+/btevrppzUwMCBp9/QqAJgu+vr6tH37dg0NDSkxMVFVVVUUagAAAACAmIm6VOvs7NTSpUt16KGHavny5WppaZEkff7zn9c3v/nNmAcEgGjt2rVLO3bsUDAYVEpKiqqrq5WSkmJ1LAAAAADALBJ1qXbllVcqISFB9fX1Sk1NHT3+qU99Shs3boxpOACIhmmaam1tVUNDg0zTVFZWlubNm6fExESrowEAAAAAZpmod//885//rKefflrl5eVjjh9yyCHyer0xCwYA0QiHw2poaJDP55MkFRQUqLi4mA0JAAAAAABxEXWp1tfXN2aE2oiuri45HI6YhAKAaAQCAXm9XvX398swDJWVlSk3N9fqWAAAAACAWSzq6Z8nn3yyHnjggdHbhmEoHA7rjjvu0KmnnhrTcABwMIODg6qtrVV/f7/sdrsqKysp1AAAAAAAcRf1SLU77rhDH/3oR/XGG29oeHhY3/rWt/TOO++oq6tLmzdvjkdGABhXT0+PvF6vwuGwHA6H3G43I2YBAAAAAFMi6pFqH/jAB7Rt2zaddNJJWrFihfr6+rRy5Ur94x//UFVVVTwyAsA+Ojo6VFdXp3A4rLS0NFVVVVGoAQAAAACmjGGapml1CCv5/X5lZWXJ5/MpMzPT6jgADsI0TTU3N6uzs1OSlJOTo7KyMtlsUf8fAQAAAAAAY0TTE0X9LrS6ulo33XST3n///QkHBICJCIVC8ng8o4VacXGxysvLKdQAAAAAAFMu6neil19+uZ544gkddthhWrhwodatW6fW1tZ4ZAOAUcPDw6qtrVVPT48Mw5DL5VJhYaEMw7A6GgAAAABgDoq6VLvyyiv1+uuv61//+peWL1+umpoaOZ1OnXHGGWN2BQWAWOnr69P27ds1ODiohIQEVVVVKSsry+pYAAAAAIA5LCZrqr366qu67LLL9NZbbykUCsUiV9zV1NSopqZGoVBI27ZtY001YJrq7u5WQ0ODTNNUSkqKXC6XkpKSrI4FAAAAAJiFollTbVKl2t/+9jc99NBDevjhh+X3+3XOOefov//7vyd6OUuwUQEwPZmmqfb2drW1tUmSMjMz5XQ6ZbfbLU4GAAAAAJitoumJEqK9+LZt2/S73/1Ov//971VXV6fTTjtNP/jBD7Ry5Uqlp6dPODQAjAiHw2psbFR3d7ckKT8/XyUlJayfBgAAAACYNqIu1Q4//HAtXLhQl19+uT796U+rqKgoHrkAzFHBYFAej0f9/f0yDEOlpaXKy8uzOhYAAAAAAGNEXar9+9//1iGHHBKPLADmuMHBQXk8Hg0PD8tut6uiokIZGRlWxwIAAAAAYB9Rl2oUagDioaenR/X19QqFQkpKSpLb7VZycrLVsQAAAAAAGFdEpVpubq62bdum/Px85eTkHHBdo66urpiFAzA3dHZ2qrm5WaZpKi0tTS6XSwkJUXf+AAAAAABMmYjetd51112jU7DuuusuFgsHEBOmaaqlpUUdHR2SpJycHJWVlclms1mcDAAAAACAAzNM0zStDmGlaLZKBRA7oVBIDQ0N8vv9kqSioiIVFhZS2gMAAAAALBNNTxT1cBC73a729vZ9jnd2dsput0d7OQBz0PDwsGpra+X3+2UYhioqKlRUVEShBgAAAACYMaJetGh/A9uGhoaUlJQ06UAAZrf+/n55PB4Fg0ElJCTI7XYrNTXV6lgAAAAAAEQl4lLt7rvvliQZhqFf/vKXSk9PHz0XCoX04osv6vDDD499QgCzhs/nU319vUzTVHJystxuN2U8AAAAAGBGirhUu+uuuyTtHql2zz33jJnqmZSUJLfbrXvuuSf2CQHMeKZpaufOnWptbZUkZWRkqKKiginjAAAAAIAZK+JSra6uTpJ06qmnasOGDcrJyYlbKACzRzgcVlNTk3bt2iVJys/PV0lJCeunAQAAAABmtKjXVHvuuefikQPALBQMBuX1etXX1yfDMFRSUqL8/HyrYwEAAAAAMGlR7/75iU98Qj/4wQ/2OX7HHXfok5/8ZExCTYWamhrNnz9fCxcutDoKMCsNDQ2ptrZWfX19stlscrvdFGoAAAAAgFnDMPe3ned+FBQU6C9/+YuOOuqoMcfffvttLV26VG1tbTENGG9+v19ZWVny+XzKzMy0Og4wK/T29srr9SoUCo2uuZicnGx1LAAAAAAADiianijq6Z+9vb3j7taXmJgov98f7eUAzDJdXV1qamqSaZpKTU2V2+1WQkLUf9UAAAAAADCtRT3986ijjtLDDz+8z/H//u//1vz582MSCsDMY5qmWlpa1NjYKNM0lZ2drXnz5lGoAQAAAABmpajf7X7nO9/RypUrVVtbq9NOO02StGnTJv3+97/XH/7wh5gHBDD9hUIhNTQ0jI5WLSoqUmFhITt8AgAAAABmrahLtXPOOUePPfaYbrvtNj3yyCNKSUnR0UcfrWeffVaLFy+OR0YA01ggEJDH49HAwIAMw5DT6VR2drbVsQAAAAAAiKuoNyqYbdioAJi4gYEBeTweBQIBJSQkyOVyKS0tzepYAAAAAABMSDQ9UdRrqklSd3e3fvnLX+o///M/1dXVJUl688031dTUNJHLAZiBfD6famtrFQgE5HA4VF1dTaEGAAAAAJgzop7++dZbb2np0qXKysqSx+PRF77wBeXm5mrDhg2qr6/XAw88EI+cAKYJ0zTV0dGhlpYWSVJ6erpcLpfsdrvFyQAAAAAAmDpRj1S76qqrtGrVKr3//vtKTk4ePb58+XK9+OKLMQ0HYHoJh8NqamoaLdTy8vJUWVlJoQYAAAAAmHOiHqn2+uuv6xe/+MU+x8vKytTa2hqTUACmn1AoJK/Xq97eXklSaWmp8vLy2OETAAAAADAnRV2qORwO+f3+fY5v27ZNBQUFMQkFYHoZGhqSx+PR0NCQbDabKioq2NgDAAAAADCnRT398+Mf/7jWrFmjQCAgSTIMQ/X19fr2t7+tT3ziEzEPCMBavb292r59u4aGhpSYmKiqqioKNQAAAADAnBd1qfajH/1Ivb29Kiws1MDAgBYvXqzq6mplZGTo1ltvjUdGABbp6upSXV2dQqGQUlNTVV1drZSUFKtjAQAAAABguainf2ZlZemZZ57Ryy+/rLfeeku9vb067rjjtHTp0njkA2AB0zTV2tqqnTt3Str9c+90OmWzRd3DAwAAAAAwKxmmaZpWh7CS3+9XVlaWfD4fU9oA7d7hs6GhQT6fT5JUWFiooqIiNiQAAAAAAMx60fREEY1Uu/vuu/WlL31JycnJuvvuuw943/T0dB155JH60Ic+FHliANNCIBCQx+PRwMCADMNQeXm5cnJyrI4FAAAAAMC0E9FItcrKSr3xxhvKy8tTZWXlAe87NDSk9vZ2XXnllfrhD38Ys6Dxwkg1YLeBgQF5PB4FAgHZ7Xa5XC6lp6dbHQsAAAAAgCkTTU8Ul+mfzzzzjC666KLR9ZimM0o1YPfPQX19vcLhsBwOh9xutxwOh9WxAAAAAACYUjGf/hmtk046STfccEM8Lg0ghkzTVEdHh1paWiTtnr7tcrlkt9stTgYAAAAAwPQ2oa38Nm3apLPPPltVVVWqqqrS2WefrWeffXb0fEpKilavXh2zkPFQU1Oj+fPna+HChVZHASxhmqaamppGC7Xc3FxVVlZSqAEAAAAAEIGoS7Wf/exnWrZsmTIyMrR69WqtXr1amZmZWr58uWpqauKRMS4uv/xyvfvuu3r99detjgJMuVAopLq6OnV1dUmSSkpKVFZWxg6fAAAAAABEKOo11crLy3Xttdfqa1/72pjjNTU1uu2229TU1BTTgPHGmmqYa4aGhuTxeDQ0NCSbzaaKigr+7AMAAAAAoOh6oqhHqnV3d2vZsmX7HD/jjDPk8/mivRyAKdTX16ft27draGhIiYmJqqqqolADAAAAAGACoi7VPv7xj+vRRx/d5/j//M//6Oyzz45JKACxt2vXLu3YsUOhUEgpKSmqrq5WSkqK1bEAAAAAAJiRItr98+677x79fP78+br11lv1/PPP68QTT5Qkvfrqq9q8ebO++c1vxiclgAkzTVNtbW1qb2+XJGVlZam8vJwNCQAAAAAAmISI1lSrrKyM7GKGoR07dkw61FRiTTXMZuFwWA0NDaNTswsKClRcXMyGBAAAAAAAjCOaniiikWp1dXUxCQZg6gQCAXm9XvX398swDJWVlSk3N9fqWAAAAAAAzAoRlWrj6ejokCTl5+fHLAyA2BgYGJDH41EgEJDdbpfL5VJ6errVsQAAAAAAmDWi2qigu7tbl19+ufLz81VUVKSioiLl5+fra1/7mrq7u+MUEUA0/H6/amtrFQgE5HA4VF1dTaEGAAAAAECMRTxSraurSyeeeKKampr0mc98RkcccYQk6d1339V9992nTZs26a9//atycnLiFhbAgXV0dKi5uVmSlJaWJpfLpYSECQ9IBQAAAAAA+xHxu+01a9YoKSlJtbW1Kioq2ufcGWecoTVr1uiuu+6KeUgAB2aappqbm9XZ2SlJys3NVWlpqWy2qAajAgAAAACACEX8jvuxxx7TnXfeuU+hJknFxcW644479Oijj8Y0HICDC4VC8ng8o4VacXGxysrKKNQAAAAAAIijiEeqtbS06Mgjj9zv+Q984ANqbW2NSSgAkRkeHpbH49Hg4KAMw1BFRYWysrKsjgUAAAAAwKwX8VCW/Px8eTye/Z6vq6tTbm5uLDIBiEBfX5+2b9+uwcFBJSQkqKqqikINAAAAAIApEnGpduaZZ+r666/X8PDwPueGhob0ne98R8uWLYtpOADj6+7u1o4dOxQMBpWSkqLq6mqlpqZaHQsAAAAAgDnDME3TjOSOjY2NOuGEE+RwOHT55Zfr8MMPl2maeu+99/Szn/1MQ0NDeuONN+R0OuOdOab8fr+ysrLk8/mUmZlpdRzggEzTVHt7u9ra2iRJmZmZcjqdstvtFicDAAAAAGDmi6YninhNtfLycr3yyiv66le/quuuu04jXZxhGDr99NP105/+dMYVasBMEg6H1djYqO7ubkm7p2SXlJTIMAxrgwEAAAAAMAdFXKpJUmVlpZ566int2rVL77//viSpurqatdSAOAsGg/J4POrv75dhGCotLVVeXp7VsQAAAAAAmLOiKtVG5OTk6IMf/GCsswAYx+DgoDwej4aHh2W32+VyuZSenm51LAAAAAAA5rQJlWoApkZPT4+8Xq/C4bCSkpLkdruVnJxsdSwAAAAAAOY8SjVgmurs7FRzc7NM01RaWppcLpcSEviRBQAAAABgOuAdOjDNmKaplpYWdXR0SNo93bqsrEw2m83iZAAAAAAAYASlGjCNhEIh1dfXq6enR5JUXFysgoICdvgEAAAAAGCaoVQDponh4WF5PB4NDg7KMAw5nU5lZ2dbHQsAAAAAAIxjzpZqNTU1qqmpUSgUsjoKoP7+fnk8HgWDQSUkJMjtdis1NdXqWAAAAAAAYD8M0zRNq0NYye/3KysrSz6fT5mZmVbHwRzk8/lUX18v0zSVnJwst9utpKQkq2MBAAAAADDnRNMTzdmRaoDVTNPUzp071draKknKyMhQRUWF7Ha7xckAAAAAAMDBUKoBFgiHw2pqatKuXbskSfn5+SopKWFDAgAAAAAAZghKNWCKBYNBeb1e9fX1yTAMlZaWKi8vz+pYAAAAAAAgCpRqwBQaHByUx+PR8PCwbDabXC6XMjIyrI4FAAAAAACiRKkGTJHe3l55vV6FQiElJSXJ7XYrOTnZ6lgAAAAAAGACKNWAKdDZ2anm5maZpqnU1FS53W4lJPDjBwAAAADATMW7eiCOTNNUS0uLOjo6JEnZ2dkqLy+XzWazOBkAAAAAAJgMSjUgTkKhkBoaGuT3+yVJRUVFKiwsZIdPAAAAAABmAUo1IA6Gh4fl9Xo1MDAgwzDkdDqVnZ1tdSwAAAAAABAjlGpAjPX398vr9SoQCCghIUEul0tpaWlWxwIAAAAAADFEqQbEkM/nU0NDg8LhsJKTk+V2u5WUlGR1LAAAAAAAEGOUakAMmKapnTt3qrW1VZKUkZGhiooK2e12i5MBAAAAAIB4oFQDJikcDqu5uVldXV2SpLy8PJWWlrIhAQAAAAAAsxilGjAJwWBQXq9XfX19kqTS0lLl5+dbnAoAAAAAAMQbpRowQUNDQ/J4PBoaGpLNZlNFRYUyMzOtjgUAAAAAAKYApRowAb29vfJ6vQqFQkpMTJTb7VZKSorVsQAAAAAAwBShVAOi1NXVpaamJpmmqdTUVLlcLiUmJlodCwAAAAAATCFKNSBCpmmqtbVVO3fulCRlZWXJ6XTKZrNZnAwAAAAAAEw1SjUgAuFwWA0NDfL5fJKkwsJCFRUVscMnAAAAAABzFKUacBCBQEAej0cDAwMyDEPl5eXKycmxOhYAAAAAALAQpRpwAAMDA/J4PAoEAkpISJDL5VJaWprVsQAAAAAAgMUo1YD98Pv9qq+vVzgclsPhUGVlpZKSkqyOBQAAAAAApgFKNWAvpmmqo6NDLS0tkqT09HS5XC7Z7XaLkwEAAAAAgOmCUg3Yg2maampqUldXlyQpNzdXZWVlbEgAAAAAAADGoFQD/lcoFJLX61Vvb68kqaSkRPn5+RRqAAAAAABgH5RqgKShoSF5PB4NDQ3JZrOpoqJCmZmZVscCAAAAAADTFKUa5rze3l55vV6FQiElJibK7XYrJSXF6lgAAAAAAGAao1TDnLZr1y41NjbKNE2lpKTI7XYrMTHR6lgAAAAAAGCao1TDnGSaptra2tTe3i5JysrKktPplM1mszgZAAAAAACYCSjVMOeEw2E1NDTI5/NJkgoLC1VUVMSGBAAAAAAAIGKUaphTAoGAvF6v+vv7ZRiGysrKlJuba3UsAAAAAAAww1CqYc4YGBiQx+NRIBCQ3W6Xy+VSenq61bEAAAAAAMAMRKmGOcHv96u+vl7hcFgOh0Nut1sOh8PqWAAAAAAAYIaas6VaTU2NampqFAqFrI6CODJNU52dnWpubpYkpaenq6KiQgkJc/aPPgAAAAAAiAHDNE3T6hBW8vv9ysrKks/nU2ZmptVxEEOmaaq5uVmdnZ2SpNzcXJWWlrLDJwAAAAAAGFc0PRHDdTArhUIh1dfXq6enR5JUUlKi/Px8dvgEAAAAAAAxQamGWWd4eFh1dXUaGhqSzWaT0+lUVlaW1bEAAAAAAMAsQqmGWaWvr09er1fBYFCJiYlyu91KSUmxOhYAAAAAAJhlKNUwa3R3d6uhoUGmaSolJUVut1uJiYlWxwIAAAAAALMQpRpmPNM01d7erra2NklSZmamnE6n7Ha7xckAAAAAIL5CoZACgYDVMYAZIzExMWZ9AaUaZrRwOKzGxkZ1d3dLkgoKClRcXMyGBAAAAABmNdM01draOvpeCEDksrOzY9IdUKphxgoGg/J4POrv75dhGCorK1Nubq7VsQAAAAAg7kYKtcLCQqWmpjKwAIiAaZrq7+9Xe3u7JKmkpGRS16NUw4w0ODgoj8ej4eFh2e12uVwupaenWx0LAAAAAOIuFAqNFmp5eXlWxwFmlJHNDNvb21VYWDipqaCUaphxenp65PV6FQ6HlZSUpMrKSjkcDqtjAQAAAMCUGFlDLTU11eIkwMw08rMTCAQo1TB3dHR0qKWlRaZpKi0tTS6XSwkJ/DEGAAAAMPcw5ROYmFj97NBGYEYwTVMtLS3q6OiQJOXk5KisrEw2m83iZAAAAAAAYC6ikcC0FwqF5PF4Rgu14uJilZeXU6gBAAAAwCSFwiE973lev3/793re87xC4ZDVkaYlt9uttWvXxux6S5Ys0RVXXBGTa61atUrnnntuTK4VD5F8rYZh6LHHHovZc8b692t/aCUwrQ0PD6u2tlY9PT0yDEMul0uFhYUMcwYAAACASdrw3ga517l16v2n6qINF+nU+0+Ve51bG97bELfnXLVqlQzD0Pe///0xxx977LFp/T7v9ddf15e+9KUpfc79FUM33XSTjjnmmNHb69at03333TdlueKhpaVFZ511ltUxokaphmmrv79f27dv1+DgoBISElRVVaWsrCyrYwEAAADAjLfhvQ06f/35avQ3jjne5G/S+evPj2uxlpycrB/84AfatWtX3J4jVoaHhyVJBQUF03ZjiKysLGVnZ0/48aZpKhgMTuixI9+fySouLp6RGxBSqmFa6u7uVm1trYLBoJKTk1VdXT1t/wIDAAAAAKuZpqm+4b6IPvyDfn3jqW/IlLnvdf732OqnVss/6I/oeqa573UOZOnSpSouLtbtt98+7vm9R2JJ0tq1a+V2u0dvj0x5vO2221RUVKTs7GytWbNGwWBQ11xzjXJzc1VeXq7f/OY3Y67T0NCgCy64QNnZ2crNzdWKFSvk8Xj2ue6tt96q0tJSHXbYYZL2HTXW3d2tL3/5yyoqKlJycrI+8IEP6E9/+pMkqbOzUxdeeKHKysqUmpqqo446Sr///e+j+h5FY+/pn+FwWLfffrsqKyuVkpKiBQsW6JFHHhk9//zzz8swDD311FM6/vjj5XA49PLLL6u2tlYrVqxQUVGR0tPTtXDhQj377LNjnsvtduvmm2/WxRdfrMzMzNHRe5s3b9aSJUuUmpqqnJwcnXnmmWNK03A4rG9961vKzc1VcXGxbrrppjHX3Xv6Z2Njoy688ELl5uYqLS1NJ5xwgl577TVJiijnVGGjAkwrpmmqvb1dbW1tkqTMzEw5nc5JbXELAAAAALNdf6Bf6benx+Rapkw19jQq6weRzRTqva5XaUlpEV/fbrfrtttu00UXXaRvfOMbKi8vn1DOv/zlLyovL9eLL76ozZs36/Of/7z++te/6pRTTtFrr72mhx9+WF/+8pd1+umnq7y8XIFAQGeeeaZOPPFEvfTSS0pISNAtt9yiZcuW6a233lJSUpIkadOmTcrMzNQzzzwz7vOGw2GdddZZ6unp0W9/+1tVVVXp3XffHX3fOjg4qOOPP17f/va3lZmZqSeeeEL/8R//oaqqKn3wgx+c0Ncajdtvv12//e1vdc899+iQQw7Riy++qM9+9rMqKCjQ4sWLR+937bXX6s4779S8efOUk5OjhoYGLV++XLfeeqscDoceeOABnXPOOfr3v/+tioqK0cfdeeed+u53v6sbb7xRkrRlyxZ99KMf1aWXXqp169YpISFBzz33nEKh/1uf7/7779dVV12l1157Ta+88opWrVqlj3zkIzr99NP3yd/b26vFixerrKxMf/zjH1VcXKw333xT4XB49HwkOacCpRqmjXA4rKamptE2Oz8/XyUlJdN6Xj0AAAAAIHrnnXeejjnmGN1444361a9+NaFr5Obm6u6775bNZtNhhx2mO+64Q/39/frP//xPSdJ1112n73//+3r55Zf16U9/Wg8//LDC4bB++ctfjr7P/M1vfqPs7Gw9//zzOuOMMyRJaWlp+uUvfzlasu3t2Wef1d/+9je99957OvTQQyVJ8+bNGz1fVlamq6++evT217/+dT399NNav3591KXat7/9bd1www1jjg0PD2v+/Pnj3n9oaEi33Xabnn32WZ144omj2V5++WX94he/GFOqrVmzZkyplZubqwULFozevvnmm/Xoo4/qj3/8o772ta+NHj/ttNP0zW9+c/T2RRddpBNOOEE/+9nPRo8deeSRY3IdffTRoyXcIYccop/+9KfatGnTuKXaQw89pJ07d+r1119Xbm6uJKm6unr0/IIFCyLKORUo1TAtBINBeb1e9fX1yTAMlZaWKi8vz+pYAAAAADAjpCamqve63oju+6L3RS1/aPlB7/fkRU/qFNcpET33RPzgBz/QaaedNqaAisaRRx4pm+3/VrUqKirSBz7wgdHbdrtdeXl5am9vlyRt3bpV27dvV0ZGxpjrDA4Oqra2dvT2UUcdtd9CTdo9Mqu8vHy0UNtbKBTSbbfdpvXr16upqUnDw8MaGhra75JGt912m2677bbR2+++++7oiKtrrrlGq1atGnP/u+++Wy+++OK419q+fbv6+/v3KauGh4d17LHHjjl2wgknjLnd29urm266SU888YRaWloUDAY1MDCg+vr6Az5uy5Yt+uQnPzlunhFHH330mNslJSWjvy9727Jli4499tjRQm1vkeacCpRqsNzg4KA8Ho+Gh4dlt9tVUVGxz19yAAAAAID9Mwwj4imYZ1SdofLMcjX5m8ZdV82QofLMcp1RdYbstvgtxXPKKafozDPP1HXXXTemOLLZbPus0xYIBPZ5fGJi4pjbhmGMe2zPaYPHH3+8fve73+1zrYKCgtHP09IO/H1MSUk54Pkf/vCHWrdundauXaujjjpKaWlpuuKKK/a7qP9XvvIVXXDBBaO3S0tLRz/Pz88fM0pL0n7LJmn31yhJTzzxhMrKysac23sjgL2/zquvvlrPPPOM7rzzTlVXVyslJUXnn3/+Prn3ftzBvh/S+L9XI78vezvY9SLNORUo1WCpnp4e1dfXKxQKKSkpSW63W8nJyVbHAgAAAIBZy26za92ydTp//fkyZIwp1gztnha5dtnauBZqI77//e/rmGOOGd0QQNpdcLW2tso0zdFpmlu2bJn0cx133HF6+OGHVVhYqMzMzAlf5+ijj1ZjY6O2bds27mi1zZs3a8WKFfrsZz8rafdSR9u2bdvvlM3c3NwDFmXRmD9/vhwOh+rr68dM9YzE5s2btWrVKp133nmSdhd0e27isD9HH320Nm3apO9973sTiTzu9X75y1+qq6tr3O/LRHPGA7t/wjKdnZ3yeDwKhUJKTU1VdXU1hRoAAAAATIGVR6zUIxc8orLMsaOZyjPL9cgFj2jlESunJMdRRx2lz3zmM7r77rtHjy1ZskQ7d+7UHXfcodraWtXU1Oipp56a9HN95jOfUX5+vlasWKGXXnpJdXV1ev755/WNb3xDjY2NEV9n8eLFOuWUU/SJT3xCzzzzjOrq6vTUU09p48aNknavGfbMM8/or3/9q9577z19+ctfHt2ML94yMjJ09dVX68orr9T999+v2tpavfnmm/rJT36i+++//4CPPeSQQ7RhwwZt2bJFW7du1UUXXbTf0WR7uu666/T666/rq1/9qt566y3961//0s9//nN1dHRM6Gu48MILVVxcrHPPPVebN2/Wjh079P/+3//TK6+8Mqmc8UCphilnmqaam5vV1NQk0zSVnZ2tefPmKSGBgZMAAAAAMFVWHrFSntUePXfJc3po5UN67pLnVLe6bsoKtRFr1qwZU4occcQR+tnPfqaamhotWLBAf/vb3ya87tqeUlNT9eKLL6qiokIrV67UEUccoc9//vMaHByMeuTa//t//08LFy7UhRdeqPnz5+tb3/rW6G6XN9xwg4477jideeaZWrJkyWhBNFVuvvlmfec739Htt9+uI444QsuWLdMTTzyhysrKAz7uxz/+sXJycrRo0SKdc845OvPMM3Xccccd9PkOPfRQ/fnPf9bWrVv1wQ9+UCeeeKL+53/+Z8Lv8ZOSkvTnP/9ZhYWFWr58uY466ih9//vfH91ddaI548Ew956oPMf4/X5lZWXJ5/NNavgnIhMKhdTQ0CC/3y9p90KShYWF7PAJAAAAABEaHBxUXV2dKisrme0DTMCBfoai6YkYGoQpMzw8LK/Xq4GBARmGIafTqezsbKtjAQAAAAAARI1SDVOiv79fHo9HwWBQCQkJcrlcB91RBQAAAAAAYLqiVEPc+Xw+1dfXyzRNJScny+12KykpyepYAAAAAAAAE0aphrgxTVM7d+5Ua2urpN27kFRUVIwuLggAAAAAADBTUaohLsLhsJqamrRr1y5JUl5enkpLS9mQAAAAAAAAzAqUaoi5YDAor9ervr4+SVJpaany8/MtTgUAAAAAABA7lGqIqaGhIXk8Hg0NDclms6miouKgW9ACAAAAAADMNJRqiJne3l55vV6FQiElJSXJ7XYrOTnZ6lgAAAAAAAAxR6mGmOjq6lJTU5NM01RqaqpcLpcSExOtjgUAAAAAABAXNqsDYGYzTVMtLS1qbGyUaZrKzs7WvHnzKNQAAAAAYAYIh8LyPO/R279/W57nPQqHwlZHigm32621a9dO6hrPP/+8DMNQd3d3TDJ5PB4ZhqEtW7bE5HqGYeixxx6LybViLZKv9b777lN2dnbMnjPWv1+RoFTDhIVCIdXX12vnzp2SpKKiIjmdTtls/LECAAAAgOnuvQ3vaZ17ne4/9X5tuGiD7j/1fq1zr9N7G96L+3O/8sorstvt+tjHPhb354rEkiVLdMUVV4w5tmjRIrW0tCgrK2vKchyoGNq7KGxpadFZZ501Zdli7VOf+pS2bdtmdYxJof3AhAQCAe3YsUM+n0+GYcjpdKqoqEiGYVgdDQAAAABwEO9teE/rz18vf6N/zHF/k1/rz18f92LtV7/6lb7+9a/rxRdfVHNzc1yfa6KSkpJUXFw8bd/nFhcXy+FwTPjxw8PDE3qcaZoKBoMTft4RKSkpKiwsnPR1rESphqgNDAxo+/btGhgYUEJCgubNm6ecnByrYwEAAADAnGWapob7hiP6GPQP6qlvPCWZ411o9y9PrX5Kg/7BiK5nmuNdaP96e3v18MMP67LLLtPHPvYx3XfffaPnRkZqbdq0SSeccIJSU1O1aNEi/fvf/x69T21trVasWKGioiKlp6dr4cKFevbZZ/f7fJdeeqnOPvvsMccCgYAKCwv1q1/9SqtWrdILL7ygdevWyTAMGYYhj8cz7qixzZs3a8mSJUpNTVVOTo7OPPNM7dq1S5K0ceNGnXTSScrOzlZeXp7OPvts1dbWRvW9icbe0z8bGhp0wQUXKDs7W7m5uVqxYoU8Hs/o+VWrVuncc8/VrbfeqtLSUh122GGSpAcffFAnnHCCMjIyVFxcrIsuukjt7e2jjxv5Pjz11FM6/vjj5XA49PLLLyscDuuOO+5QdXW1HA6HKioqdOutt47JuGPHDp166qlKTU3VggUL9Morr4yeG2/65+OPP66FCxcqOTlZ+fn5Ou+880bPHSynFdioAFHx+/2qr69XOByWw+FQZWWlkpKSrI4FAAAAAHNaoD+g29Nvj83FTKmnsUc/yPpBRHe/rvc6JaVF/r5w/fr1Ovzww3XYYYfps5/9rK644gpdd911Y0aEXX/99frRj36kgoICfeUrX9Gll16qzZs3S9pdyi1fvly33nqrHA6HHnjgAZ1zzjn697//rYqKin2e7wtf+IJOOeUUtbS0qKSkRJL0pz/9Sf39/frUpz6l888/X9u2bdMHPvABrVmzRpJUUFAwppCSpC1btuijH/2oLr30Uq1bt04JCQl67rnnFAqFJEl9fX266qqrdPTRR6u3t1ff/e53dd5552nLli1xXyYpEAjozDPP1IknnqiXXnpJCQkJuuWWW7Rs2TK99dZbo+/bN23apMzMTD3zzDNjHnvzzTfrsMMOU3t7u6666iqtWrVKTz755JjnuPbaa3XnnXeODqy57rrrdO+99+quu+7SSSedpJaWFv3rX/8a85jrr79ed955pw455BBdf/31uvDCC7V9+3YlJOxbRz3xxBM677zzdP311+uBBx7Q8PDwmAyR5pxKlGqIiGma6ujoUEtLiyQpPT1dLpdLdrvd4mQAAAAAgJnkV7/6lT772c9KkpYtWyafz6cXXnhBS5YsGb3PrbfeqsWLF0vaXeZ87GMf0+DgoJKTk7VgwQItWLBg9L4333yzHn30Uf3xj3/U1772tX2eb9GiRTrssMP04IMP6lvf+v/t3XtUVWX+x/HPAUEuCggiAnIxzcIbJoqX0qJIxlmjgzpp2ko0rWnSSSOynC5KTZOVljVYdjGwGTOnX1mNjahDkuagggVloSOGSsQl1BEPJCJn//5wPOOReyoH8P1ai7XOfvazn/3d54jr8FnPs/cCSVJycrJuu+02derUSdLZpZ5ubm7q3r17vXU/99xzGjJkiF555RVrW79+/ayvJ02aZNP/rbfekq+vr7799lv179+/qW+PJKlHjx612iorK+vtv27dOlksFr355pvWcDI5OVleXl5KT0/XmDFjJEnu7u568803bSbH3HXXXdbXV111lV5++WUNHTpUZrPZ+v5I0pNPPqlbb71VknTy5Em99NJLSkpKUlxcnCSpV69euuGGG2zqSkhIsN43LzExUf369VNeXp6uvfbaWtfw9NNP6/bbb1diYqK17fzPual1tiRCNTTKMAwVFhbq2LFjkiRvb28FBga22nXlAAAAAHClcXJz0kLzwib1PbztsN755TuN9pv2j2kKGR3SpHM31f79+7V7926tX79ektShQwdNmTJFq1atsgnVBg4caH19bnZZaWmpgoODZTabtXjxYn3yyScqKirSmTNn9NNPP+nIkSP1nnf27Nl6/fXXtWDBApWUlGjjxo369NNPm1y3dHam2m233Vbv/gMHDuiJJ57Qrl27VFZWJovl7JNUjxw5Umeo1q9fPx0+fFiSNGrUKG3cuNG6b/v27ercubNN//Pfnwvl5OQoLy+v1jGnTp2yWYI6YMCAWqvN9uzZo8WLFysnJ0fHjx+3qbtv377WfkOGDLG+zs3NVVVVlW655ZZ6a5Lq/xzrCtWys7N199131ztWU+tsSYRqaFBNTY0OHz4ss9ksSQoICJCPjw+BGgAAAAC0IiaTqclLMHuN6SWPHh4qLyyv+75qJsmjh4d6jeklB8dLu2xx1apVOnPmjAICAqxthmGoY8eOSkpKsrY5Of0vqDv39+e5ECUhIUFbtmzR0qVL1bt3b7m6uuo3v/lNgzfenz59uh555BFlZGToX//6l3r27KlRo0Y1q3ZXV9cG948bN04hISF64403FBAQIIvFov79+9db1z/+8Q9VV1fXOXbPnj1r3W+sriWT55jNZkVERGjNmjW19vn6+lpfu7u72+yrqKhQTEyMYmJitGbNGvn6+urIkSOKiYmpVff5xzb2XpzT0Od4oYbGbE6dLYlQDfWqqqrSoUOHVFVVJQcHBwUHB8vDw8PeZQEAAAAALoKDo4N+8dIv9Lff/E0yyTZY++/8iV8s/8UlD9TOnDmjt99+W8uWLbMuRzwnNjZWa9eurXMG04V27NihGTNmWG9ibzaba93/7EI+Pj6KjY1VcnKyMjIyNHPmTJv9zs7O1nuj1WfgwIFKS0uzWZ54ztGjR7V//3698cYb1rDu888/b3C8kJDGZwE21eDBg7Vu3Tp169atWX+379u3T0ePHtWSJUsUFBQkScrKymr0uKuvvlqurq5KS0vT7Nmzf3bd5zv3/l742VxMnZcbT/9Encxms/Ly8lRVVSUnJyf16tWLQA0AAAAA2omwiWGa/H+T5RFo+3eeRw8PTf6/yQqbGHbJz7lhwwYdP35cs2bNUv/+/W1+Jk2apFWrVjVpnKuvvloffPCBsrOzlZOTo2nTptU7++l8s2fP1urVq5Wbm2u9D9g5oaGh2rVrlw4dOmSzdPN8CxcuVGZmpu677z599dVX2rdvn1599VWVlZWpS5cu8vHx0euvv668vDx9+umnio+Pb9obcwnccccd6tq1q379619r+/btys/PV3p6uu6//359//339R4XHBwsZ2dn/fnPf9Z3332njz/+WE899VSj53NxcdHDDz+sBQsW6O2339bBgwe1c+fOJn+GdVm0aJHWrl2rRYsWKTc3V19//bWeffbZi6rzciNUQy3Hjx9Xfn6+ampq5ObmZp1OCwAAAABoP8ImhmneoXmK2xqnie9MVNzWOM3Ln3dZAjXp7NLP6OhoeXp61to3adIkZWVl6auvvmp0nBdeeEFdunTRyJEjNW7cOMXExGjw4MGNHhcdHS1/f3/FxMTYLD+Vzi4pdXR0VN++fa1LCy/Up08fbd68WTk5OYqMjNSIESP00UcfqUOHDnJwcNC7776rPXv2qH///nrggQf0/PPPN1rTpeLm5qZt27YpODhYEydOVFhYmGbNmqVTp041OEHG19dXKSkpeu+999S3b18tWbJES5cubdI5H3/8cT344IN64oknFBYWpilTpqi0tPRnX8NNN92k9957Tx9//LEGDRqkm2++Wbt3777oOi8nk2EYda2gvmKUl5fL09NTJ06cuOJnYhmGoZKSEusvgaenp4KCgi77o38BAAAAAE136tQp5efnq2fPnnJxcbF3OW2G2WxWYGCgkpOTNXHiRHuXAztq6HeoOTkR91SDpLM3CiwoKNCJEyckSd26dZOfnx8PJAAAAAAAtGkWi0VlZWVatmyZvLy8NH78eHuXhHaCUA2qrq7W4cOHVVlZKZPJpB49eqhLly72LgsAAAAAgIt25MgR9ezZUz169FBKSkqDT9EEmoN/SVe4n376SYcOHVJ1dbUcHR0VEhKiTp062bssAAAAAAAuidDQUF3hd77CZUKodgUrLy/XkSNHZLFY1LFjR4WGhqpjx472LgsAAAAAAKDVI1S7AhmGoaNHj+qHH36QJHXq1EkhISFydHS0c2UAAAAAgKZi9hXw81yq3x1CtSuMYRj64YcfdPToUUmSt7e3AgMDeSABAAAAALQRTk5OkqTKykq5urrauRqg7amsrJT0v9+ln4tQ7QpSU1Ojw4cPy2w2S5L8/f3VtWtXAjUAAAAAaEMcHR3l5eWl0tJSSZKbmxt/1wFNYBiGKisrVVpaKi8vr4tesUeodoU4ffq08vPzVVVVJQcHBwUHB8vDw8PeZQEAAAAAfobu3btLkjVYA9B0Xl5e1t+hi9EuQrUNGzbowQcflMVi0cMPP6zZs2fbu6RWpaKiQocPH9aZM2fk5OSk0NBQpggDAAAAQBtmMpnk7++vbt26qbq62t7lAG2Gk5PTJbunfJsP1c6cOaP4+Hht3bpVnp6eioiI0IQJE+Tj42Pv0lqcpcaiI9uP6GTRSXX276zgUcE6UX5C33//vQzDkKurq0JDQy96zTAAAAAAoHVwdHTkoXOAnbT5UG337t3q16+fAgMDJUljx47V5s2bNXXqVDtX1rJyP8hV6rxUlX9fbm1z93dXv4R+CowOlIeHh4KCgvjPFgAAAAAA4BJwsHcB27Zt07hx4xQQECCTyaQPP/ywVp8VK1YoNDRULi4uGjZsmHbv3m3d98MPP1gDNUkKDAxUYWFhS5TeauR+kKu//eZvNoGaJFUUV2h3wm6ZM80KCQkhUAMAAAAAALhE7B6qVVRUKDw8XCtWrKhz/7p16xQfH69Fixbpiy++UHh4uGJiYrgZ439ZaixKnZcqGXXs/G/brsRdMix1dQAAAAAAAMDPYffln2PHjtXYsWPr3f/CCy/o7rvv1syZMyVJK1eu1CeffKK33npLjzzyiAICAmxmphUWFioyMrLe8aqqqlRVVWXdPnHihCSpvLy8vkNatcPbD6v0+wYCRkM6VXBK36R+o5BRIS1XGAAAAAAAQBtzLh8yjMYnJ9k9VGvI6dOntWfPHi1cuNDa5uDgoOjoaGVkZEiSIiMjtXfvXhUWFsrT01MbN27U448/Xu+YzzzzjBITE2u1BwUFXfoLaEWW/GqJvUsAAAAAAABoE06ePClPT88G+7TqUK2srEw1NTXy8/Ozaffz89O+ffskSR06dNCyZcsUFRUli8WiBQsWNPjkz4ULFyo+Pt66bbFYdOzYMfn4+MhkMl2eC2lB5eXlCgoKUkFBgTw8POxdDgAAaCP4DgEAAJqrPX5/MAxDJ0+eVEBAQKN9W3Wo1lTjx4/X+PHjm9S3Y8eO6tixo02bl5fXZajKvjw8PNrNP2gAANBy+A4BAACaq719f2hshto5dn9QQUO6du0qR0dHlZSU2LSXlJSoe/fudqoKAAAAAAAAV7pWHao5OzsrIiJCaWlp1jaLxaK0tDSNGDHCjpUBAAAAAADgSmb35Z9ms1l5eXnW7fz8fGVnZ8vb21vBwcGKj49XXFychgwZosjISC1fvlwVFRXWp4HCVseOHbVo0aJaS1wBAAAawncIAADQXFf69weT0ZRnhF5G6enpioqKqtUeFxenlJQUSVJSUpKef/55FRcXa9CgQXr55Zc1bNiwFq4UAAAAAAAAOMvuoRoAAAAAAADQ1rTqe6oBAAAAAAAArRGhGgAAAAAAANBMhGoAAAAAAABAMxGqtTMrVqxQaGioXFxcNGzYMO3evdveJQEAgFZs27ZtGjdunAICAmQymfThhx/auyQAANDKPfPMMxo6dKg6d+6sbt26KTY2Vvv377d3WS2OUK0dWbduneLj47Vo0SJ98cUXCg8PV0xMjEpLS+1dGgAAaKUqKioUHh6uFStW2LsUAADQRnz22WeaM2eOdu7cqS1btqi6ulpjxoxRRUWFvUtrUTz9sx0ZNmyYhg4dqqSkJEmSxWJRUFCQfv/73+uRRx6xc3UAAKC1M5lMWr9+vWJjY+1dCgAAaEN+/PFHdevWTZ999plGjx5t73JaDDPV2onTp09rz549io6OtrY5ODgoOjpaGRkZdqwMAAAAAAC0ZydOnJAkeXt727mSlkWo1k6UlZWppqZGfn5+Nu1+fn4qLi62U1UAAAAAAKA9s1gsmj9/vq6//nr179/f3uW0qA72LgAAAAAAAABt05w5c7R37159/vnn9i6lxRGqtRNdu3aVo6OjSkpKbNpLSkrUvXt3O1UFAAAAAADaq7lz52rDhg3atm2bevToYe9yWhzLP9sJZ2dnRUREKC0tzdpmsViUlpamESNG2LEyAAAAAADQnhiGoblz52r9+vX69NNP1bNnT3uXZBfMVGtH4uPjFRcXpyFDhigyMlLLly9XRUWFZs6cae/SAABAK2U2m5WXl2fdzs/PV3Z2try9vRUcHGzHygAAQGs1Z84cvfPOO/roo4/UuXNn673cPT095erqaufqWo7JMAzD3kXg0klKStLzzz+v4uJiDRo0SC+//LKGDRtm77IAAEArlZ6erqioqFrtcXFxSklJafmCAABAq2cymepsT05O1owZM1q2GDsiVAMAAAAAAACaiXuqAQAAAAAAAM1EqAYAAAAAAAA0E6EaAAAAAAAA0EyEagAAAAAAAEAzEaoBAAAAAAAAzUSoBgAAAAAAADQToRoAAAAAAADQTIRqAAAAAAAAQDMRqgEAADRDSkqKvLy87HZ+k8mkDz/80C7nDg0N1fLlyy9qjMWLF2vQoEGXpB4AAAB7IlQDAADtWkFBge666y4FBATI2dlZISEhmjdvno4ePWrv0lqt+oLDzMxM3XPPPRc1dkJCgtLS0i5qDAAAgNaAUA0AALRb3333nYYMGaIDBw5o7dq1ysvL08qVK5WWlqYRI0bo2LFj9R57+vTpy1ZXdXX1ZRv7cvL19ZWbm9tFjdGpUyf5+Phcoopqa+rndjk/XwAAcGUgVAMAAO3WnDlz5OzsrM2bN+vGG29UcHCwxo4dq3/+858qLCzUo48+au0bGhqqp556StOnT5eHh4d1RlZKSoqCg4Pl5uamCRMm1DnD7aOPPtLgwYPl4uKiq666SomJiTpz5ox1v8lk0quvvqrx48fL3d1dTz/9dJOOO3DggEaPHi0XFxf17dtXW7ZsafSaq6qqdP/996tbt25ycXHRDTfcoMzMTOv+9PR0mUwmffLJJxo4cKBcXFw0fPhw7d2717p/5syZOnHihEwmk0wmkxYvXmx9j85f/mkymfTaa6/pV7/6ldzc3BQWFqaMjAzl5eXppptukru7u0aOHKmDBw9aj7lw+ee5c5z/Exoaat2/d+9ejR07Vp06dZKfn5/uvPNOlZWVWfffdNNNmjt3rubPn6+uXbsqJiamzvdlxowZio2N1dNPP62AgABdc8011vNfuJzWy8tLKSkpkqRDhw7JZDLpgw8+UFRUlNzc3BQeHq6MjIxGPwsAANC+EaoBAIB26dixY9q0aZPuu+8+ubq62uzr3r277rjjDq1bt06GYVjbly5dqvDwcH355Zd6/PHHtWvXLs2aNUtz585Vdna2oqKi9Mc//tFmrO3bt2v69OmaN2+evv32W7322mtKSUmxBmfnLF68WBMmTNDXX3+tu+66q9HjLBaLJk6cKGdnZ+3atUsrV67Uww8/3Oh1L1iwQO+//75Wr16tL774Qr1791ZMTEytWXkPPfSQli1bpszMTPn6+mrcuHGqrq7WyJEjtXz5cnl4eKioqEhFRUVKSEio93zngsjs7Gxde+21mjZtmn77299q4cKFysrKkmEYmjt3br3HnztHUVGR8vLy1Lt3b40ePVqS9J///Ec333yzrrvuOmVlZSk1NVUlJSWaPHmyzRirV6+Ws7OzduzYoZUrV9Z7rrS0NO3fv19btmzRhg0bGn0vz/foo48qISFB2dnZ6tOnj6ZOnWoTgAIAgCuQAQAA0A7t3LnTkGSsX7++zv0vvPCCIckoKSkxDMMwQkJCjNjYWJs+U6dONX75y1/atE2ZMsXw9PS0bt9yyy3Gn/70J5s+f/nLXwx/f3/rtiRj/vz5Nn0aO27Tpk1Ghw4djMLCQuv+jRs3NnhNZrPZcHJyMtasWWNtO336tBEQEGA899xzhmEYxtatWw1Jxrvvvmvtc/ToUcPV1dVYt26dYRiGkZycbHON54SEhBgvvviizXU99thj1u2MjAxDkrFq1Spr29q1aw0XFxfr9qJFi4zw8PBaY1ssFmPChAlGRESEUVlZaRiGYTz11FPGmDFjbPoVFBQYkoz9+/cbhmEYN954o3HdddfV+X6cLy4uzvDz8zOqqqps2ut6Pz09PY3k5GTDMAwjPz/fkGS8+eab1v3ffPONIcnIzc1t9LwAAKD96mCnLA8AAKBFGOfNRGvMkCFDbLZzc3M1YcIEm7YRI0YoNTXVup2Tk6MdO3bYzEyrqanRqVOnVFlZab0H2YVjN3Zcbm6ugoKCFBAQYHPuhhw8eFDV1dW6/vrrrW1OTk6KjIxUbm5ures4x9vbW9dcc02tPk0xcOBA62s/Pz9J0oABA2zaTp06pfLycnl4eNQ7zh/+8AdlZGQoKyvLOrMwJydHW7duVadOnWr1P3jwoPr06SNJioiIaFKtAwYMkLOzc5P6Xuj86/T395cklZaW6tprr/1Z4wEAgLaPUA0AALRLvXv3lslkqjMYk84GZl26dJGvr6+1zd3dvdnnMZvNSkxM1MSJE2vtc3FxqXfsph7X2jk5OVlfm0ymetssFku9Y/z1r3/Viy++qPT0dAUGBlrbzWazxo0bp2effbbWMeeCLanpn1td/UwmU63gta4HSTT3mgAAQPtHqAYAANolHx8f3XrrrXrllVf0wAMP2NxXrbi4WGvWrNH06dOtAUldwsLCtGvXLpu2nTt32mwPHjxY+/fvV+/evZtVX2PHhYWFqaCgQEVFRdYA6cJzX6hXr17We4uFhIRIOhsQZWZmav78+bWuIzg4WJJ0/Phx/fvf/1ZYWJgkydnZWTU1Nc26np8rIyNDs2fP1muvvabhw4fb7Bs8eLDef/99hYaGqkOHy/O11dfXV0VFRdbtAwcOqLKy8rKcCwAAtC88qAAAALRbSUlJqqqqUkxMjLZt26aCggKlpqbq1ltvVWBgYK2HCVzo/vvvV2pqqpYuXaoDBw4oKSnJZumnJD3xxBN6++23lZiYqG+++Ua5ubl699139dhjjzU4dmPHRUdHq0+fPoqLi1NOTo62b99u87TSuri7u+t3v/udHnroIaWmpurbb7/V3XffrcrKSs2aNcum75NPPqm0tDTt3btXM2bMUNeuXRUbGyvp7FM+zWaz0tLSVFZWdtlCpuLiYk2YMEG33367YmJiVFxcrOLiYv3444+Szj699dixY5o6daoyMzN18OBBbdq0STNnzrxkod/NN9+spKQkffnll8rKytK9995rMysNAACgPoRqAACg3br66quVlZWlq666SpMnT1avXr10zz33KCoqShkZGfL29m7w+OHDh+uNN97QSy+9pPDwcG3evLlWWBYTE6MNGzZo8+bNGjp0qIYPH64XX3zROlOsPo0d5+DgoPXr1+unn35SZGSkZs+e3WgIKElLlizRpEmTdOedd2rw4MHKy8vTpk2b1KVLl1r95s2bp4iICBUXF+vvf/+79X5jI0eO1L333qspU6bI19dXzz33XKPn/Tn27dunkpISrV69Wv7+/tafoUOHSpICAgK0Y8cO1dTUaMyYMRowYIDmz58vLy8vOThcmq+xy5YtU1BQkEaNGqVp06YpISHBeh88AACAhpiM5ty9FwAAAG1aenq6oqKidPz4cXl5edm7HAAAgDaLmWoAAAAAAABAMxGqAQAAAAAAAM3E8k8AAAAAAACgmZipBgAAAAAAADQToRoAAAAAAADQTIRqAAAAAAAAQDMRqgEAAAAAAADNRKgGAAAAAAAANBOhGgAAAAAAANBMhGoAAAAAAABAMxGqAQAAAAAAAM30/4qoEuwMtLXPAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNUAAAIjCAYAAAAkzS0sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACVvUlEQVR4nOzdd3xb9dn///fRlofkFU8pJGRA2LMtq+wyCgXCKFAKFDpo4S6jzEIpDWWUsouBtlBGW1ooN/AtZZRRZhgtpWGXhCQkkmPHWZYsW/uc3x+5rV8c2YmVyJbH6/l45IF9ztHRZQfH1tuf63MZlmVZAgAAAAAAADBktlIXAAAAAAAAAIw1hGoAAAAAAABAgQjVAAAAAAAAgAIRqgEAAAAAAAAFIlQDAAAAAAAACkSoBgAAAAAAABSIUA0AAAAAAAAoEKEaAAAAAAAAUCBCNQAAAAAAAKBAhGoAAAAT0PLly3XccceptrZWhmHo1ltvHfJjP//8cxmGofvvvz937KqrrpJhGEWrb6DnAAAAGE0I1QAAAIbokUcekWEYevzxx/PO7bjjjjIMQy+99FLeucmTJ2vPPfcs6LnuvPPOYQ2Uzj//fP3973/XZZddpt///vc69NBDh+25Rtobb7yhq666Sl1dXaUuBQAAjGOEagAAAEO09957S5Jef/31fsej0ag+/PBDORwOzZ07t9+5UCikUCiUe+xQDXeo9o9//ENHHXWULrzwQp1yyinaeuuth+25Rtobb7yhn/3sZ4RqAABgWBGqAQAADFFzc7OmTp2aF6q9+eabsixLxx9/fN65vvcLDdWGQyaTUSqVkiR1dnaqqqqqtAUBAACMYYRqAAAABdh77731n//8R/F4PHds7ty52nbbbXXYYYfprbfekmma/c4ZhqG99tpLknTffffpgAMOUH19vdxut7bZZhvddddd/Z5jypQp+uijj/TKK6/IMAwZhqH99tsvd76rq0vnnXeegsGg3G63pk+frl/84hf9nrdvT7Ibb7xRt956q6ZNmya3260777xThmHIsiy1trbm7i9Jq1ev1oUXXqjtt99eFRUV8vl8Ouyww/Tee+8V7fO33377abvtttO///1v7bnnnvJ6vZo6daruvvvuIT3+H//4h/bZZx+Vl5erqqpKRx11lD755JPc+auuukoXXXSRJGnq1Km5j+/zzz8v2scAAAAgSY5SFwAAADCW7L333vr973+vt99+Oxd0zZ07V3vuuaf23HNPRSIRffjhh9phhx1y57beemvV1tZKku666y5tu+22+trXviaHw6Enn3xSP/jBD2Saps4++2xJ0q233qr/+Z//UUVFhS6//HJJUkNDgySpt7dX++67r9ra2vS9731PkydP1htvvKHLLrtM7e3teQMH7rvvPiUSCX33u9+V2+3WLrvsot///vf65je/qYMPPlinnnpq7tpFixbpiSee0PHHH6+pU6dq+fLl+vWvf619991XH3/8sZqbm4vyOVyzZo0OP/xwnXDCCTrppJP0yCOP6Pvf/75cLpfOOOOMQR/3wgsv6LDDDtOWW26pq666SvF4XL/61a+011576d1339WUKVM0e/ZszZ8/X3/60590yy23qK6uTpI0adKkotQOAACQYwEAAGDIPvroI0uSdfXVV1uWZVnpdNoqLy+3HnjgAcuyLKuhocFqbW21LMuyotGoZbfbre985zu5x/f29ubd85BDDrG23HLLfse23XZba99998279uqrr7bKy8ut+fPn9zt+6aWXWna73Vq6dKllWZa1ePFiS5Ll8/mszs7OvPtIss4+++x+xxKJhJXNZvsdW7x4seV2u605c+b0OybJuu+++3LHfvrTn1pD+dFy3333tSRZN910U+5YMpm0dtppJ6u+vt5KpVKDPkffNatWrcode++99yybzWadeuqpuWO//OUvLUnW4sWLN1oPAADApqL9EwAAoACzZs1SbW1tbq+09957Tz09PbnpnnvuuWduWMGbb76pbDbbbz81r9ebezsSiWjlypXad999tWjRIkUikY0+/1/+8hfts88+qq6u1sqVK3N/DjroIGWzWb366qv9rj/22GOHvErL7XbLZlv742E2m9WqVatUUVGhrbbaSu++++6Q7jEUDodD3/ve93Lvu1wufe9731NnZ6f+/e9/D/iY9vZ2zZs3T6effrpqampyx3fYYQcdfPDBevrpp4tWHwAAwFAQqgEAABTAMAztueeeub3T5s6dq/r6ek2fPl1S/1Ct77/rhmpz587VQQcdlNsTbNKkSfrxj38sSUMK1RYsWKBnn31WkyZN6vfnoIMOkrR2AMG6pk6dOuSPzTRN3XLLLZoxY4bcbrfq6uo0adIkvf/++0Oqbaiam5tVXl7e79jMmTMladC9z5YsWSJJ2mqrrfLOzZo1SytXrlRPT0/RagQAANgY9lQDAAAo0N57760nn3xSH3zwQW4/tT577rmnLrroIrW1ten1119Xc3OzttxyS0nSwoULdeCBB2rrrbfWzTffrGAwKJfLpaefflq33HJLv0EDgzFNUwcffLAuvvjiAc/3hVN91l0ZtzHXXnutfvKTn+iMM87Q1VdfrZqaGtlsNp133nlDqg0AAGAiIVQDAAAoUN/Ks9dff11z587Veeedlzu36667yu126+WXX9bbb7+tww8/PHfuySefVDKZ1F//+ldNnjw5d/yll17Ke46+iZzrmzZtmmKxWG5lWjE9+uij2n///XXvvff2O97V1ZXb8L8Yli1bpp6enn6r1ebPny9p7eTTgWyxxRaSpE8//TTv3H//+1/V1dXl7jfY5w4AAKCYaP8EAAAo0G677SaPx6M//vGPamtr67dSrW/CZmtrq3p6evq1ftrtdkmSZVm5Y5FIRPfdd1/ec5SXl6urqyvv+AknnKA333xTf//73/POdXV1KZPJbPLHZbfb+9Umrd3Dra2tbZPvOZBMJqNf//rXufdTqZR+/etfa9KkSdp1110HfExTU5N22mknPfDAA/0+Lx9++KGee+65fuFlX7g20OcPAACgWFipBgAAUCCXy6Xdd99dr732mtxud14QtOeee+qmm26S1H8/ta985StyuVw68sgj9b3vfU+xWEy//e1vVV9fr/b29n732HXXXXXXXXfp5z//uaZPn676+nodcMABuuiii/TXv/5VRxxxhE4//XTtuuuu6unp0QcffKBHH31Un3/++SavKjviiCM0Z84cfetb39Kee+6pDz74QH/84x9z7avF0tzcrF/84hf6/PPPNXPmTD388MOaN2+efvOb38jpdA76uF/+8pc67LDDtMcee+jMM89UPB7Xr371K/n9fl111VW56/r+Pi6//HKdeOKJcjqdOvLII/P2cQMAANgcrFQDAADYBH1hWV+757r22msvSVJlZaV23HHH3PGtttpKjz76qAzD0IUXXqi7775b3/3ud3Xuuefm3f/KK6/U4YcfrhtuuEEnnXSS5syZI0kqKyvTK6+8oosuukgvv/yyzj33XF1//fVasGCBfvazn8nv92/yx/TjH/9YP/rRj/T3v/9d5557rt5991099dRTCgaDm3zPgVRXV+vpp5/WO++8o4suukihUEh33HGHvvOd72zwcQcddJCeffZZ1dbW6sorr9SNN96oL33pS5o7d26/gQy77767rr76ar333ns6/fTTddJJJ2nFihVF/RgAAAAMa/01/gAAAMAw2W+//bRy5Up9+OGHpS4FAABgs7BSDQAAAAAAACgQoRoAAAAAAABQIEI1AAAAAAAAoEDsqQYAAAAAAAAUiJVqAAAAAAAAQIEI1QAAAAAAAIACOUpdQKmZpqlly5apsrJShmGUuhwAAAAAAACUiGVZ6u7uVnNzs2y2Da9Fm/Ch2rJlyxQMBktdBgAAAAAAAEaJUCikQCCwwWsmfKhWWVkpae0ny+fzlbgaAAAAAACA4WeapuLxuLq7u9Xd3a2enh4lk0mlUqkBrzcMQ0v+s0RLr1i60Xtvf+/2OuK4I4pd8oiIRqMKBoO5vGhDJnyo1tfy6fP5CNUAAAAAAMC4Y5qmotGootGouru71dvbq3g8LtM0+13ndDrldDrlcDjk8XhUXl6uyspK+f1+lZeXK3twVj/+5Y9VHimXofwttCxZ6qnq0fHfPF5Op3OkPrxhMZQtwiZ8qAYAAAAAADBepFIpdXV1qbu7W7FYTPF4XIlEYtDr3W63vF6vysvL5fP55Pf75fF4BrzWZrNpmznbaMm5S2TJ6hesWbIkSdv8bJsxH6gNFaEaAAAAAADAGNPXvhmJRHLtm/F4XOl0esDrDcOQ1+tVWVmZKioqch17Dkdh0dC3fvgt3af79PGVH6siUpE73lPVo21+to2+9cNvbdbHNZYYlmVZpS6ilKLRqPx+vyKRCO2fAAAAAABg1MlkMuru7lY0GlUsFlNPT48SiURe+2Yfh8ORW33W175ZVla20WmWhUin03rqf5/S8iXL1bBFg7567FfHxQq1QnIiVqoNQTabHTTpBZDPbrfL4XAMqQcdAAAAAPD/SyaTikQiikaj6unpUW9vr5LJ5KDXu93u3OqzvgDN7XYPe51Op1NHn3j0sD/PaEaothGxWEzhcFgTfEEfULCysjI1NTXJ5XKVuhQAAAAAGHVM01Rvb29e+2YmkxnwepvNlte+WVlZWXD7Jopnwn7mW1tb1draqmw2O+g12WxW4XBYZWVlmjRpEqtugCGwLEupVEorVqzQ4sWLNWPGjKIuMQYAAACAsSaTyeSmb8Zisdz0zcEW8Didzn7tmz6fr+jtm9h87Km2gV7ZRCKhxYsXa8qUKfJ6vSWqEBibent7tWTJEk2dOnXQyTEAAAAAMN4kEonc6rO+6Zsbat/0eDwqKyvLBWhVVVV0/JQQe6oVGSvUgMLxGxQAAAAA45lpmurp6enXvplIJDbavlleXt6vfdNut49w5SgWQjUAAAAAAIANyGQyueEBfe2biURio+2bFRUVqqioUFVVlTweD4sPxhlCNQAAAAAAgP8Tj8f7rT7r7e1VKpUa9Pq+9s11p2/SvjkxEKqNgKyZ1WtLX1N7d7uaKpu0z+R9ZLexvHN9U6ZM0XnnnafzzjuvKPfbb7/9tNNOO+nWW2/d7Hudfvrp6urq0hNPPLHZ9xoOQ/lYDcPQ448/rqOPProoz1nsvy8AAAAAGEmmaaq7uzu3+qxv+uZgAw3tdntu+mbf8IDKykpWn01ghGrD7LFPHtO5z56rcDScOxbwBXTbobdp9qzZw/Kcp59+uh544AFdd911uvTSS3PHn3jiCR1zzDGDLk8ttX/9618qLy8f0eccLBi66qqr9MQTT2jevHmSpNtuu23Uft6Gqr29XdXV1aUuAwAAAABGXDqd7te+GY/HN9i+6XK5cvuf+Xw++Xw+eb1e9lxHP4Rqw+ixTx7TcY8cJ0v9v0jbom067pHj9OgJjw5bsObxePSLX/xC3/ve90Z9kJJKpeRyuTRp0qRSlzIov9+/WY+3LEvZbFYOR+Ffcn2fn83V2Ni42fcAAAAAgNHMsiwlEgl1dXXl2jfj8fig7ZuGYfSbvun3++Xz+eR0Oke4coxFrFEsgGVZ6kn1DOlPNBHVD5/5YV6gJil37NxnzlU0ER3S/QpdJXXQQQepsbFR11133YDnr7rqKu200079jt16662aMmVK7v3TTz9dRx99tK699lo1NDSoqqpKc+bMUSaT0UUXXaSamhoFAgHdd999/e4TCoV0wgknqKqqSjU1NTrqqKP0+eef5933mmuuUXNzs7baaitJa1eNrdu+2NXVpe9973tqaGiQx+PRdtttp7/97W+SpFWrVumkk05SS0uLysrKtP322+tPf/pTQZ+jQvTV3Mc0TV133XWaOnWqvF6vdtxxRz366KO58y+//LIMw9AzzzyjXXfdVW63W6+//roWLlyoo446Sg0NDaqoqNDuu++uF154od9zTZkyRVdffbVOPfVU+Xw+ffe735UkzZ07V/vtt5/KyspUXV2tQw45RGvWrOlX08UXX6yamho1Njbqqquu6ndfwzD6ta+Gw2GddNJJqqmpUXl5uXbbbTe9/fbbkjSkOgEAAACglEzTVCQS0dKlS/XRRx/pX//6l15//XW9/fbb+vTTT7Vs2TJFIpFcoGa321VRUaGGhgZNmzZNu+yyi/bZZx998Ytf1Pbbb68tt9xStbW1BGoYMlaqFaA33auK6yqKci9LlsLdYfl/MbQVULHLYip3Db010m6369prr9XJJ5+sH/7whwoEAptU5z/+8Q8FAgG9+uqrmjt3rs4880y98cYb+vKXv6y3335bDz/8sL73ve/p4IMPViAQUDqd1iGHHKI99thDr732mhwOh37+85/r0EMP1fvvv59bcfXiiy/K5/Pp+eefH/B5TdPUYYcdpu7ubv3hD3/QtGnT9PHHH+dGDScSCe2666665JJL5PP59NRTT+mb3/ympk2bpi984Qub9LEW4rrrrtMf/vAH3X333ZoxY4ZeffVVnXLKKZo0aZL23Xff3HWXXnqpbrzxRm255Zaqrq5WKBTS4YcfrmuuuUZut1sPPvigjjzySH366aeaPHly7nE33nijrrzySv30pz+VJM2bN08HHnigzjjjDN12221yOBx66aWX+vX6P/DAA7rgggv09ttv680339Tpp5+uvfbaSwcffHBe/bFYTPvuu69aWlr017/+VY2NjXr33Xdlmmbu/FDqBAAAAICRkEqlcu2bfcMDksnkRts3+4YH9E3fBIqJUG0cO+aYY7TTTjvppz/9qe69995NukdNTY1uv/122Ww2bbXVVrrhhhvU29urH//4x5Kkyy67TNdff71ef/11nXjiiXr44YdlmqbuueeeXK/5fffdp6qqKr388sv6yle+IkkqLy/XPffcM2hb4wsvvKB//vOf+uSTTzRz5kxJ0pZbbpk739LSogsvvDD3/v/8z//o73//ux555JGCQ7VLLrlEV1xxRb9jqVRK22yzzYDXJ5NJXXvttXrhhRe0xx575Gp7/fXX9etf/7pfqDZnzpx+oVZNTY123HHH3PtXX321Hn/8cf31r3/VOeeckzt+wAEH6Ec/+lHu/ZNPPlm77bab7rzzztyxbbfdtl9dO+ywQy6EmzFjhu644w69+OKLA4ZqDz30kFasWKF//etfqqmpkSRNnz49d37HHXccUp0AAAAAUEymaSoejysajSoajaq3t1e9vb1Kp9MDXr9u+2ZlZWVu+uambL0DFIr/ywpQ5ixT7LLYkK59dcmrOvyhwzd63dMnP60vb/HlIT33pvjFL36hAw44oF8AVYhtt9223ySThoYGbbfddrn37Xa7amtr1dnZKUl677339Nlnn6mysrLffRKJhBYuXJh7f/vtt9/gPmHz5s1TIBDIBWrry2azuvbaa/XII4+ora1NqVRKyWRSZWUDf56uvfZaXXvttbn3P/7449yKq4suukinn356v+tvv/12vfrqqwPe67PPPlNvb29eWJVKpbTzzjv3O7bbbrv1ez8Wi+mqq67SU089pfb2dmUyGcXjcS1dunSDj5s3b56OP/74Aevps8MOO/R7v6mpKff3sr558+Zp5513zgVq6xtqnQAAAACwqbLZbG76Znd3t3p7exWPx3MdNOtzOBz9pm/6/X6Vl5czfRMlQ6hWAMMwhtyC+ZVpX1HAF1BbtG3AfdUMGQr4AvrKtK/IbrMXu9ScL3/5yzrkkEN02WWX9QuObDZb3jLZgZL/9XvJDcMY8Ni6bYO77rqr/vjHP+bda91BBBub8un1ejd4/pe//KVuu+023Xrrrdp+++1VXl6u8847b9DNJ8866yydcMIJufebm5tzb9fV1fVbpSVp0LBJWvsxStJTTz2llpaWfufcbne/99f/OC+88EI9//zzuvHGGzV9+nR5vV4dd9xxeXWv/7iNfT6kgf+uBvtmtLH7DbVOAAAAABiKVCqVGx4Qi8Vy7ZuDcbvd/aZv+v1+2jcx6hCqDRO7za7bDr1Nxz1ynAwZ/YI1Q2vbIm899NZhDdT6XH/99dppp51yAwGktQFXR0eHLMvKtWnOmzdvs59rl1120cMPP6z6+nr5fL5Nvs8OO+ygcDis+fPnD7habe7cuTrqqKN0yimnSFq7RHj+/PmDtmzW1NRsMCgrxDbbbCO3262lS5f2a/Ucirlz5+r000/XMcccI2ltQLfuEIfB7LDDDnrxxRf1s5/9bFNKHvB+99xzj1avXj3g52VT6wQAAAAwsfW1b0Yikdz0zd7eXmUymQGvt9lsufbNiooK+Xw++Xw+2jcxJvB/6TCaPWu2Hj3hUZ377LkKR8O54wFfQLceeqtmz5o9InVsv/32+sY3vqHbb789d2y//fbTihUrdMMNN+i4447Ts88+q2eeeWazgjBJ+sY3vqFf/vKXOuqoozRnzhwFAgEtWbJEjz32mC6++OIhD0zYd9999eUvf1nHHnusbr75Zk2fPl3//e9/ZRiGDj30UM2YMUOPPvqo3njjDVVXV+vmm2/W8uXLBw3ViqmyslIXXnihzj//fJmmqb333luRSERz586Vz+fTaaedNuhjZ8yYoccee0xHHnmkDMPQT37yk0FXk63rsssu0/bbb68f/OAHOuuss+RyufTSSy/p+OOPV11dXcEfw0knnaRrr71WRx99tK677jo1NTXpP//5j5qbm7XHHntscp0AAAAAJo5sNpsLz/raNxOJxAbbN8vKyvq1b5aVldG+iTGLUG2YzZ41W0dtdZReW/qa2rvb1VTZpH0m7zMiK9TWNWfOHD388MO592fNmqU777xT1157ra6++mode+yxuvDCC/Wb3/xms56nrKxMr776qi655BLNnj1b3d3damlp0YEHHlhwYPe///u/uvDCC3XSSSepp6dH06dP1/XXXy9JuuKKK7Ro0SIdcsghKisr03e/+10dffTRikQim1X/UF199dWaNGmSrrvuOi1atEhVVVXaZZddcgMcBnPzzTfrjDPO0J577qm6ujpdcsklikajG32+mTNn6rnnntOPf/xjfeELX5DX69UXv/hFnXTSSZtUv8vl0nPPPacf/ehHOvzww5XJZLTNNtuotbV1s+oEAAAAMD4lk8l+7ZvxeHyj7Zt9q88qKipUVVWVt10OMNYZ1mDzZyeIaDQqv9+vSCSSF/okEgktXrxYU6dOpXcbKBBfPwAAAMDYY5qmenp6FIlEFIvF1NPTo3g8vsH2Ta/XK6/Xq8rKylz7pt0+sgtJgGLZUE60vgm7Uq21tVWtra3KZrOlLgUAAAAAgBGXyWQUjUYVjUZzAVoikcgbatfH6XTmhgf0BWi0b2Iim7Ch2tlnn62zzz47l0ACAAAAADBexePxXIDWNzwglUoNen3f8IB1p2+6XK4RrBgY/SZsqAYAAAAAwHhjmqZisZii0Whu+mY8Hh+0S6uvfbO8vDw3fbOyspL2TWAICNUAAAAAABiD0ul0v/bNvumbG2vfrKioyE3f9Hq9MgxjhCsHxgdCNQAAAAAARjHLspRIJBSJRPpN3xysfdMwjH7TN/uGB9C+CRQXoRoAAAAAAKNEX/vm+tM3B2vftNvtA7ZvMjwAGH6EagAAAAAAlEA6nVYkEskND+jp6VEymRy0fdPlcuXaNysqKlRVVSWPx0P7JlAihGoAAAAAAAwjy7IUj8dz7Zt90zfT6fSA1xuGkZu+ue7+Z06nc4QrB7AhhGoAAAAAABRJNptVd3d3bvpm3/CADbVvlpWVqaysTJWVlfL5fKqoqKB9ExgD+CodAWbW1Ocvf64P/vSBPn/5c5lZs9QlFcWUKVN06623btY9Xn75ZRmGoa6urqLU9Pnnn8swDM2bN68o9zMMQ0888URR7lVsQ/lY77//flVVVRXtOYv99wUAAACMZalUSitWrNCiRYv0/vvv66233tLrr7+uefPmadGiRVqxYoV6enpygZrL5VJVVZVaWlo0a9YsfelLX9I+++yjXXfdVbNmzVIgEJDP5yNQA8YIVqoNs08e+0TPnvusouFo7pgv4NOhtx2qWbNnDetzv/nmm9p777116KGH6qmnnhrW5xqK/fbbTzvttFO/IG7PPfdUe3u7/H7/iNXx8ssva//999eaNWvyAqcpU6bovPPO03nnnSdJam9vV3V19YjVVmxf//rXdfjhh5e6DAAAAGBMM00zr30zHo8P2r5ps9nkdrtVXl6u8vJy+f1+VVZW0r4JjDOEasPok8c+0SPHPSKtt8dktC2qR457RCc8esKwBmv33nuv/ud//kf33nuvli1bpubm5mF7rk3lcrnU2NhY6jIGtbm1pVKpTRpbbVmWstmsHI7N+xL1er3yer2bdQ8AAABgIulr3+ybvtnb26t4PC7THLjjyOFw9Ju+6ff7VV5ezmozYALgq7wAlmUp1ZMa0p9ENKFnfvhMXqC29kZr//PMuc8oEU0M6X6DTX8ZTCwW08MPP6zvf//7+upXv6r7778/d66vhe/FF1/UbrvtprKyMu2555769NNPc9csXLhQRx11lBoaGlRRUaHdd99dL7zwwqDPd8YZZ+iII47odyydTqu+vl733nuvTj/9dL3yyiu67bbbZBiGDMPQ559/PmA74dy5c7XffvuprKxM1dXVOuSQQ7RmzRpJ0rPPPqu9995bVVVVqq2t1RFHHKGFCxcW9LkpxPrtn6FQSCeccIKqqqpUU1Ojo446Sp9//nnu/Omnn66jjz5a11xzjZqbm7XVVltJkn7/+99rt912U2VlpRobG3XyySers7Mz97i+z8MzzzyjXXfdVW63W6+//rpM09QNN9yg6dOny+12a/Lkybrmmmv61bho0SLtv//+Kisr04477qg333wzd26g9s8nn3xSu+++uzwej+rq6nTMMcfkzm2sTgAAAGA8SSaT6uzs1MKFC/Xee+/pzTff1GuvvaZ58+Zp8eLFufbNvkDN7XarqqpKgUBAs2bN0h577KG9995bu+66q7beemsFAgFVVlYSqAETBCvVCpDuTeu6iuuKczNL6g536xf+Xwzp8stil8lVPvQVT4888oi23nprbbXVVjrllFN03nnn6bLLLus3avnyyy/XTTfdpEmTJumss87SGWecoblz50paG8odfvjhuuaaa+R2u/Xggw/qyCOP1KeffqrJkyfnPd+3v/1tffnLX1Z7e7uampokSX/729/U29urr3/96zruuOM0f/58bbfddpozZ44kadKkSf0CKUmaN2+eDjzwQJ1xxhm67bbb5HA49NJLL+X2IOjp6dEFF1ygHXbYQbFYTFdeeaWOOeYYzZs3b9i/caXTaR1yyCHaY4899Nprr8nhcOjnP/+5Dj30UL3//vu5FWkvvviifD6fnn/++X6Pvfrqq7XVVlups7NTF1xwgU4//XQ9/fTT/Z7j0ksv1Y033qgtt9xS1dXVuuyyy/Tb3/5Wt9xyi/bee2+1t7frv//9b7/HXH755brxxhs1Y8YMXX755TrppJP02WefDbjK7amnntIxxxyjyy+/XA8++KBSqVS/GoZaJwAAADCWmKap3t5eRaNRRaNR9fb2qre3V5lMZsDrbTZbbvpmZWVlboDA5naSABhf+BdhnLr33nt1yimnSJIOPfRQRSIRvfLKK9pvv/1y11xzzTXad999Ja0Nc7761a8qkUjI4/Foxx131I477pi79uqrr9bjjz+uv/71rzrnnHPynm/PPffUVlttpd///ve6+OKLJUn33Xefjj/+eFVUVEha2+pZVla2wZbKG264QbvttpvuvPPO3LFtt9029/axxx7b7/rf/e53mjRpkj7++GNtt912Q/30SJICgUDesd7e3kGvf/jhh2Wapu65555cOHnfffepqqpKL7/8sr7yla9IksrLy3XPPff0a/s844wzcm9vueWWuv3227X77rsrFovlPj+SNGfOHB188MGSpO7ubt1222264447dNppp0mSpk2bpr333rtfXRdeeKG++tWvSpJ+9rOfadttt9Vnn32mrbfeOu9juOaaa3TiiSfqZz/7We7Yun/PQ60TAAAAGK2y2ayi0Wi/9s1EIrHB9s31p2/SvglgKAjVCuAsc+qy2GVDunbJq0v00OEPbfS6k58+WVt8eYshPfdQffrpp/rnP/+pxx9/XNLabxJf//rXde+99/YL1XbYYYfc232ryzo7OzV58mTFYjFdddVVeuqpp9Te3q5MJqN4PK6lS5cO+rzf/va39Zvf/EYXX3yxli9frmeeeUb/+Mc/hly3tHal2vHHHz/o+QULFujKK6/U22+/rZUrV+a+MS5dunTAUG3bbbfVkiVLJEn77LOPnnnmmdy51157TZWVlf2uX/fzs7733ntPn332Wd5jEolEvxbU7bffPm8ftX//+9+66qqr9N5772nNmjX96t5mm21y1+222265tz/55BMlk0kdeOCBg9YkDf73OFCoNm/ePH3nO98Z9F5DrRMAAAAYDZLJpLq6utTd3a1YLKZ4PK5kMjno9W63W2VlZSovL5fP55Pf75fb7R7BigGMJ4RqBTAMY8gtmNO+Mk2+gE/RtujA+6oZa6eATvvKNNnsxf0NyL333qtMJtNvMIFlWXK73brjjjtyx9adPNO38qovRLnwwgv1/PPP68Ybb9T06dPl9Xp13HHHKZVKDfq8p556qi699FK9+eabeuONNzR16lTts88+BdW+sU31jzzySG2xxRb67W9/q+bmZpmmqe22227Qup5++uncRJ717z116tS8/cY2tJw7Fotp11131R//+Me8c5MmTcq9XV5e3u9cT0+PDjnkEB1yyCH64x//qEmTJmnp0qU65JBD8upe97FDHTCwob/H9W3onoXUCQAAAIwk0zTV09OTm77ZNzxgY+2b6w4PqKyslN1uH+HKAYxnhGrDxGa36dDbDl07/dNQ/2Dt/7Y1O/TWQ4seqGUyGT344IO66aabcu2IfY4++mj96U9/GnAF0/rmzp2r008/PbeJfSwWy9v/bH21tbU6+uijdd999+nNN9/Ut771rX7nXS5Xbm+0weywww568cUX+7Un9lm1apU+/fRT/fa3v82Fda+//voG77fFFhtfBThUu+yyix5++GHV19fL5/MN+XH//e9/tWrVKl1//fUKBoOSpHfeeWejj5sxY4a8Xq9efPFFffvb397kutfV9/ld/+9mc+oEAAAAiimdTisajaq7uzsXoCWTyUF/cex0OnPTNysrK+X3++X1emnfBDDsCNWG0azZs3TCoyfo2XOfVTQczR33BXw69NZDNWv2rKI/59/+9jetWbNGZ555pvx+f79zxx57rO6991798pe/3Oh9ZsyYoccee0xHHnmkDMPQT37yk0G/ia3r29/+to444ghls9ncPmB9pkyZorfffluff/65KioqVFNTk/f4yy67TNtvv71+8IMf6KyzzpLL5dJLL72k448/XjU1NaqtrdVvfvMbNTU1aenSpbr00ks3WlOxfOMb39Avf/lLHXXUUZozZ44CgYCWLFmixx57TBdffPGAe7RJ0uTJk+VyufSrX/1KZ511lj788ENdffXVG30+j8ejSy65RBdffLFcLpf22msvrVixQh999JHOPPPMTfoYfvrTn+rAAw/UtGnTdOKJJyqTyejpp5/WJZdcssl1AgAAAJvCsiwlEonc6rO+9s3BuiQMw5Db7ZbX680ND/D7/XlbrwDASJmwoVpra6taW1s3unJqc82aPUtbHbWVlr62VN3t3apsqtTkfSYXfYVan3vvvVcHHXRQXqAmrQ3VbrjhBr3//vsbvc/NN9+sM844Q3vuuafq6up0ySWXKBqNbvRxBx10kJqamrTtttv2az+V1raUnnbaadpmm20Uj8e1ePHivMfPnDlTzz33nH784x/rC1/4grxer774xS/qpJNOks1m05///Gf98Ic/1HbbbaetttpKt99++wb3QSumsrIyvfrqq7rkkks0e/ZsdXd3q6WlRQceeOAGV65NmjRJ999/v3784x/r9ttv1y677KIbb7xRX/va1zb6nD/5yU/kcDh05ZVXatmyZWpqatJZZ521yR/Dfvvtp7/85S+6+uqrdf3118vn8+nLX/7yZtcJAAAAbIhpmorFYrnhAT09PUokEhts3/R6vbnhAX6/XxUVFbRvAhhVDMuyBtrxa8KIRqPy+/2KRCJ5wUgikdDixYs1depUeTyeElU4tsRiMbW0tOi+++7T7NmzS10OSoivHwAAgImpr30zGo32m7452EtPp9OZm77p8/nk8/lUVlaW2y8YAEbShnKi9U3YlWooLtM0tXLlSt10002qqqpidRMAAAAwzlmWpXg8ngvQenp6htS+WVZWpoqKitz0zXUHbwHAWEKohqJYunSppk6dqkAgoPvvv3+DUzQBAAAAjC2maaq7uzs3QKBv+uZg2+nY7fZ+7Zs+n0+VlZUMDwAwrpB8oCimTJky6HJuAAAAAGNHOp1WV1dXbnhA3/TNwX7ed7lcKisr6zd90+Px0L4JYNwjVAMAAACACaivfbOrq0uxWCw3fTOdTg94vWEY8ng8/do3fT4f7ZsAJixCtSFgBRZQOL5uAAAARo9sNptr31x3+uZg7ZsOh0Mej6ff6rPy8nLaNwFgHYRqG9A3rjmVSsnr9Za4GmBs6e3tlSR+cwkAADDCUqmUIpFIbnjAxto33W63vF5vLkCrqqqS2+2mfRMANoJQbQMcDofKysq0YsUKOZ1OfisDDIFlWert7VVnZ6eqqqpy4TQAAACKyzRN9fb25oYH9E3fHKx902az5bVvVlZW8ktQANhEhGobYBiGmpqatHjxYi1ZsqTU5QBjSlVVlRobG0tdBgAAwLiQzWYVjUbz2jdN0xzweofD0W/1mc/no30TAIqMUG0jXC6XZsyYoVQqVepSgDHD6XSyQg0AAGATJZNJRSKRftM3U6nUBts3+6Zv9g0P8Hg8I1w1AEw8hGpD0LdMGgAAAACKpa99sy9A62vfzGQyA17f97qkvLxc5eXl8vv98vl8/DITAEqEUA0AAAAAhlkmk1F3d7cikUhu9dmG2jedTqc8Ho8qKipUUVEhv9+vsrIy2jcBYBQhVAMAAACAIrEsK699Mx6PK5lMDvoYj8cjr9eriooKVVZWyu/3y+12j2DVAIBNQagGAAAAAJvANE3FYrF+0zcTicQG2ze9Xq/KyspUWVmZGyBA+yYAjE2EagAAAACwEel0ut/0zb72zcGGBzidzn7TN/vaNw3DGOHKAQDDhVANAAAAAP6PZVlKJBL9hgf0Td8ciGEYedM3/X6/XC7XCFcOABhphGoAAAAAJiTTNNXd3Z1r3+zt7VU8Hlc2mx3wervdnpu+2Tc8oKKigvZNAJigCNUAAAAAjHvpdLrf8ICNtW+6XK689k2v10v7JgAgh1ANAAAAwLhhWZbi8Xhu/7Oenh7F4/ENtm/2Td/sGx7g9/vldDpHuHIAwFhDqAYAAABgTMpms4rFYopEIorFYrnpmxtq3+xbfbZu+6bNZhvhygEA4wGhGgAAAIBRL5VKKRKJ5Faf9fb2KplMbrB9s294QN/qM4/HQ/smAKBoCNUAAAAAjBp97ZtdXV256ZvxeFzpdHrA6/vaN8vKynLtmz6fj/ZNAMCwI1QDAAAAUBLZbHbA6ZumaQ54vcPhkNfrzQVoPp+P9k0AQMlM2FCttbVVra2tg+63AAAAAKB4UqlUbvVZLBZTPB7fYPum2+1WWVlZLkCrqqqS2+2mfRMAMGoY1mDfxSaIaDQqv9+vSCQin89X6nIAAACAMc2yLPX29qqrq0uxWEyxWEyJRGKD7Zt9q88qKirk8/nk8/nkcEzY3/8DAEqokJyI71QAAAAANkk2m1U0GlU0Gu03fXMo7Zs+n09+v19lZWW0bwIAxiRCNQAAAAAblUwmB5y+OZi+9s3y8vLc6jOPxzOCFQMAMLwI1QAAAADkmKapnp6e3PCAvumbmUxmwOttNtuA7Zt2u32EKwcAYGQRqgEAAAATVCaTUTQaVSQSya0+i8fjgw4PcDqd8nq9Ki8vz03fLC8vZ3gAAGBCIlQDAAAAxjnLsvLaN/umbw7EMIwB2zfdbvcIVw4AwOhFqAYAAACMI33tm5FIJNe+mUgkBm3ftNvt8ng8Ki8vz7VvVlZW0r4JAMBGEKoBAAAAY1Q6ne4XnvUFaBtr36yoqFBFRYWqqqrk9Xpp3wQAYBMQqgEAAACjnGVZSiQS/QK03t5epVKpAa9ft32zoqJClZWV8vv9crlcI1w5AADjF6EaAAAAMIpks1nFYrF+0zcTiYSy2eyA19vt9tz0zb7hARUVFbRvAgAwzAjVAAAAgBJZt32zu7tbvb29SiaTg7ZvulyuftM3/X4/7ZsAAJQIoRoAAAAwzCzLUjwez2vfTKfTA15vGIY8Hk9u+qbf75fP55PT6RzhygEAwGAI1QAAAIAiymaz6u7uzrVv9vb2Kh6PyzTNAa/va9/sW33m8/lUXl5O+yYAAKMcoRoAAACwiVKpVL/2zXg8PqT2zb7hAVVVVXK73bRvAgAwBhGqAQAAABthWZZ6e3v7tW/G4/EhtW9WVFTI5/PJ7/fL4eDHbwAAxgu+qwMAAADr6GvfjEQiisViuembg7VvOhyOAadv2my2Ea4cAACMJEI1AAAATFjJZFKRSETRaDQ3PCCZTA56vdvtzu1/1rf6jPZNAAAmJkI1AAAAjHuWZamnpyfXvtnb26ve3l5lMpkBr7fZbHntmz6fj/ZNAACQw08FAAAAGFcymUxu8mZfgDaU9s2+6Zt+v19lZWW0bwIAgA0iVAMAAMCYZFmWUqmUurq61N3drVgslpu+ORi3251bfda3/5nH4xnBqgEAwHhBqAYAAIBRzzTNXPtm3/CAeDy+0fbN8vJyVVRUyO/3q6KigvZNAABQNPxUAQAAgFGlr30zEomop6cnN33TsqwBr3c6nQO2bzI8AAAADCdCNQAAAJSEZVlKJBKKRqP9pm+mUqkBrzcMI6990+/3y+VyjXDlAAAAhGoAAAAYAdlsVj09PbkBAn3tm9lsdsDr7XZ7bvpm395nlZWVstvtI1w5AADAwAjVAAAAJrismdVrS19Te3e7miqbtM/kfWS3bXp4lclk+g0P6Ju+uaH2zbKyMpWVlcnn88nv98vr9dK+CQAARjVCNQAAgAnssU8e03lPnyf7B3ZVxCoUq4gpu31Wtx5+q2bPmr3Bx/a1b3Z1dSkWi+Wmb26sfbO8vFzl5eXy+Xzy+Xy0bwIAgDGJUA0AAGCCeuyTx3TFVVfouGePkz/qzx2P+CK64p9XSFcpF6z1tW+uP31zQ+2bXq83177p9/tVXl5O+yYAABg3CNUAAAAmoKyZ1S033KITHjkh75wv6tMJj5ygP/j+oGnnTFM8HlcymRy0fdPlcsnr9aqiokIVFRWqqqqSx+OhfRMAAIxrhGoAAAAT0KuLX9Xuj+0uSTLUP/wyZMiSpe0e207/Peq/aqhoWHvcMHLDAyoqKnLtm06nc8TrBwAAKDVCNQAAgAnAsiylUinF43HF43H9+4l/92v5XJ8hQ/bVdq2Zv0Z7nbCXfD4f7ZsAAADrmLChWmtrq1pbWwfdBwQAAGCssixLyWQyF6D1/TFNM3eNe5VbPerZ6L1qHDUKBALDWS4AAMCYZFiDbY4xQUSjUfn9fkUiEfl8vlKXAwAAUJC+CZzrhmeJRKJfgNbHMAx5vV45HA4tfHGhXv/26xu9/ykvnqJpB0wbjtIBAABGnUJyogm7Ug0AAGCsMU1zwABtoN+R2mw2eTweeb3e3B+3261IJKJly5apbpc6OSc5lVqRyttTTZIsWXI1ujR136kj8aEBAACMOYRqAAAAo1A2m80L0AabwGmz2fqFZ30B2rrTNzOZjEKhkCKRiCSpvLJcR/zqCD1+0uOyLKtfsGbJkmEYOqb1GNnstuH/YAEAAMYgQjUAAIASy2azefufJZPJAa+12+15AZrL5eoXoK0vGo0qHA4rk8nIMAw1NDRo0qRJMqYbcjqdeubcZ9Qd7s5d7w/6deith2rW7FlF/1gBAADGC0I1AACAEZTJZPLaNwcL0BwOR16A5nQ6NxigrSubzaq9vV2rV6+WJHk8HgWDQXm93tw1s2bP0lZHbaWlry1Vd3u3KpsqNXmfyaxQAwAA2IiCQrVPPvlEf/7zn/Xaa69pyZIl6u3t1aRJk7TzzjvrkEMO0bHHHiu32z1ctQIAAIwp6XS6X3gWj8eVSqUGvNbpdA4YoG2qWCymcDice75JkyapoaFBNlt+WGaz2zRlvymb/FwAAAAT0ZCmf7777ru6+OKL9frrr2uvvfbSF77wBTU3N8vr9Wr16tX68MMP9dprrykajeriiy/WeeedN2bCNaZ/AgCAzWVZltLpdL890Hp7e5XJZAa83u125w0RcDiK00BgmqY6Ojq0cuVKSZLL5VIgEFBFRUVR7g8AADCeFX3657HHHquLLrpIjz76qKqqqga97s0339Rtt92mm266ST/+8Y8LKhoAAGAs6AvQent7+61C21CAtv4KNLvdPiy19fb2KhQK5dpJa2pq1NTUNGzPBwAAMJENaaVaOp0uqP2g0OtLiZVqAABgMJZlKZlM5rVwZrPZvGsNw8gL0Dwez4gEWpZlqbOzU52dnbIsSw6HQ4FAgJ9tAAAAClT0lWqFBmRjJVADAADoY1mWEolEvxbOeDwu0zTzrjUMI6990+PxDLhf2XBLJpMKhULq7e2VJPn9frW0tBStnRQAAAADK+inrXg8rn//+9+qqanRNtts0+9cIpHQI488olNPPbWoBQIAABSbaZpKJpO5Fs6+IG2gBfyGYeS1b7rd7pIEaOuyLEurVq1Se3u7LMuS3W5XS0uL/H7/kKeDAgAAYNMNqf1TkubPn6+vfOUrWrp0qQzD0N57760///nPampqkiQtX75czc3NA7ZDjGa0fwIAML6ZppnXvplIJAYM0Gw224AB2mgLqVKplMLhsGKxmCSpoqJCwWCQbgEAAIDNVPT2T0m65JJLtN122+mdd95RV1eXzjvvPO211156+eWXNXny5M0uGgAAYHNls9l+4Vnf2wOx2+15AZrL5Rp1Adq6LMtSV1eX2traZJqmbDabmpqaVFNTM6rrBgAAGI+GHKq98cYbeuGFF1RXV6e6ujo9+eST+sEPfqB99tlHL730ksrLy4ezTgAAgH76ArR1//RNvVyfw+HIC9CcTueYCqIymYza2toUiUQkSWVlZQoGg3K73SWuDAAAYGIacqgWj8f7bXhrGIbuuusunXPOOdp333310EMPDUuBAAAAmUwmL0BLpVIDXut0OvMCNIfDMaYCtPVFo1GFw2FlMhkZhqGGhgZNmjRpTH9MAAAAY92QQ7Wtt95a77zzjmbNmtXv+B133CFJ+trXvlbcygAAwIRjWdaAAVo6nR7wepfLNWCANl5ks1ktW7ZMa9askSR5PB4Fg0F5vd4SVwYAAIAh/9R5zDHH6E9/+pO++c1v5p274447ZJqm7r777qIWBwAAxi/LspROp/MCtEwmM+D1brc7L0Cz2+0jXPXIicViCoVCuUBx0qRJamhoKPnUUQAAAKw15Omf4xXTPwEAGH6WZSmVSuUFaINNDfd4PP3CM4/HM64DtHWZpqmOjg6tXLlS0trVeMFgkP1rAQAARsCwTP9cX99GwGyOCwAA1mVZlpLJZF6AZppm3rWGYQwYoE3U1Vi9vb0KhUK5n7NqamrU1NQ0YQJFAACAsaSgUO3555/XLbfcojfffFPRaFSS5PP5tMcee+iCCy7QQQcdNCxFAgCA0ck0zQEDtIEWwhuGkde+6Xa7J2yAti7LstTZ2anOzk5ZliWHw6FAIMAqegAAgFFsyKHaAw88oG9/+9s67rjjdMstt6ihoUGStHz5cj333HM6/PDDde+99w645xoAABj7TNNUIpHoF54lEokBAzSbzTZggMa0ynyJREKhUEjxeFyS5Pf71dLSMq4GLgAAAIxHQ95TbebMmTr33HN19tlnD3j+zjvv1C233KIFCxYUtcDhxp5qAADky2azeQFaMpkcMECz2+15AZrL5SJA2wjLsrRq1Sq1t7fLsizZ7Xa1tLSoqqqq1KUBAABMWMOyp9rSpUs32N554IEH6kc/+tHQqwQAAKNCNpvNa9/s29NrfQ6HIy9AczqdBGgFSqVSCofDisVikqTKykoFAgE5nc4SVwYAAIChGnKotu222+ree+/VDTfcMOD53/3ud9pmm22KVhgAACi+TCaTF6ClUqkBr3U6nXkDBAjQNo9lWVqzZo2WLVsm0zRls9nU1NSkmpoaPq8AAABjzJBDtZtuuklHHHGEnn32WR100EH99lR78cUXtWjRIj311FPDVigAAChMOp3OC9DS6fSA17pcrlxwtu4KNBRPJpNROBzODXsqKytTMBhkkjoAAMAYNeRQbb/99tOHH36ou+66S2+99ZY6OjokSY2NjTrssMN01llnacqUKcNVJwAAGIRlWQMGaJlMZsDr3W53v/DM6/WyKf4wi0QiamtrUyaTkWEYamho0KRJk1idBgAAMIYNeVDBeMWgAgDAWGJZllKpVF6Als1mB7x+3fCs72273T7CVU9c2WxWy5Yt05o1aySt/fsIBoPyer0lrgwAAAADGZZBBQAAYGRZlqVkMpkXoJmmmXetYRi50Gzd/xKglU4sFlMoFMq13NbX16u+vl42m63ElQEAAKAYNitU++pXv6p77rlHTU1NxaoHAIAJybIsJRKJfuFZIpEYNEBbf/8zj8dDWDNKmKapjo4OrVy5UtLa/eqCwaDKy8tLXBkAAACKabNCtVdffVXxeLxYtQAAMCGYptkvQOt7e6AdGWw2W97+Zx6Ph724Rqne3l6FQiElk0lJUm1trRobG1kxCAAAMA7R/gkAwDDKZrN5K9CSyeSgAdq64ZnX65Xb7SZAGwMsy1JnZ6c6OztlWZacTqcCgYAqKytLXRoAAACGyWaHavygDwDAWtlsNm//s74VS+uz2+15AZrL5eL76hiUSCQUCoVyq/erqqrU3NzMRFUAAIBxrqCf9mw2W94P+9OnT5e09je0hmEMOn0MAIDxJJPJ5O1/NliA5nA48gI0p9NJgDbGWZallStXqqOjQ5ZlyW63q6WlRVVVVaUuDQAAACOgoFBt8eLFubcty9J2222np59+WltssUXRCwMAYLRIp9N5+5+lUqkBr3U6nQMGaBhfUqmUQqGQenp6JEmVlZUKBAL8XQMAAEwgBYVq64dnhmEoEAgQqgEAxgXLspROp/P2QEun0wNe73K58gI0Wv7GN8uytGbNGi1btkymacpms6mpqUk1NTWsPAQAAJhg+MkfADAh9QVo6++BlslkBrze7XbnBWhMdJxY0um02traFI1GJUnl5eUKBoNyuVwlrgwAAAClsFmh2hZbbEGbAwBg1LMsS6lUSvF4XL29vbmVaAPtA2oYRl6A5vF4CNAmuEgkora2NmUyGRmGocbGRtXV1bE6DQAAYALbrFDtww8/LFYdAAAUhWVZSiQSeS2cpmnmXWsYhjweT16AZrPZSlA5RqNsNqtly5ZpzZo1kiSPx6NgMCiv11viygAAAFBqtH8CAMYs0zSVTCbzWjgty8q71jCMvPZNt9tNgIZBdXd3KxwO5/bUq6+vV319Pf/PAAAAQNImhmq///3vdffdd2vx4sV68803tcUWW+jWW2/V1KlTddRRRxW7RgAAZJqmEolEv/bNRCIxYIBms9kGDNBo1cNQmKap9vZ2rVq1StLa/fQCgYDKy8tLXBkAAABGk4JDtbvuuktXXnmlzjvvPF1zzTW5/Wiqqqp06623EqoBADZbNpvNhWZ9q8+SyeSAAZrdbs8L0FwuFwEaNklvb69CoZCSyaQkqba2Vo2NjeypBwAAgDwFh2q/+tWv9Nvf/lZHH320rr/++tzx3XbbTRdeeGFRiwMAjH99Adq6f/oCjfU5HI68AM3pdBKgYbOZpqnOzk51dnZKkpxOpwKBgCorK0tcGQAAAEargkO1xYsXa+edd8477na71dPTU5SiRkJra6taW1sHnPwGABgemUwmL0BLpVIDXut0OvMCNIfDQYCGokskEgqFQorH45LWrr5vaWlhdRoAAAA2qOBQberUqZo3b5622GKLfsefffZZzZo1q2iFDbezzz5bZ599tqLRqPx+f6nLAYBxxbKsAQO0vg3f1+dyuQYM0IDhZFmWVq5cqY6ODlmWJbvdrpaWFlVVVZW6NAAAAIwBBb9iueCCC3T22WfnNof+5z//qT/96U+67rrrdM899wxHjQCAUcyyLKXT6bwALZPJDHi92+3OC9BYEYSRlkqlFAqFcqvsKysrFQgE5HQ6S1wZAAAAxoqCQ7Vvf/vb8nq9uuKKK9Tb26uTTz5Zzc3Nuu2223TiiScOR40AgFHCsiylUqm8AG2wVnqPx5MLzvreJkBDKVmWpTVr1mjZsmUyTVM2m03Nzc2qrq6mtRgAAAAFMayBRqkNUW9vr2KxmOrr64tZ04jqa/+MRCLy+XylLgcARg3LspRMJvMCNNM08641DCMXmnk8HpWVlcnj8chms5WgcmBg6XRabW1tikajkqTy8nIFg0G5XK4SVwYAAIDRopCcaLM2rCkrK1NZWdnm3AIAMAqYpjlggDbQ710Mw8hr33S73QRoGNUikYjC4bCy2awMw1BjY6Pq6upYnQYAAIBNVrRdoD/55BN99atf1aJFi4p1SwDAMDBNU4lEol941rdP5vpsNlu/8Mzj8cjj8RBEYMzIZrNqa2tTV1eXJMnr9SoYDMrj8ZS2MAAAAIx5RQvVUqmUlixZUqzbAQCKIJvN5gVoyWRywADNbrf3a9/0er1yuVwEaBizuru7FQ6Hc1Nn6+vrVV9fz6pKAAAAFMWQQ7ULLrhgg+dXrFix2cUAADZdNpvNa99MJpMDXutwOPJaOJ1OJwEaxoVsNquOjg6tWrVK0tqJs4FAQOXl5SWuDAAAAOPJkEO12267TTvttNOgm7TFYrGiFQUA2LBMJpMXoKVSqQGvdTqdeS2cBGgYr3p6ehQOh3OBcm1trZqamlidBgAAgKIbcqg2ffp0nX/++TrllFMGPD9v3jztuuuuRSsMALBWOp3OC9D62tnW53K5csHZuivQgPHONE11dnaqs7NT0towORAIqLKyssSVAQAAYLwacqi222676d///vegoZphGAPu0QMAGBrLsgYM0DKZzIDXu93ufuGZ1+uVw1G0rTKBMSMejyscDisej0uSqqur1dzcLLvdXuLKAAAAMJ4N+dXXTTfdNOjePJK04447yjTNohQFAOOdZVlKpVJ5AVo2mx3werfbnbcHGoEBJjrLsrRy5Up1dHTIsizZ7XYFAgH5/f5SlwYAAIAJYMihWmNj43DWAQDjlmVZSiaT/cKzRCIxYIBmGEZegObxeAjQgPWkUimFQiH19PRIknw+n1paWmh3BgAAwIihTwgAisiyLCUSibwAbaCVvIZh5O1/5vF42FAd2ADLsrR69Wq1t7fLNE3ZbDY1Nzerurqa4RsAAAAYUUUL1d577z3tsssug7YuAcB4Y5pmvwCt7+2B9pe02Wx5+595PB5CAKAA6XRa4XBY3d3dkqTy8nIFg0G5XK4SVwYAAICJqKgr1RhUAGC8Mk0zLzxLJBKDBmjr73/mdrsJ0IDN0NXVpba2NmWzWRmGocbGRtXV1fF1BQAAgJIZcqg2e/bsDZ6PRCL8YAtgXMhms7nQrLe3V/F4fNBBLXa7PS9Ac7lc/HsIFEkmk9GyZcvU1dUlSfJ6vQoGg/J4PKUtDAAAABPekEO1J598UgcffLAaGhoGPE/bJ4CxKJPJ5O1/NliA5nA48gI0p9NJgAYMk+7uboXDYaXTaRmGofr6etXX1/M1BwAAgFFhyKHarFmzdOyxx+rMM88c8Py8efP0t7/9rWiFAUCxpdPpvBbOVCo14LVOp3PAAA3A8Mtms+ro6NCqVaskSW63W8FgUGVlZSWuDAAAAPj/DTlU23XXXfXuu+8OGqq53W5Nnjy5aIUBwKayLEvpdDpvCmc6nR7wepfLlRegORwMRwZKoaenR+FwOLditK6uTo2NjUzFBQAAwKhjWEOcLpBMJpXNZsfdb4mj0aj8fr8ikYh8Pl+pywFQoL4Abd3wLB6PK5PJDHi92+3OC9DsdvsIVw1gfaZpqrOzU52dnZLWrhYNBoOqqKgocWUAAACYSArJiYa8FMPtdm92YQCwOSzLUiqVygvQBtrT0TCMvADN4/EQoAGjUDweVygUUiKRkCRVV1erubmZr1cAAACMagX3N2Wz2X4/5L799ttKJpPaY4892G8IQNFYlqVkMpkXoJmmmXetYRjyeDx5ARrtYsDoZlmWVqxYoeXLl8uyLDkcDrW0tMjv95e6NAAAAGCjhhyqtbe36/jjj9dbb72lvfbaS0888YS++c1v6umnn5YkzZgxQy+//LKampqGrVgA45NpmgMGaAN1pxuGkde+6Xa7CdCAMSaZTCoUCqm3t1eS5PP51NLSwi/oAAAAMGYMOVS75JJLZFmWHn/8cf3xj3/UEUccIbvdrlAopGw2q5NPPlnXXHON7rjjjuGsF8AYZ5pm3gCBRCIxYIBms9kGDNAMwyhB5QCKwbIsrV69Wu3t7TJNUzabTc3NzaquruZrGwAAAGPKkEO1F154QY899pi+9KUvaa+99lJdXZ2ef/55tbS0SJLmzJmj73znO8NWKICxJ5vN5gVoyWRywADNbrfnBWgul4sX2cA4kk6nFQ6H1d3dLUkqLy9XMBiUy+UqcWUAAABA4YYcqq1ZsyYXoNXU1KisrExbbLFF7vz06dPV3t5e/AoBjAnZbDavfTOZTA54rcPhyAvQnE4nARowjnV1damtrU3ZbFaGYaipqUm1tbV83QMAAGDMGnKoVl9fr/b2dgWDQUnSOeeco5qamtz5NWvWqLy8vPgVAhh1MplMXoCWSqUGvNbpdOYFaA6HgxfSwASRyWS0bNkydXV1SZK8Xq+CwaA8Hk9pCwMAAAA205BDtZ122klvvvmmvvCFL0iSrr/++n7nX3/9de2www7FrQ5ASVmWNWCAlk6nB7ze5XLlTeBk03Fg4uru7lYoFFImk5FhGKqvr1d9fT2hOgAAAMaFIYdq/+///b8Nnt9999217777bnZBAErDsiyl0+m8AC2TyQx4vdvtzgvQHI4h/5MCYBzLZrNqb2/X6tWrJa399yIYDKqsrKzElQEAAADFU7RXwH0r2ACMfpZlKZVK5QVo2Wx2wOs9Hk+/8Mzr9cput49w1QDGgp6eHoVCoVxLeF1dnRobG2Wz2UpcGQAAAFBcRQvV2tvblU6nNXny5GLdEkARWJalZDKZF6CZppl3rWEYudBs3SCNF8MANsY0TS1fvlwrVqyQtHY/xWAwqIqKihJXBgAAAAyPooVqBxxwgObPnz/oShcAw880zQEDNMuy8q41DCMvPPN4PARoAAoWj8cVCoWUSCQkSdXV1WpubmZFKwAAAMa1ooVqDz74oHp7e4t1OwAbYZqmEolEv/AskUgMGKDZbDZ5PB6VlZXlwjOPx8Nm4QA2i2VZWrFihZYvXy7LsuRwONTS0iK/31/q0gAAAIBhV7RQbffddy/WrQCsJ5vN5gVoyWRywADNbrfnrUBzu90EaACKKplMKhQK5X6h5vP5FAgEGFgCAACACYOffIFRJpvN5rVvJpPJAa/tC9DW/eNyuQjQAAwby7K0evVqtbe3yzRN2Ww2tbS0qKqqin97AAAAMKEULVR77733tMsuu7CnGlCATCaTF6D1Tcxbn8PhkNfr7dfC6XQ6eRELYMSk02mFw2F1d3dLkioqKhQIBORyuUpcGQAAADDyirpSbaBWNABrpdPpvAAtnU4PeK3L5cpr4XQ6nSNcMQCsZVmWIpGI2tralM1mZRiGmpqaVFtbS7APAACACWvIodrs2bM3eD4SifCDNaC1Lz4HCtAymcyA17vd7n7hmdfrZU8iAKNGJpNRW1ubIpGIJMnr9SoYDMrj8ZS4MgAAAKC0hvzK/cknn9TBBx+shoaGAc/T9omJyLIspVKpvAmcGwrQ1t8DzW63j3DVADA00WhU4XBYmUxGhmGovr5e9fX1/BINAAAAUAGh2qxZs3TsscfqzDPPHPD8vHnz9Le//a1ohQGjjWVZSiaTeQHaQIGyYRh5AZrH4yFAAzAmZLNZtbe3a/Xq1ZLW/kIgGAyqrKysxJUBAAAAo8eQQ7Vdd91V77777qChmtvt1uTJk4tWGFBKlmUpkUjkBWimaeZdaxhGXvumx+ORzWYrQeUAsHl6enoUCoVyQ1Pq6urU2NjIv2kAAADAegxriNMFksmkstnsuPstdTQald/vVyQSkc/nK3U5KAHTNPsFaH1vD/SlYRhGXvumx+OhFQrAmGeappYvX64VK1ZIWjswJRAIqKKiosSVAQAAACOnkJxoyCvV3G73ZhcGlJppmnnhWSKRGDBAs9lseQGa2+0mQAMw7sTjcYVCISUSCUlSTU2NmpqaaFkHAAAANmCzRgx+9atf1T333KOmpqZi1QMUTTab7Ree9b09ELvdnheguVwuAjQA45plWVqxYoWWL18uy7LkcDgUCARYuQ0AAAAMwWaFaq+++qri8XixagE2WSaTydsDLZlMDnitw+HIC9CcTicBGoAJJZlMKhQKqbe3V5Lk9/vV0tIih2OzfjQAAAAAJgx+csaYk06n81o4+zbUXp/T6cwL0BwOBwEagAnLsiytWrVKHR0dMk1Tdrtdzc3Nqqqq4t9GAAAAoACbFaptscUWcjqdxaoF6MeyLKXT6bwVaOl0esDrXS7XgAEaAGCtVCqlcDisWCwmSaqoqFAgEJDL5SpxZQAAAMDYs1mJw4cfflisOjDB9QVo64Zn8XhcmUxmwOvdbndegMaG2gAwMMuy1NXVpWXLlimbzcowDDU1Nam2tpbVaQAAAMAmYhkPRpxlWUqlUnkBWjabzbvWMIy8AM3j8RCgAcAQZTIZtbW1KRKJSJLKysoUDAaZ6g0AAABspk0K1Xw+n+bNm6ctt9yy39vA+izLUjKZzAvQTNPMu9YwDHk8nrwAzWazlaByABj7otGowuGwMpmMDMNQfX296uvrWZ0GAAAAFMEmhWqWZQ34NiY20zQHDNAG+n/EMIy89k23202ABgBFkM1m1d7ertWrV0ta2zI/efJkeb3eElcGAAAAjB+0f2KTmKaZN0AgkUgMGKDZbLYBAzRWSgBA8cViMYXD4dxU5Lq6OjU2NvJLCwAAAKDICNWwUdlsNi9ASyaTAwZodrs9L0BzuVwEaAAwzEzTVEdHh1auXClp7UTkQCCgioqKElcGAAAAjE+EauNI1szqtaWvqb27XU2VTdpn8j6y2wrb0D+bzea1byaTyQGvdTgceQGa0+kkQAOAERaPxxUKhZRIJCRJNTU1ampqYqgLAAAAMIwI1caJxz55TOc+e67C0XDuWMAX0G2H3qbZs2YP+JhMJpMXoPW1C63P6XTmDRAgQAOA0rIsS52dners7JRlWXI4HAoEAvL5fKUuDQAAABj3CNXGgcc+eUzHPXKcLPVvx2yLtum4R47TX47/i74242t5AVo6nR7wfi6XKxecrbsCDQAweiSTSYVCIfX29kqS/H6/Wlpa5HDwrR0AAAAYCfzkPcZlzazOffbcvEBNkixZMmTonL+doy0P2VJ2I78NyO12561A4wUZAIxelmVp1apVam9vl2VZstvtam5uVlVVFauHAQAAgBG0SenJKaeckmstWfdtjLzXlr7Wr+VzfZYsdcQ79O7Kd7VPcJ9+4ZnX62W/HQAYQ1KplMLhsGKxmCSpoqJCgUBALperxJUBAAAAE88mhWp33XXXgG9j5LV3tw/pOs8kj2bOnDnM1QAAhoNlWerq6tKyZcuUzWZlGIaamppUW1vL6jQAAACgRGyFPmDOnDm5/VvWFY/HNWfOnKIUhaFrqmwa0nUtvpZhrgQAMBwymYyWLl2qUCikbDarsrIyzZw5U3V1dQRqAAAAQAkZlmXlb8a1AXa7Xe3t7aqvr+93fNWqVaqvr1c2my1qgcMtGo3K7/crEomMyTbWrJnVlNumqC3aNuC+aoYMBXwBLT53sew2Wj0BYCyJRqMKh8PKZDIyDEP19fWqr68nTAMAAACGSSE5UcEr1SzLGvCH+ffee081NTWF3g6byW6z67ZDb5O0NkBbV9/7tx56K4EaAIwh2WxW4XBYn3/+uTKZjDwej6ZPn66GhgYCNQAAAGCUGPKeatXV1TIMQ4ZhaObMmf1+qM9ms4rFYjrrrLOGpUhs2OxZs/XoCY/q3GfP7Te0IOAL6NZDb9XsWbNLWB0AoBCxWEzhcFipVEqSNGnSJDU0NMhmK/j3YAAAAACG0ZDbPx944AFZlqUzzjhDt956q/x+f+6cy+XSlClTtMceewxbocNlrLd/ritrZvXa0tfU3t2upsom7TN5H1aoAcAYYZqmOjo6tHLlSklrv7cGAgFVVFSUuDIAAABg4igkJyp4T7VXXnlFe+21lxyOTRocOuqMp1ANADA29fb2KhQKKZlMSpJqamrU1NQku51fjAAAAAAjaVj3VNt33321ZMkSXXHFFTrppJPU2dkpSXrmmWf00UcfbVrFAABMQJZlafny5Vq4cKGSyaQcDoemTJmiQCBAoAYAAACMcgWHaq+88oq23357vf3223rssccUi8UkrR1U8NOf/rToBQ7FMccco+rqah133HEleX4AAAqVSCS0cOFCLV++XJZlye/3a+bMmayaBgAAAMaIgkO1Sy+9VD//+c/1/PPPy+Vy5Y4fcMABeuutt4pa3FCde+65evDBB0vy3AAAFMKyLK1cuVILFixQb2+v7Ha7Jk+erMmTJ4+brRUAAACAiaDgUO2DDz7QMccck3e8vr4+t7nySNtvv/1UWVlZkucGAGCoUqmUFi9erGXLlsmyLFVUVGjmzJmqqqrqN1UbAAAAwOhXcKhWVVWl9vb2vOP/+c9/1NLSUnABr776qo488kg1NzfLMAw98cQTede0trZqypQp8ng8+uIXv6h//vOfBT8PAAClYlmW1qxZo/nz5ysWi8lms6mlpUVTp06V0+ksdXkAAAAANkHBodqJJ56oSy65RB0dHTIMQ6Zpau7cubrwwgt16qmnFlxAT0+PdtxxR7W2tg54/uGHH9YFF1ygn/70p3r33Xe144476pBDDskNSAAAYDTLZDJaunSpQqGQTNNUWVmZZsyYodraWlanAQAAAGNYwZu3XHvttTr77LMVDAaVzWa1zTbbKJvN6uSTT9YVV1xRcAGHHXaYDjvssEHP33zzzfrOd76jb33rW5Kku+++W0899ZR+97vf6dJLLy34+ZLJpJLJZO79aDRa8D0AABiKaDSqcDisTCYjwzDU0NCgSZMmEaYBAAAA40DBoZrL5dJvf/tbXXnllfrggw8Ui8W08847a8aMGUUvLpVK6d///rcuu+yy3DGbzaaDDjpIb7755ibd87rrrtPPfvazYpUIAECebDarZcuWac2aNZIkj8ejYDAor9db4soAAAAAFMsmjxkLBoO51WoffPCB1qxZo+rq6mLWppUrVyqbzaqhoaHf8YaGBv33v//NvX/QQQfpvffeU09PjwKBgP7yl79ojz32GPCel112mS644ILc+9FoVMFgsKh1AwAmrlgsplAopHQ6LUmaNGmSGhoaZLMVvOMCAAAAgFGs4FDtvPPO0/bbb68zzzxT2WxW++67r9544w2VlZXpb3/7m/bbb79hKHPDXnjhhSFf63a75Xa7h7EaAMBEZJqmOjo6cpOwXS6XgsGgysvLS1wZAAAAgOFQ8K/NH330Ue24446SpCeffFKLFi3Sf//7X51//vm6/PLLi1pcXV2d7Ha7li9f3u/48uXL1djYWNTnAgBgU/X29mrBggW5QK2mpkYzZswgUAMAAADGsYJDtZUrV+YCraefflonnHCCZs6cqTPOOEMffPBBUYtzuVzadddd9eKLL+aOmaapF198cdD2TgAARoplWVq+fLkWLlyoZDIph8OhKVOmKBAIyG63l7o8AAAAAMOo4PbPhoYGffzxx2pqatKzzz6ru+66S9La39JvyguIWCymzz77LPf+4sWLNW/ePNXU1Gjy5Mm64IILdNppp2m33XbTF77wBd16663q6enJTQMFAKAUEomEQqGQ4vG4JMnv96ulpUUOxyZvVwoAAABgDCn4J/9vfetbOuGEE9TU1CTDMHTQQQdJkt5++21tvfXWBRfwzjvvaP/998+93zdE4LTTTtP999+vr3/961qxYoWuvPJKdXR0aKeddtKzzz6bN7wAAICRYFmWVq1apfb2dlmWJbvdrpaWFlVVVZW6NAAAAAAjyLAsyyr0Qf/7v/+rpUuX6vjjj1cgEJAkPfDAA6qqqtJRRx1V9CKHUzQald/vVyQSkc/nK3U5AIBRLJVKKRQKqaenR5JUWVmpQCAgp9NZ4soAAAAAFEMhOdGQVqrV1NRo/vz5qqur0xlnnKHbbrtNlZWV/a457bTTNr1iAABGMcuytGbNGi1btkymacpms6mpqUk1NTUyDKPU5QEAAAAogSENKkilUopGo5LWrkhLJBLDWhQAAKNFJpPRkiVLFA6HZZqmysrKNGPGDNXW1hKoAQAAABPYkFaq7bHHHjr66KO16667yrIs/fCHP5TX6x3w2t/97ndFLRAAgFKJRCJqa2tTJpORYRhqaGjQpEmTCNMAAAAADC1U+8Mf/qBbbrlFCxculLT2RcZYX63W2tqq1tZWZbPZUpcCABhlstmsli1bpjVr1kiSPB6PgsHgoL9QAgAAADDxFDyoYOrUqXrnnXdUW1s7XDWNKAYVAADWFYvFFAqFlE6nJUn19fWqr6+XzTakHRMAAAAAjGHDOqhg//33l8vlKkqhAACMFqZpqqOjQytXrpQkuVwuBYNBlZeXl7gyAAAAAKMRgwoAABNeb2+vFixYkAvUamtrNWPGDAI1AAAAAINiUAEAYMKyLEudnZ3q7OyUZVlyOp0KBAKqrKwsdWkAAAAARrmCBxUYhjEuBhUAACa2RCKhUCikeDwuSaqqqlJzc7McjiF9awQAAAAwwTGogEEFADChWJallStXqqOjQ5ZlyW63q6WlRVVVVaUuDQAAAECJFX1QwboWL168yYUBAFBKqVRKoVBIPT09kqTKykoFAgE5nc4SVwYAAABgrBnSoIL1vfLKKzryyCM1ffp0TZ8+XV/72tf02muvFbs2AACKwrIsrV69WvPnz1dPT49sNptaWlo0ZcoUAjUAAAAAm6TgUO0Pf/iDDjroIJWVlemHP/xhbmjBgQceqIceemg4agQAYJOl02ktWbJE4XBYpmmqvLxcM2bMUG1trQzDKHV5AAAAAMaogvdUmzVrlr773e/q/PPP73f85ptv1m9/+1t98sknRS1wuLGnGgCMX5FIRG1tbcpkMjIMQ42NjaqrqyNMAwAAADCgQnKigleqLVq0SEceeWTe8a997WvstwYAGBWy2axCoZCWLFmiTCYjj8ej6dOna9KkSQRqAAAAAIqi4EEFwWBQL774oqZPn97v+AsvvKBgMFi0wgAA2BTd3d0Kh8NKp9OSpPr6etXX18tm26RtRAEAAABgQAWHaj/60Y/0wx/+UPPmzdOee+4pSZo7d67uv/9+3XbbbUUvcLi0traqtbVV2Wy21KUAAIrANE21t7dr1apVkiS3261AIKDy8vISVwYAAABgPCp4TzVJevzxx3XTTTfl9k+bNWuWLrroIh111FFFL3C4sacaAIx9vb29CoVCSiaTkqTa2lo1NjbKbreXuDIAAAAAY0khOdEmhWrjCaEaAIxdpmmqs7NTnZ2dkiSn06lAIKDKysoSVwYAAABgLCokJxpS+6dlWWzsDAAYVRKJhEKhkOLxuCSpqqpKLS0trE4DAAAAMCKGtGvztttuqz//+c9KpVIbvG7BggX6/ve/r+uvv74oxQEAsD7LsrRixQotWLBA8XhcdrtdkydP1uTJkwnUAAAAAIyYIa1U+9WvfqVLLrlEP/jBD3TwwQdrt912U3Nzszwej9asWaOPP/5Yr7/+uj766COdc845+v73vz/cdQMAJqBUKqVQKKSenh5JUmVlpQKBgJxOZ4krAwAAADDRFLSn2uuvv66HH35Yr732mpYsWaJ4PK66ujrtvPPOOuSQQ/SNb3xD1dXVw1lv0bGnGgCMfpZlac2aNVq2bJlM05TNZlNzc7Oqq6vZngAAAABA0TCooACEagAwuqXTaYXDYXV3d0uSysvLFQwG5XK5SlwZAAAAgPGm6IMKAAAohUgkonA4rGw2K8Mw1NjYqLq6OlanAQAAACg5QjUAwKiTzWbV1tamrq4uSZLX61UwGJTH4yltYQAAAADwfwjVAACjSnd3t8LhsNLptCSpvr5e9fX1stmGNLAaAAAAAEYEoRoAYFTIZrPq6OjQqlWrJElut1uBQEDl5eUlrgwAAAAA8hGqAQBKrqenR+FwWMlkUpJUW1urpqYmVqcBAAAAGLU26dXKwoULdcUVV+ikk05SZ2enJOmZZ57RRx99VNTiAADjm2ma6ujo0MKFC5VMJuV0OjV16lS1tLQQqAEAAAAY1Qp+xfLKK69o++2319tvv63HHntMsVhMkvTee+/ppz/9adELHC6tra3aZptttPvuu5e6FACYkOLxuBYuXJj75Ux1dbVmzpypysrKElcGAAAAABtnWJZlFfKAPfbYQ8cff7wuuOACVVZW6r333tOWW26pf/7zn5o9e7bC4fBw1TosotGo/H6/IpGIfD5fqcsBgHHPsiytXLlSHR0dsixLdrtdgUBAfr+/1KUBAAAAmOAKyYkK3lPtgw8+0EMPPZR3vL6+XitXriz0dgCACSSVSikUCqmnp0eS5PP51NLSIqfTWeLKAAAAAKAwBYdqVVVVam9v19SpU/sd/89//qOWlpaiFQYAGD8sy9Lq1avV3t4u0zRls9nU3Nys6upqGYZR6vIAAAAAoGAF76l24okn6pJLLlFHR4cMw5Bpmpo7d64uvPBCnXrqqcNRIwBgDEun0/r888/V1tYm0zRVXl6umTNnqqamhkANAAAAwJhV8Eq1a6+9VmeffbaCwaCy2ay22WYbZbNZnXzyybriiiuGo0YAwBjV1dWltrY2ZbNZGYahxsZG1dXVEaYBAAAAGPMKHlTQZ+nSpfrwww8Vi8W08847a8aMGcWubUQwqAAAii+TyWjZsmXq6uqSJHm9XgWDQXk8ntIWBgAAAAAbMKyDCvpMnjxZkydP3tSHAwDGqe7uboXDYaXTaRmGofr6etXX17M6DQAAAMC4UnCodsYZZ2zw/O9+97tNLgYAMHZls1l1dHRo1apVkiS3261gMKiysrISVwYAAAAAxVdwqLZmzZp+76fTaX344Yfq6urSAQccULTCAABjR09Pj0KhkFKplCSprq5OjY2NstkKnocDAAAAAGNCwaHa448/nnfMNE19//vf17Rp04pSFABgbDBNU52dners7JQkOZ1OBYNBVVRUlLgyAAAAABhemzyoYH2ffvqp9ttvP7W3txfjdiOGQQUAsGni8bhCoZASiYQkqbq6Ws3NzbLb7SWuDAAAAAA2zYgMKljfwoULlclkinU7AMAoZVmWVqxYoeXLl8uyLDkcDrW0tMjv95e6NAAAAAAYMQWHahdccEG/9y3LUnt7u5566imddtppRSsMADD6JJNJhUIh9fb2SpJ8Pp9aWlrkdDpLXBkAAAAAjKyCQ7X//Oc//d632WyaNGmSbrrppo1OBgUAjE2WZWn16tVqb2+XaZqy2Wxqbm5WdXW1DMModXkAAAAAMOIKDtVeeuml4agDADBKpdNphcNhdXd3S5LKy8sVDAblcrlKXBkAAAAAlE7R9lQba1pbW9Xa2qpsNlvqUgBg1Orq6lJbW5uy2awMw1BTU5Nqa2tZnQYAAABgwhvS9M+dd955yC+g3n333c0uaiQx/RMA8mUyGS1btkxdXV2SJK/Xq2AwKI/HU9rCAAAAAGAYFX3659FHH12MugAAY0A0GlU4HFYmk5FhGKqvr1d9fT2r0wAAAABgHUNaqTaesVINANbKZrNqb2/X6tWrJUlut1vBYFBlZWUlrgwAAAAARkbRV6oBAMa3np4ehUIhpVIpSVJdXZ0aGxtls9lKXBkAAAAAjE4Fh2rZbFa33HKLHnnkES1dujT3AqxP3woHAMDoZ5qmli9frhUrVkiSnE6ngsGgKioqSlwZAAAAAIxuBS9B+NnPfqabb75ZX//61xWJRHTBBRdo9uzZstlsuuqqq4ahRADAcIjH4/rss89ygVp1dbVmzpxJoAYAAAAAQ1DwnmrTpk3T7bffrq9+9auqrKzUvHnzcsfeeustPfTQQ8NV67BgTzUAE41lWVqxYoWWL18uy7LkcDjU0tIiv99f6tIAAAAAoKQKyYkKXqnW0dGh7bffXpJUUVGhSCQiSTriiCP01FNPbUK5AICRkkwmtXDhQnV0dMiyLPl8Ps2cOZNADQAAAAAKVHCoFggE1N7eLmntqrXnnntOkvSvf/1Lbre7uNUBAIrCsiytWrVKCxYsUG9vr2w2m4LBoLbYYgs5HMysAQAAAIBCFfxK6phjjtGLL76oL37xi/qf//kfnXLKKbr33nu1dOlSnX/++cNRIwBgM6TTaYXDYXV3d0tau8o4EAjI5XKVuDIAAAAAGLsK3lNtfW+99ZbeeOMNzZgxQ0ceeWSx6hox7KkGYLyyLEuRSERtbW3KZrMyDENNTU2qra2VYRilLg8AAAAARp1CcqKCV6olEgl5PJ7c+1/60pf0pS99qfAqAQDDJpPJqK2tLbfvpdfrVTAY7PfvNwAAAABg0xW8p1p9fb1OO+00Pf/88zJNczhqAgBshmg0qvnz5ysSicgwDDU0NGj69OkEagAAAABQRAWHag888IB6e3t11FFHqaWlReedd57eeeed4agNAFCAbDarcDiszz//XJlMRm63W9OmTVNDQwPtngAAAABQZAWHasccc4z+8pe/aPny5br22mv18ccf60tf+pJmzpypOXPmDEeNAICNiMViWrBggVavXi1Jqqur04wZM1RWVlbiygAAAABgfNrsQQWS9PHHH+sb3/iG3n//fWWz2WLUNWIYVABgLDNNU8uXL9eKFSskSS6XS4FAQBUVFSWuDAAAAADGnmEdVNAnkUjor3/9qx566CE9++yzamho0EUXXbSptwMAFCgejysUCimRSEiSampq1NTUJLvdXuLKAAAAAGD8KzhU+/vf/66HHnpITzzxhBwOh4477jg999xz+vKXvzwc9QEA1mNZllasWKHly5fLsiw5HA4FAgFW2wIAAADACCo4VDvmmGN0xBFH6MEHH9Thhx8up9M5HHUBAAaQTCYVCoXU29srSfL7/WppaZHDsckLjwEAAAAAm6DgV2HLly9XZWXlcNQyolpbW9Xa2jrm9oADMDFZlqVVq1apvb1dlmXJZrOppaVFVVVVTPYEAAAAgBIoyqCCsYxBBQBGu1QqpXA4rFgsJkmqqKhQIBCQy+UqcWUAAAAAML6MyKACAMDwsixLXV1dWrZsmbLZrAzDUFNTk2pra1mdBgAAAAAlRqgGAKNQJpNRW1ubIpGIJKmsrEzBYFBut7vElQEAAAAAJEI1ABh1otGowuGwMpmMDMNQfX296uvrWZ0GAAAAAKPIJodqn332mRYuXKgvf/nL8nq9siyLF3wAsBmy2aza29u1evVqSZLb7dbkyZPl9XpLXBkAAAAAYH0Fh2qrVq3S17/+df3jH/+QYRhasGCBttxyS5155pmqrq7WTTfdNBx1AsC4FovFFA6HlUqlJEl1dXVqbGyUzWYrcWUAAAAAgIEU/Grt/PPPl8Ph0NKlS1VWVpY7/vWvf13PPvtsUYsDgPHONE0tW7ZMixYtUiqVksvl0pZbbqnm5mYCNQAAAAAYxQpeqfbcc8/p73//uwKBQL/jM2bM0JIlS4pWGACMd/F4XEuXLlUymZQk1dTUqKmpSXa7vcSVAQAAAAA2puBQraenp98KtT6rV69mKh0ADIFlWers7FRnZ6csy5LD4VAgEJDP5yt1aQAAAACAISq4t2ifffbRgw8+mHvfMAyZpqkbbrhB+++/f1GLA4DxJplMauHChVq+fLksy5Lf79fMmTMJ1AAAAABgjCl4pdoNN9ygAw88UO+8845SqZQuvvhiffTRR1q9erXmzp07HDUCwJhnWZZWrVql9vZ2WZYlu92u5uZmVVVVMTkZAAAAAMaggkO17bbbTvPnz9cdd9yhyspKxWIxzZ49W2effbaampqGo0YAGNNSqZTC4bBisZgkqaKiQoFAQC6Xq8SVAQAAAAA2lWFZllXqIkopGo3K7/crEonQfgWgqCzLUldXl5YtW6ZsNivDMNTU1KTa2lpWpwEAAADAKFRITlTwnmrTp0/XVVddpQULFmxygQAw3mUyGS1dulShUEjZbFZlZWWaOXOm6urqCNQAAAAAYBwoOFQ7++yz9dRTT2mrrbbS7rvvrttuu00dHR3DURsAjEnRaFTz589XJBKRYRhqaGjQtGnTmJAMAAAAAOPIJrd/zp8/X3/84x/1pz/9SYsXL9b++++vU045RaeeemqxaxxWtH8CKJZsNqv29natXr1akuTxeBQMBuX1ektcGQAAAABgKArJiYqyp9pbb72l73//+3r//feVzWY393YjilANQDHEYjGFw2GlUilJ0qRJk9TQ0CCbreAFwQAAAACAEikkJyp4+ue6/vnPf+qhhx7Sww8/rGg0quOPP35zbgcAY45pmuro6NDKlSslSS6XS4FAQBUVFSWuDAAAAAAwnAoO1dZv+zzggAP0i1/8QrNnz+ZFJIAJpbe3V6FQSMlkUpJUU1OjpqYm2e32ElcGAAAAABhuBYdqW2+9tXbffXedffbZOvHEE9XQ0DAcdQHAqGVZljo7O9XZ2SnLsuRwOBQIBGghBwAAAIAJpOBQ7dNPP9WMGTOGoxYAGPUSiYTC4bB6e3slSX6/Xy0tLXI4NqubHgAAAAAwxhT8KpBADcBEZFmWVq1apfb2dlmWJbvdrpaWFvn9fhmGUeryAAAAAAAjbEihWk1NjebPn6+6ujpVV1dv8AXk6tWri1YcAIwGqVRK4XBYsVhMklRRUaFgMCin01niygAAAAAApTKkUO2WW25RZWVl7u3xsCqjtbVVra2tymazpS4FwChlWZa6urrU1tYm0zRls9nU1NSkmpqacfHvIAAAAABg0xmWZVmlLqKUotGo/H6/IpEIm4wDyMlkMgqHw4pGo5KksrIyBYNBud3uElcGAAAAABguheREtkJvbrfb1dnZmXd81apVstvthd4OAEadaDSq+fPnKxqNyjAMNTY2atq0aQRqAAAAAICcggcVDLawLZlMyuVybXZBAFAq2WxWy5Yt05o1ayRJHo9HwWBQXq+3xJUBAAAAAEabIYdqt99+uyTJMAzdc889qqioyJ3LZrN69dVXtfXWWxe/QgAYAbFYTKFQSOl0WpI0adIkNTQ0yGYreEEvAAAAAGACGHKodsstt0hau1Lt7rvv7tfq6XK5NGXKFN19993FrxAAhpFpmuro6NDKlSslrf33LBgMqry8vMSVAQAAAABGsyGHaosXL5Yk7b///nrsscdUXV09bEUBwEjo7e1VKBRSMpmUJNXU1KipqYn9IQEAAAAAG1XwnmovvfTScNQBACPGsix1dnaqs7NTlmXJ4XAoEAgwARgAAAAAMGQFbxZ07LHH6he/+EXe8RtuuEHHH398UYoCgOGSSCT02Wefafny5bIsS36/XzNnziRQAwAAAAAUpOBQ7dVXX9Xhhx+ed/ywww7Tq6++WpSiAKDYLMvSypUrtWDBAsXjcdntdk2ePFlbbLGFHI6CF+0CAAAAACa4gl9JxmIxuVyuvONOp1PRaLQoRQFAMaVSKYVCIfX09EiSKisrFQgE5HQ6S1wZAAAAAGCsKnil2vbbb6+HH3447/if//xnbbPNNkUpCgCKwbIsrV69WvPnz1dPT49sNptaWlo0ZcoUAjUAAAAAwGYpeKXaT37yE82ePVsLFy7UAQccIEl68cUX9ac//Ul/+ctfil4gAGyKTCajcDicW0FbVlamYDAot9td4soAAAAAAONBwaHakUceqSeeeELXXnutHn30UXm9Xu2www564YUXtO+++w5HjQBQkEgkora2NmUyGRmGoYaGBk2aNEmGYZS6NAAAAADAOGFYlmWVuohSikaj8vv9ikQiTP8DxrhsNqtly5ZpzZo1kiSPx6NgMCiv11viygAAAAAAY0EhOdEmjbzr6urSo48+qkWLFunCCy9UTU2N3n33XTU0NKilpWWTigaAzRGLxRQKhZROpyVJ9fX1qq+vl81W8NaRAAAAAABsVMGh2vvvv6+DDjpIfr9fn3/+ub797W+rpqZGjz32mJYuXaoHH3xwOOoEgAGZpqmOjg6tXLlSkuRyuRQMBlVeXl7iygAAAAAA41nBSzguuOACnX766VqwYIE8Hk/u+OGHH65XX321qMUBwIb09vZqwYIFuUCttrZWM2bMIFADAAAAAAy7gleq/etf/9Kvf/3rvOMtLS3q6OgoSlEAsCGWZamzs1OdnZ2yLEtOp1OBQECVlZWlLg0AAAAAMEEUHKq53W5Fo9G84/Pnz9ekSZOKUhQADCaRSCgUCikej0uSqqqq1NzcLIdjk7aIBAAAAABgkxTc/vm1r31Nc+bMyW0GbhiGli5dqksuuUTHHnts0QsEAGnt6rQVK1ZowYIFisfjstvtmjx5siZPnkygBgAAAAAYcQWHajfddJNisZjq6+sVj8e17777avr06aqsrNQ111wzHDUCmOBSqZQWLVqk9vZ2WZalyspKzZw5U1VVVaUuDQAAAAAwQRW8vMPv9+v555/X66+/rvfff1+xWEy77LKLDjrooOGoD8AEZlmW1qxZo2XLlsk0TdlsNjU1NammpkaGYZS6PAAAAADABGZYlmWVuohSikaj8vv9ikQi8vl8pS4HwP9Jp9Nqa2vL7eFYXl6uQCAgt9td4soAAAAAAONVITnRkFaq3X777frud78rj8ej22+/fYPXVlRUaNttt9UXv/jFoVcMAOuIRCJqa2tTJpORYRhqbGxUXV0dq9MAAAAAAKPGkFaqTZ06Ve+8845qa2s1derUDV6bTCbV2dmp888/X7/85S+LVuhwYaUaMHpks1m1tbWpq6tLkuTxeBQMBuX1ektbGAAAAABgQigkJxqW9s/nn39eJ598slasWFHsWxcdoRowOnR3dyscDucmC9fX16u+vl42W8HzVAAAAAAA2CRFb/8s1N57760rrrhiOG4NYJwxTVPt7e1atWqVJMntdisQCKi8vLzElQEAAAAAMLhNWgLy4osv6ogjjtC0adM0bdo0HXHEEXrhhRdy571er84999yiFQlgfOrt7dWCBQtygVptba2mT59OoAYAAAAAGPUKDtXuvPNOHXrooaqsrNS5556rc889Vz6fT4cffrhaW1uHo0YA44xpmuro6NBnn32mZDIpp9OpqVOnqqWlRXa7vdTlAQAAAACwUQXvqRYIBHTppZfqnHPO6Xe8tbVV1157rdra2opa4HBpbW1Va2urstms5s+fz55qwAhJJBIKhUKKx+OSpKqqKsI0AAAAAMCoMKyDCioqKjRv3jxNnz693/EFCxZo5513ViwWK7ziEmJQATAyLMvSypUr1dHRIcuyZLfb1dLSoqqqqlKXBgAAAACApMJyooLbP7/2ta/p8ccfzzv+//7f/9MRRxxR6O0ATACpVEqLFi1Se3u7LMtSZWWlZs6cSaAGAAAAABizhjT98/bbb8+9vc022+iaa67Ryy+/rD322EOS9NZbb2nu3Ln60Y9+NDxVAhiTLMvSmjVrtGzZMpmmKZvNpubmZlVXV8swjFKXBwAAAADAJhtS++fUqVOHdjPD0KJFiza7qJFE+ycwPNLptMLhsLq7uyVJ5eXlCgaDcrlcJa4MAAAAAICBFZITDWml2uLFi4tSGICJIRKJKBwOK5vNyjAMNTY2qq6ujtVpAAAAAIBxY0ih2kBWrlwpSaqrqytaMQDGtmw2q7a2NnV1dUmSvF6vgsGgPB5PaQsDAAAAAKDIChpU0NXVpbPPPlt1dXVqaGhQQ0OD6urqdM455+ReRAOYmLq7uzV//vzcvwX19fWaNm0agRoAAAAAYFwa8kq11atXa4899lBbW5u+8Y1vaNasWZKkjz/+WPfff79efPFFvfHGG6qurh62YgGMPtlsVh0dHVq1apUkye12KxAIqLy8vMSVAQAAAAAwfIYcqs2ZM0cul0sLFy5UQ0ND3rmvfOUrmjNnjm655ZaiFwlgdOrp6VE4HFYymZQk1dbWqqmpSTZbQYtgAQAAAAAYc4b8yveJJ57QjTfemBeoSVJjY6NuuOEGPf7440UtDsDoZJqmOjo6tHDhQiWTSTmdTk2dOlUtLS0EagAAAACACWHIK9Xa29u17bbbDnp+u+22U0dHR1GKAjB6xeNxhUIhJRIJSVJ1dbWam5tlt9tLXBkAAAAAACNnyKFaXV2dPv/8cwUCgQHPL168WDU1NUUrDMDoYlmWVq5cqY6ODlmWJbvdrkAgIL/fX+rSAAAAAAAYcUPu0zrkkEN0+eWXK5VK5Z1LJpP6yU9+okMPPbSoxQEYHVKplBYtWqT29nZZliWfz6eZM2cSqAEAAAAAJizDsixrKBeGw2HttttucrvdOvvss7X11lvLsix98sknuvPOO5VMJvXOO+8oGAwOd81FFY1G5ff7FYlE5PP5Sl0OMKpYlqXVq1ervb1dpmnKZrOpublZ1dXVMgyj1OUBAAAAAFBUheREQ27/DAQCevPNN/WDH/xAl112mfqyOMMwdPDBB+uOO+4Yc4EagMGl02mFw2F1d3dLksrLyxUMBuVyuUpcGQAAAAAApTfkUE2Spk6dqmeeeUZr1qzRggULJEnTp09nLzVgnOnq6lJbW5uy2awMw1BjY6Pq6upYnQYAAAAAwP8pKFTrU11drS984QvFrgVAiWUyGS1btkxdXV2SJK/Xq2AwKI/HU9rCAAAAAAAYZTYpVAMw/nR3dyscDiudTsswDNXX16u+vp7VaQAAAAAADIBQDZjgstmsOjo6tGrVKkmS2+1WMBhUWVlZiSsDAAAAAGD0IlQDJrCenh6FQiGlUilJUl1dnRobG2Wz2UpcGQAAAAAAoxuhGjABmaap5cuXa8WKFZIkp9OpYDCoioqKElcGAAAAAMDYQKgGTDDxeFyhUEiJRELS2sEjzc3NstvtJa4MAAAAAICxg1ANmCAsy9KKFSu0fPlyWZYlh8OhlpYW+f3+UpcGAAAAAMCYQ6gGTADJZFKhUEi9vb2SJJ/Pp5aWFjmdzhJXBgAAAADA2ESoBoxjlmVp9erVam9vl2mastlsam5uVnV1tQzDKHV5AAAAAACMWYRqwDiVTqcVDofV3d0tSSovL1cwGJTL5SpxZQAAAAAAjH2EasA41NXVpba2NmWzWRmGoaamJtXW1rI6DQAAAACAIiFUA8aRTCajtrY2RSIRSZLX61UwGJTH4ylxZQAAAAAAjC+EasA4EY1GFQ6HlclkZBiG6uvrVV9fz+o0AAAAAACGAaEaMMZls1m1t7dr9erVkiS3261gMKiysrISVwYAAAAAwPhFqAaMYT09PQqFQkqlUpKkuro6NTY2ymazlbgyAAAAAADGN0I1YAwyTVPLly/XihUrJElOp1PBYFAVFRUlrgwAAAAAgImBUA0YY+LxuEKhkBKJhCSpurpazc3NstvtJa4MAAAAAICJg1ANGCMsy9KKFSu0fPlyWZYlh8OhlpYW+f3+UpcGAAAAAMCEQ6gGjAHJZFKhUEi9vb2SJJ/Pp0AgIIeDL2EAAAAAAEqBV+TAKGZZllavXq329naZpimbzaaWlhZVVVXJMIxSlwcAAAAAwIRFqAaMUul0WuFwWN3d3ZKkiooKBQIBuVyuElcGAAAAAAAI1YBRxrIsRSIRtbW1KZvNyjAMNTU1qba2ltVpAAAAAACMEoRqwCiSyWTU1tamSCQiSfJ6vQoGg/J4PCWuDAAAAAAArItQDRglotGowuGwMpmMDMNQfX296uvrWZ0GAAAA/H/t3XtwVPXBxvHn7Cabe7LknuxuoIoobTXKHa2XWDRDpzhg39FiRxFvtYUKZdBq1SK1Vqui1IEWp7ZiW6u8M4pOcQzYVMQ6UUHFKYqUUPu6m+xmyYWEzT27v/cPX/c1hlsEcpLN9zOTGc7v3J6Ty8zyzO+cAwDDEKUaYLNoNKpgMKjm5mZJUkpKinw+n9LT021OBgAAAAAADodSDbBRJBJRIBBQT0+PJCk/P1/FxcVyOBw2JwMAAAAAAEdCqQbYIBaLqaGhQfv375ckuVwueb1eZWZm2pwMAAAAAAAci1Fbqq1du1Zr165VNBq1OwpGmc7OTvn9fnV1dUmScnNzVVJSIqfTaXMyAAAAAABwrCxjjLE7hJ3a2tqUk5Oj1tZWZWdn2x0HCcwYo3A4rHA4LGOMkpKS5PV6+b0DAAAAAGCYGExPNGpnqgFDqbu7W36/Xx0dHZKknJwceTweJSXxJwgAAAAAwEjE/+iBk8gYo6amJgWDQRlj5HA45PF45Ha7ZVmW3fEAAAAAAMCXRKkGnCQ9PT0KBAKKRCKSpMzMTHm9XrlcLpuTAQAAAACA40WpBpxgxhgdOHBA9fX1ikajsixLJSUlysvLY3YaAAAAAAAJglINOIH6+vpUV1en1tZWSVJ6erp8Pp9SUlJsTgYAAAAAAE4kSjXgBGlra1MgEFBfX58sy1JhYaEKCwuZnQYAAAAAQAKiVAOOUzQaVTAYVHNzsyQpJSVFZWVlSktLszkZAAAAAAA4WSjVgOMQiUQUCATU09MjScrPz1dxcbEcDofNyQAAAAAAwMlEqQZ8CbFYTKFQSI2NjZIkl8slr9erzMxMm5MBAAAAAIChQKkGDFJnZ6c++eQTdXd3S5Jyc3NVUlIip9NpczIAAAAAADBUKNWAY2SMUTgcVjgcljFGSUlJ8nq9ys7OtjsaAAAAAAAYYpRqwDHo7u6W3+9XR0eHJCknJ0cej0dJSfwJAQAAAAAwGtEIAEdgjFFTU5OCwaCMMXI6nSotLZXb7ZZlWXbHAwAAAAAANqFUAw6jp6dHgUBAkUhEkpSZmSmv1yuXy2VzMgAAAAAAYDdKNeALjDE6cOCA6uvrFY1GZVmWSkpKlJeXx+w0AAAAAAAgiVIN6Kevr091dXVqbW2VJKWnp8vn8yklJcXmZAAAAAAAYDihVAP+T1tbmwKBgPr6+mRZlgoLC1VYWMjsNAAAAAAAMAClGka9aDSqYDCo5uZmSVJqaqp8Pp/S0tJsTgYAAAAAAIYrSjWMapFIRIFAQD09PZKkgoICFRUVyeFw2JwMAAAAAAAMZ5RqGJVisZhCoZAaGxslSS6XS16vV5mZmTYnAwAAAAAAIwGlGkadjo4O+f1+dXd3S5Jyc3NVUlIip9NpczIAAAAAADBSUKph1DDGKBwOKxwOyxijpKQkeb1eZWdn2x0NAAAAAACMMJRqGBW6uroUCATU0dEhScrJyZHH41FSEn8CAAAAAABg8GgUkNCMMWpqalIwGJQxRk6nU6WlpXK73bIsy+54AAAAAABghKJUQ8Lq6elRIBBQJBKRJGVmZsrn8yk5OdnmZAAAAAAAYKSjVEPCMcbowIEDqqurUywWk8PhUElJiXJzc5mdBgAAAAAATghKNSSUvr4+BQIBtbW1SZLS09Pl8/mUkpJiczIAAAAAAJBIKNWQMNra2hQIBNTX1yfLslRUVKSCggJmpwEAAAAAgBOOUg0jXjQaVX19vVpaWiRJqamp8vl8SktLszkZAAAAAABIVJRqGNEikYj8fr96e3slSQUFBSoqKpLD4bA5GQAAAAAASGSUahiRYrGYQqGQGhsbJUkul0s+n08ZGRk2JwMAAAAAAKMBpRpGnI6ODvn9fnV3d0uScnNzVVJSIqfTaXMyAAAAAAAwWlCqYcQwxigcDiscDssYo6SkJHm9XmVnZ9sdDQAAAAAAjDKUahgRurq65Pf71dnZKUnKycmRx+NRUhK/wgAAAAAAYOjRSGBYM8aoqalJwWBQxhg5nU55PB653W67owEAAAAAgFGMUg3DVk9Pj/x+v9rb2yVJWVlZ8nq9Sk5OtjkZAAAAAAAY7SjVMOwYY9TS0qL6+nrFYjE5HA6VlJQoNzdXlmXZHQ8AAAAAAIBSDcNLb2+v6urq1NbWJklKT0+Xz+dTSkqKzckAAAAAAAD+H6Uaho3W1lbV1dWpr69PlmWpqKhIBQUFzE4DAAAAAADDDqUabBeNRlVfX6+WlhZJUmpqqnw+n9LS0mxOBgAAAAAAcGiUarBVJBKR3+9Xb2+vJKmwsFCFhYVyOBw2JwMAAAAAADg8SjXYIhaLKRQKqbGxUZLkcrnk8/mUkZFhczIAAAAAAICjo1TDkOvo6JDf71d3d7ckKS8vT8XFxXI6nTYnAwAAAAAAODaUahgyxhg1NDRo//79MsYoOTlZXq9XWVlZdkcDAAAAAAAYFEo1DImuri75/X51dnZKktxut0pLS5WUxK8gAAAAAAAYeWg0cFIZY9TY2KhQKCRjjJxOpzwej9xut93RAAAAAAAAvjRKNZw0PT098vv9am9vlyRlZWXJ6/UqOTnZ5mQAAAAAAADHh1INJ5wxRi0tLaqvr1csFpPD4VBJSYlyc3NlWZbd8QAAAAAAAI4bpRpOqN7eXtXV1amtrU2SlJGRIa/Xq5SUFJuTAQAAAAAAnDiUajhhWltbFQgEFI1GZVmWiouLlZ+fz+w0AAAAAACQcCjVcNyi0ajq6up04MABSVJqaqp8Pp/S0tLsDQYAAAAAAHCSUKrhuBw8eFCBQEC9vb2SpMLCQhUWFsrhcNicDAAAAAAA4OShVMOXEovFFAwG1dTUJElKSUmR1+tVRkaGzckAAAAAAABOPko1DFpHR4f8fr+6u7slSXl5eSouLpbT6bQ5GQAAAAAAwNCgVMMxi8ViCofDCofDkqTk5GR5vV5lZWXZnAwAAAAAAGBoUarhmHR1dcnv96uzs1OS5Ha75fF4mJ0GAAAAAABGJUo1HJExRo2NjQqFQjLGyOl0yuPxyO122x0NAAAAAADANpRqOKyenh75/X61t7dLkrKysuT1epWcnGxzMgAAAAAAAHtRqmEAY4xaWlpUX1+vWCwmh8Oh0tJSjRkzRpZl2R0PAAAAAADAdpRq6Ke3t1eBQEAHDx6UJGVkZMjn88nlctmcDAAAAAAAYPigVENca2urAoGAotGoLMtScXGx8vPzmZ0GAAAAAADwBZRqUDQaVV1dnQ4cOCBJSktLk8/nU2pqqr3BAAAAAAAAhilKtVHu4MGDCgQC6u3tlSQVFhaqsLBQDofD5mQAAAAAAADDF6XaKBWNRhUKhdTU1CRJSklJkdfrVUZGhs3JAAAAAAAAhj9KtVGovb1dgUBA3d3dkqS8vDyVlJQwOw0AAAAAAOAYUaqNIrFYTOFwWOFwWJKUnJwsr9errKwsm5MBAAAAAACMLAkxNWnTpk06/fTTddppp+mJJ56wO86w1NnZqdra2nihNmbMGE2YMIFCDQAAAAAA4EsY8TPV+vr6tGzZMr366qvKycnR5MmTNW/ePOXl5dkdbcjFojF98vonOhg8qKySLJWdXybLYWn//v1qaGiQMUZOp1Ner1c5OTl2xwUAAAAAABixRnyp9vbbb+trX/uaPB6PJGn27NnasmWL5s+fb3OyobX7+d2qWlKltkBbfCzLk6VzfnqO8r7xacGYnZ0tj8ej5ORku2ICAAAAAAAkBNtv/9y2bZvmzJmj0tJSWZalF154YcA2a9eu1bhx45Samqrp06fr7bffjq+rr6+PF2qS5PF4VFdXNxTRh43dz+/Wf//Xf/cr1CTpYP1BbVu8TcG/B+X1ejV27FgKNQAAAAAAgBPA9lKtvb1d5eXlWrt27SHXb9iwQcuWLdOKFSv07rvvqry8XJWVlfFng412sWhMVUuqJHOIlf839sGqD+TOccuyrCHNBgAAAAAAkKhsv/1z9uzZmj179mHXP/LII7rxxhu1cOFCSdK6dev00ksv6Q9/+INuv/12lZaW9puZVldXp2nTph32eN3d3eru7o4vt7a2SpLa2toOt8uw9j+v/4/CgSMUjEbqCnTpg6oPNPb8sUMXDAAAAAAAYIT5rB8y5lCzl/qzvVQ7kp6eHr3zzju644474mMOh0OzZs1STU2NJGnatGnatWuX6urqlJOTo5dffll33333YY95//33a+XKlQPGfT7fib+AYeSBbz9gdwQAAAAAAIAR4eDBg0d9yeOwLtUaGxsVjUZVVFTUb7yoqEgfffSRJCkpKUmrVq1SRUWFYrGYbrvttiO++fOOO+7QsmXL4suxWEzNzc3Ky8tLiNsj29ra5PP55Pf7lZ2dbXccAAAwQvAZAgAADFYifn4wxujgwYMqLS096rbDulQ7Vpdddpkuu+yyY9o2JSVFKSkp/cbcbvdJSGWv7OzshPmFBgAAQ4fPEAAAYLAS7fPD0Waofcb2FxUcSX5+vpxOpxoaGvqNNzQ0qLi42KZUAAAAAAAAGO2Gdanmcrk0efJkVVdXx8disZiqq6s1c+ZMG5MBAAAAAABgNLP99s9IJKLa2tr48scff6ydO3cqNzdXZWVlWrZsmRYsWKApU6Zo2rRpWr16tdrb2+NvA0V/KSkpWrFixYBbXAEAAI6EzxAAAGCwRvvnB8scyztCT6KtW7eqoqJiwPiCBQu0fv16SdKaNWv00EMPKRQK6eyzz9Zjjz2m6dOnD3FSAAAAAAAA4FO2l2oAAAAAAADASDOsn6kGAAAAAAAADEeUagAAAAAAAMAgUaoBAAAAAAAAg0SplmDWrl2rcePGKTU1VdOnT9fbb79tdyQAADCMbdu2TXPmzFFpaaksy9ILL7xgdyQAADDM3X///Zo6daqysrJUWFiouXPnas+ePXbHGnKUaglkw4YNWrZsmVasWKF3331X5eXlqqysVDgctjsaAAAYptrb21VeXq61a9faHQUAAIwQr732mhYtWqQ333xTr7zyinp7e3XppZeqvb3d7mhDird/JpDp06dr6tSpWrNmjSQpFovJ5/PpRz/6kW6//Xab0wEAgOHOsixt3LhRc+fOtTsKAAAYQfbv36/CwkK99tpruuCCC+yOM2SYqZYgenp69M4772jWrFnxMYfDoVmzZqmmpsbGZAAAAAAAIJG1trZKknJzc21OMrQo1RJEY2OjotGoioqK+o0XFRUpFArZlAoAAAAAACSyWCympUuX6rzzztPXv/51u+MMqSS7AwAAAAAAAGBkWrRokXbt2qV//OMfdkcZcpRqCSI/P19Op1MNDQ39xhsaGlRcXGxTKgAAAAAAkKgWL16sTZs2adu2bfJ6vXbHGXLc/pkgXC6XJk+erOrq6vhYLBZTdXW1Zs6caWMyAAAAAACQSIwxWrx4sTZu3Ki///3v+spXvmJ3JFswUy2BLFu2TAsWLNCUKVM0bdo0rV69Wu3t7Vq4cKHd0QAAwDAViURUW1sbX/7444+1c+dO5ebmqqyszMZkAABguFq0aJH+8pe/6MUXX1RWVlb8We45OTlKS0uzOd3QsYwxxu4QOHHWrFmjhx56SKFQSGeffbYee+wxTZ8+3e5YAABgmNq6dasqKioGjC9YsEDr168f+kAAAGDYsyzrkONPPvmkrr322qENYyNKNQAAAAAAAGCQeKYaAAAAAAAAMEiUagAAAAAAAMAgUaoBAAAAAAAAg0SpBgAAAAAAAAwSpRoAAAAAAAAwSJRqAAAAAAAAwCBRqgEAAAAAAACDRKkGAAAAAAAADBKlGgAAwCCsX79ebrfbtvNblqUXXnjBlnOPGzdOq1evPq5j3HPPPTr77LNPSB4AAAA7UaoBAICE5vf7dd1116m0tFQul0tjx47VkiVL1NTUZHe0YetwxeH27dt10003Hdexly9frurq6uM6BgAAwHBAqQYAABLWv//9b02ZMkV79+7VM888o9raWq1bt07V1dWaOXOmmpubD7tvT0/PScvV29t70o59MhUUFCg9Pf24jpGZmam8vLwTlGigY/25ncyfLwAAGB0o1QAAQMJatGiRXC6XtmzZogsvvFBlZWWaPXu2/va3v6murk533nlnfNtx48bp3nvv1TXXXKPs7Oz4jKz169errKxM6enpmjdv3iFnuL344ouaNGmSUlNTdcopp2jlypXq6+uLr7csS7/97W912WWXKSMjQ/fdd98x7bd3715dcMEFSk1N1Ve/+lW98sorR73m7u5u3XLLLSosLFRqaqq+8Y1vaPv27fH1W7dulWVZeumll3TWWWcpNTVVM2bM0K5du+LrFy5cqNbWVlmWJcuydM8998S/R5+//dOyLD3++OP69re/rfT0dE2cOFE1NTWqra3VRRddpIyMDJ177rnat29ffJ8v3v752Tk+/zVu3Lj4+l27dmn27NnKzMxUUVGRrr76ajU2NsbXX3TRRVq8eLGWLl2q/Px8VVZWHvL7cu2112ru3Lm67777VFpaqtNPPz1+/i/eTut2u7V+/XpJ0n/+8x9ZlqXnn39eFRUVSk9PV3l5uWpqao76swAAAImNUg0AACSk5uZmbd68WT/84Q+VlpbWb11xcbG+973vacOGDTLGxMcffvhhlZeX67333tPdd9+tt956S9dff70WL16snTt3qqKiQr/4xS/6Hev111/XNddcoyVLlujDDz/U448/rvXr18eLs8/cc889mjdvnv75z3/quuuuO+p+sVhMl19+uVwul9566y2tW7dOP/nJT4563bfddpuee+45PfXUU3r33Xc1fvx4VVZWDpiVd+utt2rVqlXavn27CgoKNGfOHPX29urcc8/V6tWrlZ2drWAwqGAwqOXLlx/2fJ8VkTt37tQZZ5yhq666St///vd1xx13aMeOHTLGaPHixYfd/7NzBINB1dbWavz48brgggskSQcOHNDFF1+sc845Rzt27FBVVZUaGhp0xRVX9DvGU089JZfLpTfeeEPr1q077Lmqq6u1Z88evfLKK9q0adNRv5efd+edd2r58uXauXOnJkyYoPnz5/crQAEAwChkAAAAEtCbb75pJJmNGzcecv0jjzxiJJmGhgZjjDFjx441c+fO7bfN/Pnzzbe+9a1+Y1deeaXJycmJL3/zm980v/zlL/tt86c//cmUlJTElyWZpUuX9tvmaPtt3rzZJCUlmbq6uvj6l19++YjXFIlETHJysnn66afjYz09Paa0tNQ8+OCDxhhjXn31VSPJPPvss/FtmpqaTFpamtmwYYMxxpgnn3yy3zV+ZuzYsebRRx/td1133XVXfLmmpsZIMr///e/jY88884xJTU2NL69YscKUl5cPOHYsFjPz5s0zkydPNh0dHcYYY+69915z6aWX9tvO7/cbSWbPnj3GGGMuvPBCc8455xzy+/F5CxYsMEVFRaa7u7vf+KG+nzk5OebJJ580xhjz8ccfG0nmiSeeiK//4IMPjCSze/fuo54XAAAkriSbujwAAIAhYT43E+1opkyZ0m959+7dmjdvXr+xmTNnqqqqKr78/vvv64033ug3My0ajaqrq0sdHR3xZ5B98dhH22/37t3y+XwqLS3td+4j2bdvn3p7e3XeeefFx5KTkzVt2jTt3r17wHV8Jjc3V6effvqAbY7FWWedFf93UVGRJOnMM8/sN9bV1aW2tjZlZ2cf9jg//elPVVNTox07dsRnFr7//vt69dVXlZmZOWD7ffv2acKECZKkyZMnH1PWM888Uy6X65i2/aLPX2dJSYkkKRwO64wzzvhSxwMAACMfpRoAAEhI48ePl2VZhyzGpE8LszFjxqigoCA+lpGRMejzRCIRrVy5UpdffvmAdampqYc99rHuN9wlJyfH/21Z1mHHYrHYYY/x5z//WY8++qi2bt0qj8cTH49EIpozZ45+9atfDdjns2JLOvaf26G2syxrQPF6qBdJDPaaAABA4qNUAwAACSkvL0+XXHKJfvOb3+jHP/5xv+eqhUIhPf3007rmmmviBcmhTJw4UW+99Va/sTfffLPf8qRJk7Rnzx6NHz9+UPmOtt/EiRPl9/sVDAbjBdIXz/1Fp556avzZYmPHjpX0aUG0fft2LV26dMB1lJWVSZJaWlr0r3/9SxMnTpQkuVwuRaPRQV3Pl1VTU6MbbrhBjz/+uGbMmNFv3aRJk/Tcc89p3LhxSko6OR9bCwoKFAwG48t79+5VR0fHSTkXAABILLyoAAAAJKw1a9aou7tblZWV2rZtm/x+v6qqqnTJJZfI4/EMeJnAF91yyy2qqqrSww8/rL1792rNmjX9bv2UpJ/97Gf64x//qJUrV+qDDz7Q7t279eyzz+quu+464rGPtt+sWbM0YcIELViwQO+//75ef/31fm8rPZSMjAz94Ac/0K233qqqqip9+OGHuvHGG9XR0aHrr7++37Y///nPVV1drV27dunaa69Vfn6+5s6dK+nTt3xGIhFVV1ersbHxpJVMoVBI8+bN03e/+11VVlYqFAopFApp//79kj59e2tzc7Pmz5+v7du3a9++fdq8ebMWLlx4wkq/iy++WGvWrNF7772nHTt26Oabb+43Kw0AAOBwKNUAAEDCOu2007Rjxw6dcsopuuKKK3TqqafqpptuUkVFhWpqapSbm3vE/WfMmKHf/e53+vWvf63y8nJt2bJlQFlWWVmpTZs2acuWLZo6dapmzJihRx99ND5T7HCOtp/D4dDGjRvV2dmpadOm6YYbbjhqCShJDzzwgL7zne/o6quv1qRJk1RbW6vNmzdrzJgxA7ZbsmSJJk+erFAopL/+9a/x542de+65uvnmm3XllVeqoKBADz744FHP+2V89NFHamho0FNPPaWSkpL419SpUyVJpaWleuONNxSNRnXppZfqzDPP1NKlS+V2u+VwnJiPsatWrZLP59P555+vq666SsuXL48/Bw8AAOBILDOYp/cCAABgRNu6dasqKirU0tIit9ttdxwAAIARi5lqAAAAAAAAwCBRqgEAAAAAAACDxO2fAAAAAAAAwCAxUw0AAAAAAAAYJEo1AAAAAAAAYJAo1QAAAAAAAIBBolQDAAAAAAAABolSDQAAAAAAABgkSjUAAAAAAABgkCjVAAAAAAAAgEGiVAMAAAAAAAAG6X8B83H8WSas1RYAAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -628,18 +659,17 @@
" size=(15, 6),\n",
" order_by_id=True,\n",
" colors=np.array(list(map(to_rgba, ('green', 'purple')))),\n",
- ")\n",
- "plt.savefig(\"num_ana.png\")"
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 9,
+ "execution_count": 12,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjcAAAGdCAYAAADuR1K7AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAApB0lEQVR4nO3de1xVdb7/8ffGywYUUFTACyod00QR74WV0hmLzBxJpzxMHbXUqRmdScmcOE0x6JkwS9MpJ6e8kDVeppnUjiZKmJpKmiamjVmaihaQVwhKvOz1+6Ofe9wKyIYNG769no/Hejxca33Xd3/2hrV4+13fvbfNsixLAAAAhvDxdgEAAACeRLgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABilvrcLqGkOh0PffPONAgICZLPZvF0OAACoAMuy9N1336lVq1by8Sl/bOYnF26++eYbhYeHe7sMAABQCceOHVObNm3KbfOTCzcBAQGSfnxxAgMDvVwNAACoiMLCQoWHhzv/jpfnJxduLt+KCgwMJNwAAFDHVGRKCROKAQCAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUr4ab1NRU9enTRwEBAQoJCVF8fLwOHDhQ7jFpaWmy2Wwui6+vbw1VDAAAajuvhptNmzZp/Pjx+uijj5SRkaELFy7orrvuUnFxcbnHBQYGKjc317kcPXq0hioGAAC1nVe/FTw9Pd1lPS0tTSEhIdq1a5f69+9f5nE2m01hYWHVXR4AAKiDvBpurlZQUCBJCg4OLrddUVGR2rVrJ4fDoZ49e+q5555Tly5dSm1bUlKikpIS53phYaHnCgbwk2RLsXm7BKBWs5Itrz5+rZlQ7HA4NHHiRN16663q2rVrme06deqkhQsXatWqVXrrrbfkcDjUr18/HT9+vNT2qampCgoKci7h4eHV9RQAAEAtYLMsy7vx6v/79a9/rbVr12rLli1q06ZNhY+7cOGCOnfurISEBE2bNu2a/aWN3ISHh6ugoECBgYEeqR3ATwsjN0D5qmPkprCwUEFBQRX6+10rbktNmDBBq1ev1ubNm90KNpLUoEED9ejRQwcPHix1v91ul91u90SZAACgDvDqbSnLsjRhwgStWLFCGzZsUEREhNt9XLp0SXv37lXLli2roUIAAFDXeHXkZvz48VqyZIlWrVqlgIAA5eXlSZKCgoLk5+cnSRo5cqRat26t1NRUSdLUqVN1yy23qEOHDjp79qxeeOEFHT16VGPHjvXa8wAAALWHV8PNq6++KkmKjY112b5o0SKNHj1akpSTkyMfn38PMJ05c0bjxo1TXl6emjZtql69emnbtm2KjIysqbIBAEAtVmsmFNcUdyYkAUBpmFAMlM/bE4przVvBAQAAPIFwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUep7uwDTpNhSvF0CUGslW8neLgHATwAjNwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjOLVcJOamqo+ffooICBAISEhio+P14EDB6573Ntvv62bbrpJvr6+ioqK0nvvvVcD1QIAgLrAq+Fm06ZNGj9+vD766CNlZGTowoULuuuuu1RcXFzmMdu2bVNCQoLGjBmj3bt3Kz4+XvHx8dq3b18NVg4AAGorm2VZlreLuOzEiRMKCQnRpk2b1L9//1LbjBgxQsXFxVq9erVz2y233KLu3btr3rx5132MwsJCBQUFqaCgQIGBgR6r/bIUW4rH+wRMkWwle7sEj7Cl2LxdAlCrWcmejxbu/P2uVXNuCgoKJEnBwcFltsnKytLAgQNdtsXFxSkrK6vU9iUlJSosLHRZAACAuWpNuHE4HJo4caJuvfVWde3atcx2eXl5Cg0NddkWGhqqvLy8UtunpqYqKCjIuYSHh3u0bgAAULvUmnAzfvx47du3T8uWLfNov0lJSSooKHAux44d82j/AACgdqnv7QIkacKECVq9erU2b96sNm3alNs2LCxM+fn5Ltvy8/MVFhZWanu73S673e6xWgEAQO3m1ZEby7I0YcIErVixQhs2bFBERMR1j4mJiVFmZqbLtoyMDMXExFRXmQAAoA7x6sjN+PHjtWTJEq1atUoBAQHOeTNBQUHy8/OTJI0cOVKtW7dWamqqJOnxxx/XgAEDNHPmTA0ePFjLli3Tzp079dprr3nteQAAgNrDqyM3r776qgoKChQbG6uWLVs6l+XLlzvb5OTkKDc317ner18/LVmyRK+99pqio6P1j3/8QytXrix3EjIAAPjp8OrITUU+Ymfjxo3XbLv//vt1//33V0NFAACgrqs175YCAADwBMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABjFq+Fm8+bNGjJkiFq1aiWbzaaVK1eW237jxo2y2WzXLHl5eTVTMAAAqPW8Gm6Ki4sVHR2tuXPnunXcgQMHlJub61xCQkKqqUIAAFDX1Pfmgw8aNEiDBg1y+7iQkBA1adLE8wUBAIA6r07OuenevbtatmypO++8U1u3bi23bUlJiQoLC10WAABgrgqN3Lz77rtud3znnXfKz8/P7ePK07JlS82bN0+9e/dWSUmJ5s+fr9jYWG3fvl09e/Ys9ZjU1FSlpKR4tA4AAFB7VSjcxMfHu9WpzWbTl19+qRtuuKEyNZWpU6dO6tSpk3O9X79+OnTokF566SW9+eabpR6TlJSkxMRE53phYaHCw8M9WhcAAKg9KjznJi8vr8ITdwMCAipdkLv69u2rLVu2lLnfbrfLbrfXWD0AAMC7KjTnZtSoUW7dYnrooYcUGBhY6aLckZ2drZYtW9bIYwEAgNqvQiM3ixYtcqvTV199tULtioqKdPDgQef64cOHlZ2dreDgYLVt21ZJSUn6+uuvtXjxYknS7NmzFRERoS5duujcuXOaP3++NmzYoPXr17tVHwAAMFeV3wpeWFioDRs2qFOnTurcubNbx+7cuVN33HGHc/3y3JhRo0YpLS1Nubm5ysnJce4/f/68nnjiCX399dfy9/dXt27d9P7777v0AQAAftpslmVZ7hzwwAMPqH///powYYJ++OEHRUdH68iRI7IsS8uWLdPw4cOrq1aPKCwsVFBQkAoKCqrl1lmKjXdmAWVJtpK9XYJH2FJs3i4BqNWsZLeiRYW48/fb7c+52bx5s26//XZJ0ooVK2RZls6ePas///nP+t///d/KVQwAAOAhboebgoICBQcHS5LS09M1fPhw+fv7a/Dgwfryyy89XiAAAIA73A434eHhysrKUnFxsdLT03XXXXdJks6cOSNfX1+PFwgAAOAOtycUT5w4UQ8++KAaN26sdu3aKTY2VtKPt6uioqI8XR8AAIBb3A43v/nNb3TzzTcrJydHd955p3x8fhz8ueGGG5hzAwAAvK5SbwXv1auXevXq5bJt8ODBHikIAACgKio05yYxMVHFxcUV7jQpKUmnT5+udFEAAACVVaFwM2fOHH3//fcV7nTu3Lk6e/ZsZWsCAACotArdlrIsSx07dpTNVrEPrnJnlAcAAMCTquW7pSQpNDTU7WMAAACqqkLhZtSoUdVdBwAAgEe4/SF+AAAAtRnhBgAAGIVwAwAAjEK4AQAARql0uDl48KDWrVunH374QdKPbxcHAADwNrfDzalTpzRw4EB17NhR99xzj3JzcyVJY8aM0RNPPOHxAgEAANzhdriZNGmS6tevr5ycHPn7+zu3jxgxQunp6R4tDgAAwF1uf3Hm+vXrtW7dOrVp08Zl+4033qijR496rDAAAIDKcHvkpri42GXE5rLTp0/Lbrd7pCgAAIDKcjvc3H777Vq8eLFz3WazyeFwaMaMGbrjjjs8WhwAAIC73L4tNWPGDP3sZz/Tzp07df78eU2ZMkWfffaZTp8+ra1bt1ZHjQAAABXm9shN165d9cUXX+i2227T0KFDVVxcrGHDhmn37t36j//4j+qoEQAAoMLcHrmRpKCgID399NOergUAAKDKKhVuzp07p08//VTffvutHA6Hy76f//znHikMAACgMtwON+np6Ro5cqROnjx5zT6bzaZLly55pDAAAIDKcHvOzW9/+1vdf//9ys3NlcPhcFkINgAAwNvcDjf5+flKTExUaGhoddQDAABQJW6Hm1/84hfauHFjNZQCAABQdW7PuXnllVd0//3368MPP1RUVJQaNGjgsv93v/udx4oDAABwl9vhZunSpVq/fr18fX21ceNG2Ww25z6bzUa4AQAAXuV2uHn66aeVkpKip556Sj4+bt/VAgAAqFZup5Pz589rxIgRBBsAAFAruZ1QRo0apeXLl1dHLQAAAFXm9m2pS5cuacaMGVq3bp26det2zYTiWbNmeaw4AAAAd7kdbvbu3asePXpIkvbt2+ey78rJxQAAAN7gdrj54IMPqqMOAAAAj2BWMAAAMEqFRm6GDRumtLQ0BQYGatiwYeW2feeddzxSGAAAQGVUKNwEBQU559MEBQVVa0EAAABVUaFws2jRIk2dOlWTJ0/WokWLqrsmAACASqvwnJuUlBQVFRVVZy0AAABVVuFwY1lWddYBAADgEW69W4rPsQEAALWdW59z07Fjx+sGnNOnT1epIAAAgKpwK9ykpKTwbikAAFCruRVu/uu//kshISHVVQsAAECVVXjODfNtAABAXcC7pQAAgFEqfFvK4XBUZx0AAAAewRdnAgAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjeDXcbN68WUOGDFGrVq1ks9m0cuXK6x6zceNG9ezZU3a7XR06dFBaWlq11wkAAOoOr4ab4uJiRUdHa+7cuRVqf/jwYQ0ePFh33HGHsrOzNXHiRI0dO1br1q2r5koBAEBdUeHvlqoOgwYN0qBBgyrcft68eYqIiNDMmTMlSZ07d9aWLVv00ksvKS4urrrKBAAAdUidmnOTlZWlgQMHumyLi4tTVlaWlyoCAAC1jVdHbtyVl5en0NBQl22hoaEqLCzUDz/8ID8/v2uOKSkpUUlJiXO9sLCw2usEAADeU6dGbiojNTVVQUFBziU8PNzbJQEAgGpUp8JNWFiY8vPzXbbl5+crMDCw1FEbSUpKSlJBQYFzOXbsWE2UCgAAvKRO3ZaKiYnRe++957ItIyNDMTExZR5jt9tlt9uruzQAAFBLeHXkpqioSNnZ2crOzpb041u9s7OzlZOTI+nHUZeRI0c62z/22GP66quvNGXKFH3++ef6y1/+or///e+aNGmSN8oHAAC1kFfDzc6dO9WjRw/16NFDkpSYmKgePXro2WeflSTl5uY6g44kRUREaM2aNcrIyFB0dLRmzpyp+fPn8zZwAADg5NXbUrGxsbIsq8z9pX36cGxsrHbv3l2NVQEAgLqsTk0oBgAAuB7CDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMUivCzdy5c9W+fXv5+vrq5ptv1o4dO8psm5aWJpvN5rL4+vrWYLUAAKA283q4Wb58uRITE5WcnKxPPvlE0dHRiouL07ffflvmMYGBgcrNzXUuR48ercGKAQBAbeb1cDNr1iyNGzdODz/8sCIjIzVv3jz5+/tr4cKFZR5js9kUFhbmXEJDQ2uwYgAAUJt5NdycP39eu3bt0sCBA53bfHx8NHDgQGVlZZV5XFFRkdq1a6fw8HANHTpUn332WZltS0pKVFhY6LIAAABzeTXcnDx5UpcuXbpm5CU0NFR5eXmlHtOpUyctXLhQq1at0ltvvSWHw6F+/frp+PHjpbZPTU1VUFCQcwkPD/f48wAAALWH129LuSsmJkYjR45U9+7dNWDAAL3zzjtq0aKF/vrXv5baPikpSQUFBc7l2LFjNVwxAACoSfW9+eDNmzdXvXr1lJ+f77I9Pz9fYWFhFeqjQYMG6tGjhw4ePFjqfrvdLrvdXuVaAQBA3eDVkZuGDRuqV69eyszMdG5zOBzKzMxUTExMhfq4dOmS9u7dq5YtW1ZXmQAAoA7x6siNJCUmJmrUqFHq3bu3+vbtq9mzZ6u4uFgPP/ywJGnkyJFq3bq1UlNTJUlTp07VLbfcog4dOujs2bN64YUXdPToUY0dO9abTwMAANQSXg83I0aM0IkTJ/Tss88qLy9P3bt3V3p6unOScU5Ojnx8/j3AdObMGY0bN055eXlq2rSpevXqpW3btikyMtJbTwEAANQiNsuyLG8XUZMKCwsVFBSkgoICBQYGerz/FFuKx/sETJFsJXu7BI+wpdi8XQJQq1nJno8W7vz9rnPvlgIAACgP4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjEK4AQAARiHcAAAAoxBuAACAUQg3AADAKIQbAABgFMINAAAwCuEGAAAYhXADAACMQrgBAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEYh3AAAAKMQbgAAgFEINwAAwCiEGwAAYBTCDQAAMArhBgAAGIVwAwAAjFIrws3cuXPVvn17+fr66uabb9aOHTvKbf/222/rpptukq+vr6KiovTee+/VUKUAAKC283q4Wb58uRITE5WcnKxPPvlE0dHRiouL07fffltq+23btikhIUFjxozR7t27FR8fr/j4eO3bt6+GKwcAALWR18PNrFmzNG7cOD388MOKjIzUvHnz5O/vr4ULF5bafs6cObr77rv15JNPqnPnzpo2bZp69uypV155pYYrBwAAtVF9bz74+fPntWvXLiUlJTm3+fj4aODAgcrKyir1mKysLCUmJrpsi4uL08qVK0ttX1JSopKSEud6QUGBJKmwsLCK1ZfunM5VS7+ACarrvKtxnOZAuarjXL/cp2VZ123r1XBz8uRJXbp0SaGhoS7bQ0ND9fnnn5d6TF5eXqnt8/LySm2fmpqqlJSUa7aHh4dXsmoAlTU9aLq3SwBQA4KmB1Vb3999952Cgsrv36vhpiYkJSW5jPQ4HA6dPn1azZo1k81m82JlqG6FhYUKDw/XsWPHFBgY6O1yAFQTzvWfBsuy9N1336lVq1bXbevVcNO8eXPVq1dP+fn5Ltvz8/MVFhZW6jFhYWFutbfb7bLb7S7bmjRpUvmiUecEBgZywQN+AjjXzXe9EZvLvDqhuGHDhurVq5cyMzOd2xwOhzIzMxUTE1PqMTExMS7tJSkjI6PM9gAA4KfF67elEhMTNWrUKPXu3Vt9+/bV7NmzVVxcrIcffliSNHLkSLVu3VqpqamSpMcff1wDBgzQzJkzNXjwYC1btkw7d+7Ua6+95s2nAQAAagmvh5sRI0boxIkTevbZZ5WXl6fu3bsrPT3dOWk4JydHPj7/HmDq16+flixZoj/84Q/6n//5H914441auXKlunbt6q2ngFrKbrcrOTn5mtuSAMzCuY6r2ayKvKcKAACgjvD6h/gBAAB4EuEGAAAYhXADAACMQrjBNdq3b6/Zs2dXqY+NGzfKZrPp7NmzHqnpyJEjstlsys7O9kh/NputzK/s8LaKPNe0tDSPfl6Tp39e+OnxxHXjSrGxsZo4caJH+ho9erTi4+M90ld1qMhz9fQ1y9M/r9qGcFMHZWVlqV69eho8eLC3S5FU+onZr18/5ebmVvgDlzyhvD/QV5/Iubm5GjRoUI3V5mkjRozQF1984e0yUA1Gjx4tm82m6dNdv6pi5cqVtfpT1T/++GP96le/qtHHLOsP9B//+Ed1797duT5nzhylpaXVWF3Voa5fs2oa4aYOWrBggX77299q8+bN+uabb7xdTqkaNmyosLCwWnsxDgsLq9LbRs+fP1+p4yzL0sWLFyv9uJf5+fkpJCSkyv2gdvL19dXzzz+vM2fOeLuU67p8LrRo0UL+/v5erqZ0QUFBVRrprMp5W9lrxdWqes36qSHc1DFFRUVavny5fv3rX2vw4MEu/xu5PHKRmZmp3r17y9/fX/369dOBAwecbQ4dOqShQ4cqNDRUjRs3Vp8+ffT++++X+XiPPPKI7r33XpdtFy5cUEhIiBYsWKDRo0dr06ZNmjNnjmw2m2w2m44cOVLqKMrWrVsVGxsrf39/NW3aVHFxcc6Ld3p6um677TY1adJEzZo107333qtDhw555kUrxdVDvMeOHdMDDzygJk2aKDg4WEOHDtWRI0ec+y8Pa//pT39Sq1at1KlTJ0nSm2++qd69eysgIEBhYWH65S9/qW+//dZ53OXXYe3aterVq5fsdru2bNkih8OhGTNmqEOHDrLb7Wrbtq3+9Kc/udT41Vdf6Y477pC/v7+io6OVlZXl3Ffaban/+7//U58+feTr66vmzZvrvvvuc+67Xp2oXQYOHKiwsDDnh5de7eqRCUmaPXu22rdv71y//Dv73HPPKTQ0VE2aNNHUqVN18eJFPfnkkwoODlabNm20aNEil34qey5cPYpy9uxZPfroowoNDZWvr6+6du2q1atXS5JOnTqlhIQEtW7dWv7+/oqKitLSpUsr/4Jdx9W3pRwOh1JTUxURESE/Pz9FR0frH//4h3N/WedtRa6f7du317Rp0zRy5EgFBgY6R7PKu/5drmnKlCkKDg5WWFiY/vjHP7r0e/U16/jx40pISFBwcLAaNWqk3r17a/v27ZLcv86biHBTx/z973/XTTfdpE6dOumhhx7SwoULr/n696efflozZ87Uzp07Vb9+fT3yyCPOfUVFRbrnnnuUmZmp3bt36+6779aQIUOUk5NT6uONHTtW6enpys3NdW5bvXq1vv/+e40YMUJz5sxRTEyMxo0bp9zcXOXm5pb6jevZ2dn62c9+psjISGVlZWnLli0aMmSILl26JEkqLi5WYmKidu7cqczMTPn4+Oi+++6Tw+HwxMtWrgsXLiguLk4BAQH68MMPtXXrVjVu3Fh33323y/+6MjMzdeDAAWVkZDgv0hcuXNC0adO0Z88erVy5UkeOHNHo0aOveYynnnpK06dP1/79+9WtWzclJSVp+vTpeuaZZ/Svf/1LS5Ysuebb7p9++mlNnjxZ2dnZ6tixoxISEsr83+OaNWt033336Z577tHu3buVmZmpvn37ujzHitSJ2qFevXp67rnn9PLLL+v48eOV7mfDhg365ptvtHnzZs2aNUvJycm699571bRpU23fvl2PPfaYHn30UedjVOVcuJLD4dCgQYO0detWvfXWW/rXv/6l6dOnq169epKkc+fOqVevXlqzZo327dunX/3qV/rv//5v7dixo9LP1R2pqalavHix5s2bp88++0yTJk3SQw89pE2bNrm0u/q8rej188UXX1R0dLR2796tZ5555rrXP0l644031KhRI23fvl0zZszQ1KlTlZGRUWr9RUVFGjBggL7++mu9++672rNnj6ZMmeK8Xrp7nTeShTqlX79+1uzZsy3LsqwLFy5YzZs3tz744APLsizrgw8+sCRZ77//vrP9mjVrLEnWDz/8UGafXbp0sV5++WXnert27ayXXnrJuR4ZGWk9//zzzvUhQ4ZYo0ePdq4PGDDAevzxx136vFzLmTNnLMuyrISEBOvWW2+t8PM8ceKEJcnau3evZVmWdfjwYUuStXv37jKPufyYjRo1umax2Wwuz0mStWLFCsuyLOvNN9+0OnXqZDkcDuf+kpISy8/Pz1q3bp1lWZY1atQoKzQ01CopKSm37o8//tiSZH333XcuNa1cudLZprCw0LLb7dbrr79eah+Xn+v8+fOd2z777DNLkrV//37Lsixr0aJFVlBQkHN/TEyM9eCDD5ZbW0XqvPzzgveMGjXKGjp0qGVZlnXLLbdYjzzyiGVZlrVixQrr8iU7OTnZio6OdjnupZdestq1a+fST7t27axLly45t3Xq1Mm6/fbbnesXL160GjVqZC1dutSyrKqdC1deN9atW2f5+PhYBw4cqPDzHjx4sPXEE08410u7rlytXbt2VsOGDa853xs0aODy+lz5mp47d87y9/e3tm3b5tLXmDFjrISEBMuySj9vy1La9TM+Pt6lzfWufwMGDLBuu+02l219+vSxfv/73zvXr7xm/fWvf7UCAgKsU6dOXbe+8uq88ppoGkZu6pADBw5ox44dSkhIkCTVr19fI0aM0IIFC1zadevWzfnvli1bSpLzFkRRUZEmT56szp07q0mTJmrcuLH2799fbqIfO3asc+g6Pz9fa9eudRkNqojL/3Mpy5dffqmEhATdcMMNCgwMdA6vl1VXly5d1LhxYzVu3PiaSXYffvihsrOzXZZWrVqV+dh79uzRwYMHFRAQ4OwzODhY586dc7k1FhUVpYYNG7ocu2vXLg0ZMkRt27ZVQECABgwYUGrdvXv3dv57//79KikpKff1kMr/OV7teq9vRetE7fL888/rjTfe0P79+yt1fJcuXVy+viY0NFRRUVHO9Xr16qlZs2bO36uqnAtXys7OVps2bdSxY8dS91+6dEnTpk1TVFSUgoOD1bhxY61bt67M38fnnnvOWU/jxo1d2j355JPXnO+PPfZYmbUdPHhQ33//ve68806XPhcvXnzNrfArz1up4tfPq4+73vkpuZ7v0o/nfHnne48ePRQcHFzq/spc503j9e+WQsUtWLBAFy9edPlDbVmW7Ha7XnnlFee2Bg0aOP99eULv5eHKyZMnKyMjQy+++KI6dOggPz8//eIXvyh30tvIkSP11FNPKSsrS9u2bVNERIRuv/12t2r38/Mrd/+QIUPUrl07vf7662rVqpUcDoe6du1aZl3vvfeeLly4UGrfERER18xHqV+/7F/1oqIi9erVS3/729+u2deiRQvnvxs1auSyr7i4WHFxcYqLi9Pf/vY3tWjRQjk5OYqLi7um7iuPvd5rcVl5P8erldenO3Widunfv7/i4uKUlJTkchvRx8fnmtvRl8+HK135OyT9+HtU2rYrb2dU5ly42vV+x1944QXNmTNHs2fPVlRUlBo1aqSJEyeW+fv42GOP6YEHHnCuX3kNbN68uTp06ODSvqw/+tKPz1H68VZu69atXfZdPWH36udZ0evn1cdV5Jwv7+dytev1V5nrvGkIN3XExYsXtXjxYs2cOVN33XWXy774+HgtXbpUN91003X72bp1q0aPHu2cbFpUVOQyWbA0zZo1U3x8vBYtWqSsrCznN7Zf1rBhQ5d7x6Xp1q2bMjMzlZKScs2+U6dO6cCBA3r99dedoWnLli3l9teuXbty97ujZ8+eWr58uUJCQhQYGFjh4z7//HOdOnVK06dPd84z2rlz53WPu/HGG+Xn56fMzEyNHTu20nVf6fLre/XPpip1onaYPn26unfv7py4K/0YNPLy8mRZljP4euIzoCp7LlytW7duOn78uL744otSR2+2bt2qoUOH6qGHHpL0Y2j/4osvFBkZWWp/wcHB5QYWd0RGRsputysnJ8c5gllRlbl+SuVf/yqjW7dumj9/vk6fPl3q61LZOk3Cbak6YvXq1Tpz5ozGjBmjrl27uizDhw+/5tZUWW688Ua98847ys7O1p49e/TLX/6yQpN2x44d6xweHzVqlMu+9u3ba/v27Tpy5IhOnjxZan9JSUn6+OOP9Zvf/EaffvqpPv/8c7366qs6efKkmjZtqmbNmum1117TwYMHtWHDBiUmJlbshfGABx98UM2bN9fQoUP14Ycf6vDhw9q4caN+97vflTuZs23btmrYsKFefvllffXVV3r33Xc1bdq06z6er6+vfv/732vKlCnOofCPPvqowj/D0iQnJ2vp0qVKTk7W/v37tXfvXj3//PNVqhO1Q1RUlB588EH9+c9/dm6LjY3ViRMnNGPGDB06dEhz587V2rVrq/xYlT0XrjZgwAD1799fw4cPV0ZGhg4fPqy1a9cqPT1d0o/XoYyMDG3btk379+/Xo48+qvz8/CrXXxEBAQGaPHmyJk2apDfeeEOHDh3SJ598opdffllvvPFGucdW9vpZ3vWvMhISEhQWFqb4+Hht3bpVX331lf75z38631FZ2TpNQripIxYsWKCBAweW+qF4w4cP186dO/Xpp59et59Zs2apadOm6tevn4YMGaK4uDj17NnzuscNHDhQLVu2VFxc3DXzVyZPnqx69eopMjLSecvjah07dtT69eu1Z88e9e3bVzExMVq1apXq168vHx8fLVu2TLt27VLXrl01adIkvfDCC9etyVP8/f21efNmtW3bVsOGDVPnzp01ZswYnTt3rtz/vbZo0UJpaWl6++23FRkZqenTp+vFF1+s0GM+88wzeuKJJ/Tss8+qc+fOGjFiRJXemh0bG6u3335b7777rrp3767//M//dL7zpCp1onaYOnWqyx+nzp076y9/+Yvmzp2r6Oho7dixQ5MnT67y41T2XCjNP//5T/Xp00cJCQmKjIzUlClTnCO8f/jDH9SzZ0/FxcUpNjbW+Ye6pkybNk3PPPOMUlNT1blzZ919991as2aNIiIiyj2ustfP8q5/ldGwYUOtX79eISEhuueeexQVFeXybrTK1mkSm3X1jVugFEVFRWrdurUWLVqkYcOGebscAADKxJwblMvhcOjkyZOaOXOmmjRpop///OfeLgkAgHIRblCunJwcRUREqE2bNkpLS6v0MCoAADWF21IAAMAoTCgGAABGIdwAAACjEG4AAIBRCDcAAMAohBsAAGAUwg0AADAK4QYAABiFcAMAAIxCuAEAAEb5fxRvn4m3iXSgAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAioAAAGdCAYAAAA8F1jjAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAjVElEQVR4nO3deXiNd/7/8dchdSIkIZaEJraxhoRa2qGUTmmKqq1lUka0tDU1bUlVm8vXKKZNaKsUox1VS6fFdKGGkdDUVjtFtVVbGYyttkTSCnLu3x+unJ8jEedE4v5Uno/rOtflbPd5Z7nvPN33fRKHZVmWAAAADFTC7gEAAACuh1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCw/uwe4GS6XS0ePHlVgYKAcDofd4wAAAC9YlqXz58+ratWqKlEi/30mv+lQOXr0qCIiIuweAwAAFMDhw4cVHh6e72N+06ESGBgo6coHGhQUZPM0AADAG+np6YqIiHD/HM/PbzpUcg73BAUFESoAAPzGeHPaBifTAgAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWH52DwAAdnKMvvGfmQeKM2uUZevrs0cFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMayNVReffVVORwOj0v9+vXtHAkAABjEz+4BGjZsqC+//NJ93c/P9pEAAIAhbK8CPz8/hYWF2T0GAAAwkO3nqOzdu1dVq1ZVrVq11KdPHx06dOi6j83KylJ6errHBQAA3L5sDZV77rlHs2bNUnJysqZNm6YDBw6oTZs2On/+fJ6PT0xMVHBwsPsSERFxiycGAAC3ksOyLMvuIXKcO3dO1atX14QJEzRgwIBc92dlZSkrK8t9PT09XREREUpLS1NQUNCtHBXAbcIx2mH3CIDRrFGFnwnp6ekKDg726ue37eeoXK1cuXKqW7eu9u3bl+f9TqdTTqfzFk8FAADsYvs5KlfLyMjQ/v37VaVKFbtHAQAABrA1VIYNG6ZVq1bp4MGDWrdunbp3766SJUsqNjbWzrEAAIAhbD30c+TIEcXGxur06dOqVKmSWrdurQ0bNqhSpUp2jgUAAAxha6jMmzfPzpcHAACGM+ocFQAAgKsRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMZdQfJTTNaMdou0cAjDXKGmX3CACKAfaoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFjGhEpSUpIcDoeGDBli9ygAAMAQRoTK5s2b9d577yk6OtruUQAAgEFsD5WMjAz16dNH06dPV/ny5e0eBwAAGMT2UBk8eLA6d+6s9u3b3/CxWVlZSk9P97gAAIDbl5+dLz5v3jx988032rx5s1ePT0xM1OjRo4t4KgAAYArb9qgcPnxYL7zwgj766CP5+/t79ZyEhASlpaW5L4cPHy7iKQEAgJ1s26OydetWnTx5Uk2bNnXflp2drdWrV2vKlCnKyspSyZIlPZ7jdDrldDpv9agAAMAmtoXKAw88oJ07d3rc9sQTT6h+/fp6+eWXc0UKAAAofmwLlcDAQDVq1MjjtjJlyqhChQq5bgcAAMWT7e/6AQAAuB5b3/VzrZUrV9o9AgAAMAh7VAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICx/Lx50KJFi3xecIcOHVS6dGmfnwcAAJDDq1Dp1q2bTwt1OBzau3evatWqVZCZAAAAJPlw6Of48eNyuVxeXQICAopyZgAAUEx4FSpxcXE+Hcbp27evgoKCCjwUAACA5OWhn5kzZ/q00GnTphVoGAAAgKvd9Lt+0tPTtXDhQu3atasw5gEAAHDzOVR69eqlKVOmSJJ+/fVXNW/eXL169VJ0dLQ+++yzQh8QAAAUXz6HyurVq9WmTRtJ0oIFC2RZls6dO6d33nlHf/vb3wp9QAAAUHz5HCppaWkKCQmRJCUnJ6tnz54KCAhQ586dtXfv3kIfEAAAFF8+h0pERITWr1+vzMxMJScn68EHH5QknT17Vv7+/oU+IAAAKL58DpUhQ4aoT58+Cg8PV9WqVdWuXTtJVw4JRUVF+bSsadOmKTo6WkFBQQoKClLLli21dOlSX0cCAAC3Ka/enny1Z599Vvfcc48OHTqkDh06qESJK61Tq1Ytn89RCQ8PV1JSkurUqSPLsjR79mx17dpV27ZtU8OGDX0dDQAA3GZ8DhVJatasmZo1a+ZxW+fOnX1eTpcuXTyuv/baa5o2bZo2bNhAqAAAAO8O/cTHxyszM9PrhSYkJOjMmTM+DZKdna158+YpMzNTLVu2zPMxWVlZSk9P97gAAIDbl1ehMmnSJP3yyy9eL3Tq1Kk6d+6cV4/duXOnypYtK6fTqUGDBmnBggWKjIzM87GJiYkKDg52XyIiIryeCQAA/PZ4dejHsizVrVtXDofDq4X6svelXr162r59u9LS0vTpp58qLi5Oq1atyjNWEhISFB8f776enp5OrAAAcBsrkr/1I0mhoaFePa5UqVKqXbu2pCvnvmzevFmTJk3Se++9l+uxTqdTTqfT51kAAMBvk1ehEhcXV9RzuLlcLmVlZd2y1wMAAOYq0Lt+CktCQoI6duyoatWq6fz58/r444+1cuVKpaSk2DkWAAAwhK2hcvLkSfXr10/Hjh1TcHCwoqOjlZKSog4dOtg5FgAAMIStoTJjxgw7Xx4AABjO51+hDwAAcKsUOFT27dunlJQU/frrr5KuvIUZAACgMPkcKqdPn1b79u1Vt25dderUSceOHZMkDRgwQC+++GKhDwgAAIovn0Nl6NCh8vPz06FDhxQQEOC+vXfv3kpOTi7U4QAAQPHm88m0y5YtU0pKisLDwz1ur1Onjv773/8W2mAAAAA+71HJzMz02JOS48yZM/zWWAAAUKh8DpU2bdpozpw57usOh0Mul0vjx4/X/fffX6jDAQCA4s3nQz/jx4/XAw88oC1btujixYsaPny4vv/+e505c0Zr164tihkBAEAx5fMelUaNGmnPnj1q3bq1unbtqszMTPXo0UPbtm3T7373u6KYEQAAFFMF+s20wcHBGjFiRGHPAgAA4KFAoXLhwgV9++23OnnypFwul8d9jzzySKEMBgAA4HOoJCcnq1+/fjp16lSu+xwOh7KzswtlMAAAAJ/PUXnuuef02GOP6dixY3K5XB4XIgUAABQmn0PlxIkTio+PV2hoaFHMAwAA4OZzqDz66KNauXJlEYwCAADgyedzVKZMmaLHHntMa9asUVRUlO644w6P+59//vlCGw4AABRvPofK3LlztWzZMvn7+2vlypVyOBzu+xwOB6ECAAAKjc+hMmLECI0ePVqvvPKKSpTw+cgRAACA13wujYsXL6p3795ECgAAKHI+10ZcXJzmz59fFLMAAAB48PnQT3Z2tsaPH6+UlBRFR0fnOpl2woQJhTYcAAAo3nwOlZ07d+quu+6SJH333Xce9119Yi0AAMDN8jlUVqxYURRzAAAA5MIZsQAAwFhe7VHp0aOHZs2apaCgIPXo0SPfx37++eeFMhgAAIBXoRIcHOw+/yQ4OLhIBwIAAMjhVajMnDlTY8aM0bBhwzRz5syingkAAECSD+eojB49WhkZGUU5CwAAgAevQ8WyrKKcAwAAIBef3vXD70kBAAC3kk+/R6Vu3bo3jJUzZ87c1EAAAAA5fAqV0aNH864fAABwy/gUKn/84x9VuXLlopoFAADAg9fnqHB+CgAAuNV41w8AADCW14d+XC5XUc4BAACQC3+UEAAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGIlQAAICxCBUAAGAsQgUAABiLUAEAAMYiVAAAgLEIFQAAYCxCBQAAGItQAQAAxiJUAACAsQgVAABgLEIFAAAYi1ABAADGsjVUEhMT1aJFCwUGBqpy5crq1q2bdu/ebedIAADAILaGyqpVqzR48GBt2LBBy5cv16VLl/Tggw8qMzPTzrEAAIAh/Ox88eTkZI/rs2bNUuXKlbV161bdd999Nk0FAABMYdQ5KmlpaZKkkJAQmycBAAAmsHWPytVcLpeGDBmie++9V40aNcrzMVlZWcrKynJfT09Pv1XjAQAAGxizR2Xw4MH67rvvNG/evOs+JjExUcHBwe5LRETELZwQAADcakaEyl/+8hctXrxYK1asUHh4+HUfl5CQoLS0NPfl8OHDt3BKAABwq9l66MeyLD333HNasGCBVq5cqZo1a+b7eKfTKafTeYumAwAAdrM1VAYPHqyPP/5YX3zxhQIDA3X8+HFJUnBwsEqXLm3naAAAwAC2HvqZNm2a0tLS1K5dO1WpUsV9mT9/vp1jAQAAQ9h+6AcAAOB6jDiZFgAAIC+ECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMZWuorF69Wl26dFHVqlXlcDi0cOFCO8cBAACGsTVUMjMz1bhxY02dOtXOMQAAgKH87Hzxjh07qmPHjnaOAAAADGZrqPgqKytLWVlZ7uvp6ek2TgMAAIrab+pk2sTERAUHB7svERERdo8EAACK0G8qVBISEpSWlua+HD582O6RAABAEfpNHfpxOp1yOp12jwEAAG6R39QeFQAAULzYukclIyND+/btc18/cOCAtm/frpCQEFWrVs3GyQAAgAlsDZUtW7bo/vvvd1+Pj4+XJMXFxWnWrFk2TQUAAExha6i0a9dOlmXZOQIAADAY56gAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWIQKAAAwFqECAACMRagAAABjESoAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMJYRoTJ16lTVqFFD/v7+uueee7Rp0ya7RwIAAAawPVTmz5+v+Ph4jRo1St98840aN26smJgYnTx50u7RAACAzWwPlQkTJuipp57SE088ocjISL377rsKCAjQBx98YPdoAADAZn52vvjFixe1detWJSQkuG8rUaKE2rdvr/Xr1+d6fFZWlrKystzX09LSJEnp6elFMt8FXSiS5QK3g6Ja7245VnMgX0Wxrucs07KsGz7W1lA5deqUsrOzFRoa6nF7aGiofvzxx1yPT0xM1OjRo3PdHhERUWQzAshbUnCS3SMAuAWCk4KLbNnnz59XcHD+y7c1VHyVkJCg+Ph493WXy6UzZ86oQoUKcjgcNk6Gopaenq6IiAgdPnxYQUFBdo8DoAiwnhcflmXp/Pnzqlq16g0fa2uoVKxYUSVLltSJEyc8bj9x4oTCwsJyPd7pdMrpdHrcVq5cuaIcEYYJCgpiAwbc5ljPi4cb7UnJYevJtKVKlVKzZs2Umprqvs3lcik1NVUtW7a0cTIAAGAC2w/9xMfHKy4uTs2bN9fdd9+tiRMnKjMzU0888YTdowEAAJvZHiq9e/fWzz//rL/+9a86fvy4mjRpouTk5Fwn2KJ4czqdGjVqVK5DfwBuH6znyIvD8ua9QQAAADaw/Re+AQAAXA+hAgAAjEWoAAAAYxEqt7kaNWpo4sSJN7WMlStXyuFw6Ny5c4Uy08GDB+VwOLR9+/ZCWZ7D4dDChQsLZVmFzZuPddasWYX6+4AK++uF4qUwthlXa9eunYYMGVIoy+rfv7+6detWKMsqCt58rIW9vSrsr5eJCBWbrV+/XiVLllTnzp3tHkVS3itaq1atdOzYMa9/OU9hyO+H7bUr5rFjx9SxY8dbNlth6927t/bs2WP3GChk/fv3l8PhUFKS558aWLhwodG/SXvz5s16+umnb+lrXu+H7auvvqomTZq4r0+aNEmzZs26ZXMVhd/69soOhIrNZsyYoeeee06rV6/W0aNH7R4nT6VKlVJYWJixG9ewsLCbejvjxYsXC/Q8y7J0+fLlAr9ujtKlS6ty5co3vRyYx9/fX+PGjdPZs2ftHuWGctaDSpUqKSAgwOZp8hYcHHxTex9vZp0t6HbiWje7vSqOCBUbZWRkaP78+frzn/+szp07e/xPIWePQmpqqpo3b66AgAC1atVKu3fvdj9m//796tq1q0JDQ1W2bFm1aNFCX3755XVf78knn9TDDz/scdulS5dUuXJlzZgxQ/3799eqVas0adIkORwOORwOHTx4MM+9G2vXrlW7du0UEBCg8uXLKyYmxr0xTk5OVuvWrVWuXDlVqFBBDz/8sPbv3184n7Q8XLsr9fDhw+rVq5fKlSunkJAQde3aVQcPHnTfn7P7+LXXXlPVqlVVr149SdKHH36o5s2bKzAwUGFhYXr88cd18uRJ9/NyPg9Lly5Vs2bN5HQ69fXXX8vlcmn8+PGqXbu2nE6nqlWrptdee81jxp9++kn333+/AgIC1LhxY4+/Dp7XoZ9///vfatGihfz9/VWxYkV1797dfd+N5oQ52rdvr7CwMCUmJuZ5/7V7DCRp4sSJqlGjhvt6zvfr66+/rtDQUJUrV05jxozR5cuX9dJLLykkJETh4eGaOXOmx3IKuh5cu3fj3LlzeuaZZxQaGip/f381atRIixcvliSdPn1asbGxuvPOOxUQEKCoqCjNnTu34J+wG7j20I/L5VJiYqJq1qyp0qVLq3Hjxvr000/d919vnfVm21mjRg2NHTtW/fr1U1BQkHsvU37bvpyZhg8frpCQEIWFhenVV1/1WO6126sjR44oNjZWISEhKlOmjJo3b66NGzdK8n0bf7siVGz0r3/9S/Xr11e9evXUt29fffDBB7n+5PWIESP01ltvacuWLfLz89OTTz7pvi8jI0OdOnVSamqqtm3bpoceekhdunTRoUOH8ny9gQMHKjk5WceOHXPftnjxYv3yyy/q3bu3Jk2apJYtW+qpp57SsWPHdOzYsTz/MvX27dv1wAMPKDIyUuvXr9fXX3+tLl26KDs7W5KUmZmp+Ph4bdmyRampqSpRooS6d+8ul8tVGJ+2fF26dEkxMTEKDAzUmjVrtHbtWpUtW1YPPfSQx/+IUlNTtXv3bi1fvty90b106ZLGjh2rHTt2aOHChTp48KD69++f6zVeeeUVJSUladeuXYqOjlZCQoKSkpI0cuRI/fDDD/r4449z/cLCESNGaNiwYdq+fbvq1q2r2NjY6/7PbsmSJerevbs6deqkbdu2KTU1VXfffbfHx+jNnLBfyZIl9frrr2vy5Mk6cuRIgZfz1Vdf6ejRo1q9erUmTJigUaNG6eGHH1b58uW1ceNGDRo0SM8884z7NW5mPbiay+VSx44dtXbtWv3zn//UDz/8oKSkJJUsWVKSdOHCBTVr1kxLlizRd999p6efflp/+tOftGnTpgJ/rL5ITEzUnDlz9O677+r777/X0KFD1bdvX61atcrjcdeus95uO9988001btxY27Zt08iRI2+47ZOk2bNnq0yZMtq4caPGjx+vMWPGaPny5XnOn5GRobZt2+p///ufFi1apB07dmj48OHubaWv2/jblgXbtGrVypo4caJlWZZ16dIlq2LFitaKFSssy7KsFStWWJKsL7/80v34JUuWWJKsX3/99brLbNiwoTV58mT39erVq1tvv/22+3pkZKQ1btw49/UuXbpY/fv3d19v27at9cILL3gsM2eWs2fPWpZlWbGxsda9997r9cf5888/W5KsnTt3WpZlWQcOHLAkWdu2bbvuc3Jes0yZMrkuDofD42OSZC1YsMCyLMv68MMPrXr16lkul8t9f1ZWllW6dGkrJSXFsizLiouLs0JDQ62srKx85968ebMlyTp//rzHTAsXLnQ/Jj093XI6ndb06dPzXEbOx/r++++7b/v+++8tSdauXbssy7KsmTNnWsHBwe77W7ZsafXp0yff2byZM+frBXvExcVZXbt2tSzLsn7/+99bTz75pGVZlrVgwQIrZ9M7atQoq3Hjxh7Pe/vtt63q1at7LKd69epWdna2+7Z69epZbdq0cV+/fPmyVaZMGWvu3LmWZd3cenD1NiMlJcUqUaKEtXv3bq8/7s6dO1svvvii+3pe25RrVa9e3SpVqlSudf2OO+7w+Pxc/Tm9cOGCFRAQYK1bt85jWQMGDLBiY2Mty8p7nb2evLad3bp183jMjbZ9bdu2tVq3bu1xW4sWLayXX37Zff3q7dV7771nBQYGWqdPn77hfPnNefX28HbEHhWb7N69W5s2bVJsbKwkyc/PT71799aMGTM8HhcdHe3+d5UqVSTJvZs/IyNDw4YNU4MGDVSuXDmVLVtWu3btyre2Bw4c6N5FfOLECS1dutRjL403cv5XcT179+5VbGysatWqpaCgIPdu7OvN1bBhQ5UtW1Zly5bNdZLZmjVrtH37do9Lfn8WfMeOHdq3b58CAwPdywwJCdGFCxc8Dj9FRUWpVKlSHs/dunWrunTpomrVqikwMFBt27bNc+7mzZu7/71r1y5lZWXl+/mQ8v86XutGn19v54Q5xo0bp9mzZ2vXrl0Fen7Dhg1VosT/31yHhoYqKirKfb1kyZKqUKGC+3vqZtaDq23fvl3h4eGqW7dunvdnZ2dr7NixioqKUkhIiMqWLauUlJTrfi++/vrr7nnKli3r8biXXnop17o+aNCg6862b98+/fLLL+rQoYPHMufMmZPrUPPV66zk/bbz2ufdaN2UPNd16cr6nt+6ftdddykkJCTP+wuyjb8d2f63foqrGTNm6PLlyx4/dC3LktPp1JQpU9y33XHHHe5/55zMmrNbcNiwYVq+fLnefPNN1a5dW6VLl9ajjz6a70lf/fr10yuvvKL169dr3bp1qlmzptq0aePT7KVLl873/i5duqh69eqaPn26qlatKpfLpUaNGl13rv/85z+6dOlSnsuuWbNmrvM3/Pyu/22bkZGhZs2a6aOPPsp1X6VKldz/LlOmjMd9mZmZiomJUUxMjD766CNVqlRJhw4dUkxMTK65r37ujT4XOfL7Ol4rv2X6MifMcd999ykmJkYJCQkeh+lKlCiR63Bvzrpwtau/f6Qr30N53Xb1IYOCrAfXutH39xtvvKFJkyZp4sSJioqKUpkyZTRkyJDrfi8OGjRIvXr1cl+/evtXsWJF1a5d2+Px1/sBLl35GKUrh0rvvPNOj/uuPVn12o/T223ntc/zZn3P7+tyrRstryDb+NsRoWKDy5cva86cOXrrrbf04IMPetzXrVs3zZ07V/Xr17/hctauXav+/fu7T7TMyMjwOFkuLxUqVFC3bt00c+ZMrV+/PtdfqS5VqpTH8da8REdHKzU1VaNHj8513+nTp7V7925Nnz7dHUBff/11vsurXr16vvf7omnTppo/f74qV66soKAgr5/3448/6vTp00pKSnKfl7Nly5YbPq9OnToqXbq0UlNTNXDgwALPfbWcz29ef0G8oHPCfklJSWrSpIn7pFXpSjQcP35clmW5A7Ywfr9QQdeDa0VHR+vIkSPas2dPnntV1q5dq65du6pv376SrsT3nj17FBkZmefyQkJC8o0PX0RGRsrpdOrQoUPuvYreKsi2U8p/21cQ0dHRev/993XmzJk8Py8FnfN2w6EfGyxevFhnz57VgAED1KhRI49Lz549cx3+uZ46dero888/1/bt27Vjxw49/vjjXp2wOnDgQPdu6Li4OI/7atSooY0bN+rgwYM6depUnstLSEjQ5s2b9eyzz+rbb7/Vjz/+qGnTpunUqVMqX768KlSooH/84x/at2+fvvrqK8XHx3v3iSkEffr0UcWKFdW1a1etWbNGBw4c0MqVK/X888/nezJjtWrVVKpUKU2ePFk//fSTFi1apLFjx97w9fz9/fXyyy9r+PDh7l3OGzZs8PprmJdRo0Zp7ty5GjVqlHbt2qWdO3dq3LhxNzUn7BcVFaU+ffronXfecd/Wrl07/fzzzxo/frz279+vqVOnaunSpTf9WgVdD67Vtm1b3XffferZs6eWL1+uAwcOaOnSpUpOTpZ0ZRu0fPlyrVu3Trt27dIzzzyjEydO3PT83ggMDNSwYcM0dOhQzZ49W/v379c333yjyZMna/bs2fk+t6Dbzvy2fQURGxursLAwdevWTWvXrtVPP/2kzz77zP2uwILOebshVGwwY8YMtW/fPs9foNazZ09t2bJF33777Q2XM2HCBJUvX16tWrVSly5dFBMTo6ZNm97wee3bt1eVKlUUExOT63yPYcOGqWTJkoqMjHQfVrhW3bp1tWzZMu3YsUN33323WrZsqS+++EJ+fn4qUaKE5s2bp61bt6pRo0YaOnSo3njjjRvOVFgCAgK0evVqVatWTT169FCDBg00YMAAXbhwId//WVaqVEmzZs3SJ598osjISCUlJenNN9/06jVHjhypF198UX/961/VoEED9e7d+6beLtyuXTt98sknWrRokZo0aaI//OEP7ndR3MycsN+YMWM8ftA0aNBAf//73zV16lQ1btxYmzZt0rBhw276dQq6HuTls88+U4sWLRQbG6vIyEgNHz7cvdf1//7v/9S0aVPFxMSoXbt27h+6t8rYsWM1cuRIJSYmqkGDBnrooYe0ZMkS1axZM9/nFXTbmd+2ryBKlSqlZcuWqXLlyurUqZOioqI83lVV0DlvNw7r2gOkuO1lZGTozjvv1MyZM9WjRw+7xwEA4Lo4R6UYcblcOnXqlN566y2VK1dOjzzyiN0jAQCQL0KlGDl06JBq1qyp8PBwzZo1q8C7KwEAuFU49AMAAIzFybQAAMBYhAoAADAWoQIAAIxFqAAAAGMRKgAAwFiECgAAMBahAgAAjEWoAAAAYxEqAADAWP8P0htpdF1TWj8AAAAASUVORK5CYII=",
"text/plain": [
""
]
@@ -654,8 +684,7 @@
"ax = plt.gca()\n",
"ax.set_xticks([0, 1])\n",
"ax.set_xticklabels(['Analytical-Hierarchical', 'Numerical-Hierarchical'])\n",
- "ax.set_ylabel('Time [s]')\n",
- "plt.savefig(\"num_ana_time.png\")"
+ "ax.set_ylabel('Computation time [s]')"
]
},
{
@@ -667,26 +696,31 @@
},
{
"cell_type": "code",
- "execution_count": 10,
+ "execution_count": 13,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Performing parallel task execution on 3 processes.\n",
- "100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 2875.44it/s]2022-11-14 23:22:53 fides(WARNING) Stopping as function difference 1.62E-06 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
- "2022-11-14 23:22:53 fides(WARNING) Stopping as function difference 2.61E-07 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
- "\n",
- "2022-11-14 23:23:34 fides(WARNING) Stopping as maximum number of iterations 1000.0 was exceeded.\n"
+ " 0%| | 0/3 [00:00, ?it/s]2023-12-07 17:22:44 fides(WARNING) Stopping as function difference 3.61E-06 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
+ "2023-12-07 17:22:56 fides(WARNING) Stopping as function difference 2.65E-06 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
+ "100%|██████████| 3/3 [00:13<00:00, 4.65s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "result_ord.optimize_result.get_for_key('fval')=[527.9924956218779, 556.9371672014547, 567.6898074686572]\n",
- "time_ord=41.5628547668457\n"
+ "result_ord.optimize_result.get_for_key('fval')=[281.15462416282253, 552.3354399198199, 558.0491476519486]\n",
+ "time_ord=13.975638151168823\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
]
}
],
@@ -701,12 +735,12 @@
},
{
"cell_type": "code",
- "execution_count": 11,
+ "execution_count": 14,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABNUAAAIjCAYAAAAkzS0sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACE5UlEQVR4nOzdd3xb9aH+8edI3kue8pDkOMuQsEdKSRkBQgMpYYQN/bE6aWiBQIFc9ihlr+KWlk0v9EK5gQtlFAiEkYbdhAABZxJJ3lPetqTz+yM3upg4ieTIPh6f9+vlV+xzjo4eO8t6/B2GaZqmAAAAAAAAAETNZnUAAAAAAAAAYLShVAMAAAAAAABiRKkGAAAAAAAAxIhSDQAAAAAAAIgRpRoAAAAAAAAQI0o1AAAAAAAAIEaUagAAAAAAAECMKNUAAAAAAACAGFGqAQAAAAAAADGiVAMAABiHamtrddJJJykvL0+GYeiee+6J+rEbN26UYRh67LHHIseuu+46GYYRt3wDPQcAAMBIQqkGAAAQpWeeeUaGYei5557b6txee+0lwzD01ltvbXWutLRUM2fOjOm5/vjHPw5poXTxxRfrn//8pxYtWqS//vWvOuqoo4bsuYbbv/71L1133XVqaWmxOgoAABjDKNUAAACidNBBB0mS3nvvvX7HA4GAPv/8cyUkJGjZsmX9znm9Xnm93shjozXUpdqbb76p4447Tpdeeql+/OMfa9dddx2y5xpu//rXv3T99ddTqgEAgCFFqQYAABClkpISTZw4catSbfny5TJNUyeffPJW57Z8HGupNhSCwaB6e3slSXV1dcrOzrY2EAAAwChGqQYAABCDgw46SP/+97/V1dUVObZs2TLttttuOvroo/X+++8rHA73O2cYhn7wgx9Ikh599FEdfvjhcjqdSk5O1vTp0/WnP/2p33OUlZXpiy++0Ntvvy3DMGQYhmbNmhU539LSoosuukgej0fJycmaMmWKbr311n7Pu2VNsjvuuEP33HOPJk+erOTkZP3xj3+UYRgyTVMVFRWR+0tSU1OTLr30Uu2xxx7KyMhQVlaWjj76aK1cuTJuX79Zs2Zp99131yeffKKZM2cqNTVVEydO1AMPPBDV4998800dfPDBSk9PV3Z2to477jitXr06cv66667Tb3/7W0nSxIkTI5/fxo0b4/Y5AAAASFKC1QEAAABGk4MOOkh//etf9cEHH0SKrmXLlmnmzJmaOXOmWltb9fnnn2vPPfeMnNt1112Vl5cnSfrTn/6k3XbbTccee6wSEhL04osv6le/+pXC4bAWLFggSbrnnnv061//WhkZGbryyislSYWFhZKkzs5OHXroofL7/frFL36h0tJS/etf/9KiRYtUXV291YYDjz76qLq7u/Xzn/9cycnJ2nffffXXv/5V/+///T8deeSROuussyLXrl+/Xs8//7xOPvlkTZw4UbW1tfrzn/+sQw89VF9++aVKSkri8jVsbm7W3Llzdcopp+j000/XM888o/PPP19JSUk677zztvm4N954Q0cffbQmTZqk6667Tl1dXfrDH/6gH/zgB/r0009VVlam+fPnq7KyUn/729909913Kz8/X5JUUFAQl+wAAAARJgAAAKL2xRdfmJLMG2+80TRN0+zr6zPT09PNxx9/3DRN0ywsLDQrKipM0zTNQCBg2u1282c/+1nk8Z2dnVvdc86cOeakSZP6Hdttt93MQw89dKtrb7zxRjM9Pd2srKzsd/yKK64w7Xa7uWnTJtM0TXPDhg2mJDMrK8usq6vb6j6SzAULFvQ71t3dbYZCoX7HNmzYYCYnJ5s33HBDv2OSzEcffTRy7NprrzWj+dby0EMPNSWZd955Z+RYT0+Puffee5tOp9Ps7e3d5nNsuaaxsTFybOXKlabNZjPPOuusyLHbb7/dlGRu2LBhh3kAAAAGi+mfAAAAMZg2bZry8vIia6WtXLlSHR0dkd09Z86cGdmsYPny5QqFQv3WU0tNTY2839raqoaGBh166KFav369Wltbd/j8f//733XwwQcrJydHDQ0NkbfZs2crFArpnXfe6Xf9iSeeGPUoreTkZNlsm789DIVCamxsVEZGhnbZZRd9+umnUd0jGgkJCfrFL34R+TgpKUm/+MUvVFdXp08++WTAx1RXV2vFihU655xzlJubGzm+55576sgjj9TLL78ct3wAAADRoFQDAACIgWEYmjlzZmTttGXLlsnpdGrKlCmS+pdqW379dqm2bNkyzZ49O7ImWEFBgf7jP/5DkqIq1dasWaNXX31VBQUF/d5mz54tafMGBN82ceLEqD+3cDisu+++W1OnTlVycrLy8/NVUFCgzz77LKps0SopKVF6enq/Y+Xl5ZK0zbXPvvnmG0nSLrvsstW5adOmqaGhQR0dHXHLCAAAsCOsqQYAABCjgw46SC+++KJWrVoVWU9ti5kzZ+q3v/2t/H6/3nvvPZWUlGjSpEmSpHXr1umII47Qrrvuqrvuuksej0dJSUl6+eWXdffdd/fbaGBbwuGwjjzySF122WUDnt9STm3x7ZFxO3LzzTfr6quv1nnnnacbb7xRubm5stlsuuiii6LKBgAAMJ5QqgEAAMRoy8iz9957T8uWLdNFF10UObfffvspOTlZS5cu1QcffKC5c+dGzr344ovq6enRCy+8oNLS0sjxt956a6vn2LIj53dNnjxZ7e3tkZFp8fTss8/qsMMO08MPP9zveEtLS2TB/3ioqqpSR0dHv9FqlZWVkjbvfDqQCRMmSJK+/vrrrc599dVXys/Pj9xvW187AACAeGL6JwAAQIz2339/paSk6Mknn5Tf7+83Um3LDpsVFRXq6OjoN/XTbrdLkkzTjBxrbW3Vo48+utVzpKenq6WlZavjp5xyipYvX65//vOfW51raWlRMBgc9Odlt9v7ZZM2r+Hm9/sHfc+BBINB/fnPf4583Nvbqz//+c8qKCjQfvvtN+BjiouLtffee+vxxx/v93X5/PPP9dprr/UrL7eUawN9/QAAAOKFkWoAAAAxSkpK0owZM/Tuu+8qOTl5qyJo5syZuvPOOyX1X0/thz/8oZKSkjRv3jz94he/UHt7ux588EE5nU5VV1f3u8d+++2nP/3pT7rppps0ZcoUOZ1OHX744frtb3+rF154Qcccc4zOOecc7bfffuro6NCqVav07LPPauPGjYMeVXbMMcfohhtu0LnnnquZM2dq1apVevLJJyPTV+OlpKREt956qzZu3Kjy8nI9/fTTWrFihf7yl78oMTFxm4+7/fbbdfTRR+vAAw/UT37yE3V1dekPf/iDHA6Hrrvuush1W34/rrzySp122mlKTEzUvHnztlrHDQAAYGcwUg0AAGAQtpRlW6Z7ftsPfvADSVJmZqb22muvyPFddtlFzz77rAzD0KWXXqoHHnhAP//5z3XhhRdudf9rrrlGc+fO1W233abTTz9dN9xwgyQpLS1Nb7/9tn77299q6dKluvDCC3XLLbdozZo1uv766+VwOAb9Of3Hf/yHLrnkEv3zn//UhRdeqE8//VQvvfSSPB7PoO85kJycHL388sv6+OOP9dvf/lZer1f333+/fvazn233cbNnz9arr76qvLw8XXPNNbrjjjv0/e9/X8uWLeu3IcOMGTN04403auXKlTrnnHN0+umnq76+Pq6fAwAAgGF+d4w/AAAAMERmzZqlhoYGff7551ZHAQAA2CmMVAMAAAAAAABiRKkGAAAAAAAAxIhSDQAAAAAAAIgRa6oBAAAAAAAAMWKkGgAAAAAAABAjSjUAAAAAAAAgRglWB7BaOBxWVVWVMjMzZRiG1XEAAAAAAABgEdM01dbWppKSEtls2x+LNu5LtaqqKnk8HqtjAAAAAAAAYITwer1yu93bvWbcl2qZmZmSNn+xsrKyLE4DAAAAAAAAqwQCAXk8nkhftD3jvlTbMuUzKyuLUg0AAAAAAABRLRHGRgUAAAAAAABAjCjVAAAAAAAAgBhRqgEAAAAAAAAxolQDAAAAAAAAYkSpBgAAAAAAAMRo3JZqFRUVmj59umbMmGF1FAAAAAAAAIwyhmmaptUhrBQIBORwONTa2qqsrCyr4wAAAAAAAMAisfRE43akGgAAAAAAADBYlGoAAAAAAABAjCjVAAAAAAAAgBhRqgEAAAAAAAAxolQDAAAAAAAAYkSpBgAAAAAAAMQoweoAAAAAAAAAGGXCIan+XamrWkotlgoOlmx2q1MNK0o1AAAAAAAARM+7WPrkQqnT93/H0tzSfvdKnvnW5RpmTP8EAAAY78IhqXaptPFvm38Nh6xOBAAARirvYundk/oXapLU6d983LvYmlwWYKQaAADAeMZPmgEAY4hpmlEf39a1g7nXju431PcazH1ivdfmkyFlfPRrGTJlbH1SkiF9cpHkOm5cTAWlVAMAABivtvykWd/55nnLT5oPfpZiDTHjBW3094n1XoN9rqE+vr3zVt/L6j93sWaw8nMZS3/uMHTS2z9SVnfVdq4wpU7v5rXWCmcNVyzLUKoBAADshC3fzH/318Gei+UxO3UfM6TcDy+QbRs/aTZlKPzhr1WfcIBk2Le6x0Bfg2jP8YKWF7QAMJYYxtb/k0ZzfqDj27tXvO4T672+fTy9K7Dd+0Z0VUd33ShHqQYAwCgxasubnbzfSLvPQI8ZjdLbP1JBz7a/4TVkyt5TpY4Nr6ojY8YwJgNiF68XoYO512DuMxz3Go7j2zvP5zI2ipTBPNdI/FyG68/duJC5j7QuiutSi4c8ykgwbku1iooKVVRUKBQaQwvxsp0tgDgY68XKcH5+8f4cMLp9+xvwLe9H++tgz23v2vS+rqhy56R2KzU/P6rPa3vHtnd8MI8bqS/M4/nCdDDPZWW5NNh7bes8L2YBYAQqOHjz2qudfum7y0dIkozN5wsOHu5kljDMcf6deiAQkMPhUGtrq7KysqyOM3gsMoxRaCyVJ6P5PmNl1A3+z0grb0bCfbb3mHjdJ9pzI0btUmnJYTu+7oi3xsWaKAAAIEqRNVml/sXa/36/M8rXZI2lJxq3I9XGFBYZ3iHKm5FxH8qbsWe0FSvxus9w5hpsOQTsED9pBgAAg+GZv7lnGHBgzz3jqn+gVBvtwqHNf5AH/GZ48yLD5ke/UUvawZJhH/HFUbzuQ3kztoz00sOK+zDqBsBOs9k3j2h/9yRt/snyAD9p3u8elpIAAABb88yXXMeN+yWoKNVGu/p3+zfD32HIlNHtV/PXL7DIcBQobyhvAGBc4SfNAABgsGz2cb9EBKXaaBflNrWZie2y/+9c4JFa0IyUAgoAgHGFnzQDAAAMCqXaaBflNrXO0r2kwrKhzQIAAEYnftIMAAAQM5vVAbCTtiwyrG2NsjKkNA+LDAMAAAAAAMQRpdpot2WRYUlbF2ssMgwAAAAAADAUKNXGgi2LDKe5+h9Pc28+ziLDAAAAAAAAccWaamMFiwwDAAAAAAAMG0q1sYRFhgEAAAAAAIYF0z8BAAAAAACAGFGqAQAAAAAAADGiVAMAAAAAAABiRKkGAAAAAAAAxIhSDQAAAAAAAIgRpRoAAAAAAAAQI0o1AAAAAAAAIEaUagAAAAAAAECMxm2pVlFRoenTp2vGjBlWRwEAAAAAAMAoY5imaVodwkqBQEAOh0Otra3KysqyOg4AAAAAAAAsEktPNG5HqgEAAAAAAACDRakGAAAAAAAAxIhSDQAAAAAAAIgRpRoAAAAAAAAQI0o1AAAAAAAAIEaUagAAAAAAAECMKNUAAAAAAACAGFGqAQAAAAAAADGiVAMAAAAAAABiRKkGAAAAAAAAxIhSDQAAAAAAAIgRpRoAAAAAAAAQI0o1AAAAAAAAIEaUagAAAAAAAECMKNUAAAAAAACAGFGqAQAAAAAAADGiVAMAAAAAAABiRKkGAAAAAAAAxIhSDQAAAAAAAIhRgtUBAAAAAAAAMLqEQ2FteneT2qrblFmcqdKDS2Wzj6+xW5RqAAAAAAAAiNrqxav16oWvKuALRI5lubN01L1Hadr8aRYmG17jq0IEAAAAAADAoK1evFrPnPRMv0JNkgL+gJ456RmtXrzaomTDj1INAAAAAAAAOxQOhfXqha9K5gAn//fYqxe9qnAoPKy5rML0TwAAAAAAAAuZphl5k6RwOBx53zRNhcPhAY8P91vtB7VbjVDr/4lIAW9Am97dpLJZZUP6NRsJKNUAAAAAAMCoZ2XZtK03KfqCbDToqO2I6rq26rYhTjIyUKoBAAAAAICI4SqZvn3s22XTzt5/rDAMIy5vkmSz2SK/bjlmGEbk+Hcfs63jyXsn62N9vMPsmcWZQ/ElGXEo1QAAAAAAiLNYSqVvH9/eY4dzdNVY8e1SaVtl07dLph2VSsP19u3sI8nU2VOV5c5SwB8YeF01Y/MuoKUHlw57NiuM21KtoqJCFRUVCoVCVkcBAAAAAAxgpJVNY3E6X7SsKpe2V4RFW5Ahfmx2m4669yg9c9IzkqH+xdr/fqmPuuco2ezjY19Mwxxrf9NjFAgE5HA41NraqqysLKvjAAAAAEDcWVE8MZ1va8NVNm15rm1N+Rvs/YEtVi9erVcvfLXfpgVZniwddc9RmjZ/moXJdl4sPdG4HakGAAAAALEY7IimgR473COvxpJYS6Ytvw5UNjGdDxicafOnaZfjdtGmdzeprbpNmcWZKj24dNyMUNuCUg0AAGCcC4fC4/6bYgyfkTidb6AibFsjr8aKbY1asnodqR0VUoyaAkYOm92mslllVsewFKUaAADAODbg9A13lo66d/RP3xjLvl3yWFE2bXnub68jFUuesWQ4S6VtrSPFdD4AsAalGgAAwDi1evHqzQsNf6fjCPgDeuakZ3TKs6eM+WJtZwqm75ZKAx1nOl904lU27ey9KKYAALGgVAMAABiHwqGwXr3w1a0KNUmbjxnSqxe9ql2O22WHU0G3VzZ9twgaaVP+xpJvl0ojaR2pHZVh384OAMBoQqkGAAAwDm16d1O/KZ9bMaWAN6B//e1fcn7POe7KqZFUNn37bUelGAAAGD6UagAAAONQW3VbVNe1+luV1b397eQHEs+CKZZSiel8AABguFCqAQAAjENpzrSorpu4x0SVTiodVBEGAAAwllGqAQAAjDNtbW3qLuxWSmGKuuu6B15Xzdi8C+iuc3bd4ZpqAAAA4xHfIQEAAIwToVBIPp9PGzZsUCgc0n5X7rf5xHcHlf3vx0fdcxSFGgAAwDYwUg0AAGAcaG9vl8/nU29vryQpPz9fuy/YXS6XS69e+Gq/TQuy3Fk66p6jNG3+NKviAgAAjHiUagAAAGNYOBxWTU2NGhoaJElJSUlyu93KyMiQJE2bP027HLeLNr27SW3VbcoszlTpwaWMUAMAANgBSjUAAIAxqrOzU16vVz09PZKk3NxcFRcXy26397vOZrepbFaZBQkBAABGL0o1AACAMSYcDqu+vl51dXUyTVMJCQlyu93KysqyOhoAAMCYQakGAAAwhnR3d8vr9aqrq0uS5HA45HK5lJDAt30AAADxxHdXAAAAY4Bpmqqvr1dtba1M05TdbpfL5VJ2drbV0QAAAMYkSjUAAIBRrqenR16vV52dnZKkzMxMud1uJSYmWpwMAABg7KJUAwAAGKVM01RjY6NqamoUDodls9lUUlKinJwcGYZhdTwAAIAxjVINAABgFOrt7ZXP51N7e7skKT09XR6PR0lJSRYnAwAAGB8o1QAAAEYR0zTV0tKiqqoqhUIhGYah4uJi5eXlMToNAABgGFGqAQAAjBLBYFA+n0+BQECSlJaWJo/Ho+TkZIuTAQAAjD+UagAAAKNAa2ur/H6/gsGgDMNQYWGhCgoKGJ0GAABgEUo1AACAESwUCsnv96ulpUWSlJKSIo/Ho9TUVGuDAQAAjHOUagAAACNUW1ubfD6f+vr6JElOp1NOp1M2m83iZAAAAKBUAwAAGGFCoZCqq6vV1NQkSUpOTpbb7VZ6errFyQAAALAFpRoAAMAI0t7eLp/Pp97eXklSfn6+ioqKGJ0GAAAwwlCqAQAAjADhcFg1NTVqaGiQJCUmJsrj8SgjI8PiZAAAABgIpRoAAIDFOjs75fV61dPTI0nKzc1VcXGx7Ha7xckAAACwLZRqAAAAFjFNU3V1daqrq5NpmkpISJDb7VZWVpbV0QAAALADlGoAAAAW6O7ultfrVVdXlyTJ4XDI5XIpIYFvzwAAAEYDvmsDAAAYRqZpqqGhQTU1NTJNU3a7XS6XS9nZ2VZHAwAAQAxiKtXC4bDefvttvfvuu/rmm2/U2dmpgoIC7bPPPpo9e7Y8Hs9Q5QQAABj1enp65PP51NHRIUnKzMyU2+1WYmKixckAAAAQq6j2Zu/q6tJNN90kj8ejuXPn6pVXXlFLS4vsdrvWrl2ra6+9VhMnTtTcuXP1/vvvD3VmAACAUcU0TTU2NmrNmjXq6OiQzWaT2+1WWVkZhRoAAMAoFdVItfLych144IF68MEHdeSRRw74zd8333yjp556SqeddpquvPJK/exnP4t7WAAAgNGmt7dXPp9P7e3tkqT09HR5PB4lJSVZnAwAAAA7wzBN09zRRatXr9a0adOiumFfX582bdqkyZMn73S44RAIBORwONTa2spOWwAAIG5M01RLS4uqqqoUCoVkGIaKi4uVl5cnwzCsjgcAAIABxNITRTVSLdpCTZISExNHTaEGAAAwFILBoHw+nwKBgCQpLS1NbrdbKSkpFicDAABAvMS8+2c4HJbNtvVSbOFwWD6fT6WlpXEJBgAAMBq1trbK7/crGAzKMAw5nU45nU5GpwEAAIwxUW1UIG0e/nbKKacoPT1dhYWFuuaaaxQKhSLn6+vrNXHixCEJCQAAMNKFQiFt2rRJ33zzjYLBoFJSUjRlyhQVFhZSqAEAAIxBUY9Uu/rqq7Vy5Ur99a9/VUtLi2666SZ9+umnWrx4cWSh3SiWZwMAABhz2tra5PP51NfXJ0mR0WkDje4HAADA2BDVRgWSNGHCBD3++OOaNWuWJKmhoUE/+tGPlJ2drRdeeEEtLS0qKSnpN3ptNGCjAgAAMFihUEjV1dVqamqSJCUnJ8vtdis9Pd3iZAAAABiMWHqiqH98Wl9frwkTJkQ+zs/P1xtvvKG2tjbNnTtXnZ2dg0+8E7xer2bNmqXp06drzz331N///ndLcgAAgPGlvb1da9asiRRqeXl5mjJlCoUaAADAOBF1qVZaWqrVq1f3O5aZmanXXntNXV1dOuGEE+IeLhoJCQm655579OWXX+q1117TRRddpI6ODkuyAACAsS8cDqu6ulrr169Xb2+vEhMTNWnSJLlcLtntdqvjAQAAYJhEXar98Ic/1KOPPrrV8YyMDP3zn/+0bIv44uJi7b333pKkoqIi5efnR35iDAAAEE+dnZ1as2aN6uvrJUk5OTkqLy9XRkaGxckAAAAw3KIu1a6//npdd911A57LzMzU66+/rjfffDPmAO+8847mzZunkpISGYah559/fqtrKioqVFZWppSUFB1wwAH68MMPB7zXJ598olAoJI/HE3MOAACAbTFNU7W1tVq3bp16enqUkJCgsrIyeTweRqcBAACMU1GXajk5Odptt922eT4zM1OHHnpozAE6Ojq01157qaKiYsDzTz/9tBYuXKhrr71Wn376qfbaay/NmTNHdXV1/a5ramrSWWedpb/85S8xZwAAANiW7u5urV27VrW1tTJNUw6HQ+Xl5WxwBAAAMM5FvfuntHnHz0ceeUTLly9XTU2NpM1TLmfOnKlzzjlHBQUFOxfGMPTcc8/p+OOPjxw74IADNGPGDN1///2SNq9j4vF49Otf/1pXXHGFJKmnp0dHHnmkfvazn+n//b//t93n6OnpUU9PT+TjQCAgj8fD7p8AAKAf0zTV0NCgmpoamaYpu90ul8slh8MhwzCsjgcAAIAhMCS7f3700UcqLy/XfffdJ4fDoUMOOUSHHHKIHA6H7rvvPu266676+OOPdzr8t/X29uqTTz7R7Nmz/y+wzabZs2dr+fLlkjZ/w3vOOefo8MMP32GhJkm///3v5XA4Im9MFQUAAN/V09Oj9evXq7q6WqZpKjMzU+Xl5crOzqZQAwAAgCQpIdoLf/3rX+vkk0/WAw88sNU3k6Zp6pe//KV+/etfR8queGhoaFAoFFJhYWG/44WFhfrqq68kScuWLdPTTz+tPffcM7Ie21//+lftscceA95z0aJFWrhwYeTjLSPVAAAATNNUU1OTqqurFQ6HZbPZVFJSopycHMo0AAAA9BN1qbZy5Uo99thjA35DaRiGLr74Yu2zzz5xDReNgw46SOFwOOrrk5OTlZycPISJAADAaNTb2yufz6f29nZJUnp6ujwej5KSkixOBgAAgJEo6lKtqKhIH374oXbdddcBz3/44YdbjSjbWfn5+bLb7aqtre13vLa2VkVFRXF9LgAAMD6ZpqmWlhZVVVUpFArJMAwVFxcrLy+P0WkAAADYpqhLtUsvvVQ///nP9cknn+iII46IFGi1tbVasmSJHnzwQd1xxx1xDZeUlKT99ttPS5YsiWxeEA6HtWTJEl1wwQVxfS4AADD+BINB+f1+tba2SpLS0tLkdruVkpJicTIAAACMdFGXagsWLFB+fr7uvvtu/fGPf1QoFJIk2e127bfffnrsscd0yimnxBygvb1da9eujXy8YcMGrVixQrm5uSotLdXChQt19tlna//999f3vvc93XPPPero6NC5554b83MBAABs0draKr/fr2AwKMMw5HQ65XQ6GZ0GAACAqBimaZqxPqivr08NDQ2SNk/RTExMHHSApUuX6rDDDtvq+Nlnn63HHntMknT//ffr9ttvV01Njfbee2/dd999OuCAAwb9nN8Wy1apAABg9AuFQqqqqlJzc7MkKSUlRR6PR6mpqRYnAwAAgNVi6YkGVaqNBRUVFaqoqFAoFFJlZSWlGgAA40BbW5t8Pp/6+vokSQUFBSosLJTNZrM4GQAAAEaCYSvVbrnlFv3yl79Udnb2YG9hOUaqAQAw9oVCIdXU1KixsVHS5t3A3W630tPTLU4GAACAkSSWnminfix78803q6mpaWduAQAAMKQ6Ojq0Zs2aSKGWl5enKVOmUKgBAABgp0S9UcFAxunMUQAAMAqEw2HV1taqvr5ekpSYmCi3263MzEyLkwEAAGAs2KlSTRI7ZAEAgBGnq6tLXq9X3d3dkqScnByVlJTIbrdbnAwAAABjRUyl2mGHHdavROvq6tIZZ5zRb7esN998M37pAAAAYmCapurq6lRXVyfTNJWQkCC32826qQAAAIi7mEq1c845J/K+aZpavny55s+fL6fTGe9cAAAAMenu7pbX61VXV5ckyeFwyOVyKSFhpwfmAwAAAFvZqd0/MzMztXLlSk2aNCmemYYVu38CADC6maaphoYG1dTUyDRN2e12uVwuORwOlqkAAABATGLpiXbqR7d8owoAAKzU29srr9erjo4OSZt/4Od2u5WYmGhxMgAAAIx143b3z4qKClVUVCgUClkdBQAAxMg0TTU1Nam6ulrhcFg2m03FxcXKzc3lh34AAAAYFjs1/dPr9Y76nbSY/gkAwOjS19cnn8+ntrY2SVJ6ero8Ho+SkpIsTgYAAIDRbtimf3o8np15OAAAQNRM01RLS4uqqqoUCoVkGIaKioqUn5/P6DQAAAAMO9tgHrRu3TpdddVVOv3001VXVydJeuWVV/TFF1/ENRwAAIAkBYNBbdq0SV6vV6FQSGlpaZo6daoKCgoo1AAAAGCJmEu1t99+W3vssYc++OADLV68WO3t7ZKklStX6tprr417QAAAML61traqsrJSra2tMgxDhYWFmjx5slJSUqyOBgAAgHEs5lLtiiuu0E033aTXX3+939olhx9+uN5///24hgMAAONXKBSS1+vVN998o2AwqJSUFE2ZMkWFhYWMTgMAAIDlYl5TbdWqVXrqqae2Ou50OtXQ0BCXUAAAYHxra2uTz+dTX1+fJKmgoECFhYWy2Qa1cgUAAAAQdzGXatnZ2aqurtbEiRP7Hf/3v/8tl8sVt2AAAGD8CYVCqqmpUWNjoyQpOTlZbrdb6enpFicDAAAA+ov5x72nnXaaLr/8ctXU1MgwDIXDYS1btkyXXnqpzjrrrKHICAAAxoGOjg6tWbMmUqjl5eVpypQpFGoAAAAYkWIu1W6++Wbtuuuu8ng8am9v1/Tp03XIIYdo5syZuuqqq4Yi45CoqKjQ9OnTNWPGDKujAAAwroXDYVVXV2vdunXq7e1VYmKiJk6cKJfLJbvdbnU8AAAAYECGaZrmYB64adMmff7552pvb9c+++yjqVOnxjvbsAgEAnI4HGptbVVWVpbVcQAAGFe6urrk9XrV3d0tScrJyVFJSQllGgAAACwRS08U85pqW5SWlqq0tHSwDwcAAOOYaZqqq6tTXV2dTNNUQkKC3G43P+ACAADAqBFTqfbll1/q/vvv1/Lly1VTUyNJKioq0oEHHqgLLrhA06dPH5KQAABg7Oju7pbX61VXV5ckyeFwyOVyKSFh0D/rAwAAAIZd1N+9vvLKKzr++OO177776rjjjlNhYaEkqba2Vq+//rr23Xdf/c///I/mzJkzZGEBAMDoZZqmGhoaVFNTI9M0ZbfbVVJSouzsbBmGYXU8AAAAICZRr6m211576bjjjtMNN9ww4PnrrrtOixcv1meffRbXgEONNdUAABh6vb298nq96ujokCRlZmbK7XYrMTHR4mQAAADA/4mlJ4p698/KykqdeeaZ2zx/+umna82aNdGnBAAAY55pmmpsbFRlZaU6Ojpks9nkcrlUVlZGoQYAAIBRLerpn2VlZXrppZe0yy67DHj+pZde0oQJE+IWDAAAjG59fX3y+Xxqa2uTJKWnp8vj8SgpKcniZAAAAMDOi7pUu+GGG3TGGWdo6dKlmj17dr811ZYsWaJXX31VTz311JAFBQAAo4NpmmppaVFVVZVCoZAMw1BRUZHy8/NZOw0AAABjRtSl2sknnyyXy6X77rtPd95551a7fy5dulQHHnjgkAUFAAAjXzAYlN/vV2trqyQpNTVVHo9HKSkpFicDAAAA4iumvetnzpypmTNnDlUWAAAwigUCAfl8PgWDQRmGIafTKafTyeg0AAAAjEkxlWpjSUVFhSoqKhQKhayOAgDAqBYKhVRVVaXm5mZJUkpKijwej1JTUy1OBgAAAAwdwzRNM9qLX375ZS1evFi5ubk699xzNW3atMi55uZmnXjiiXrzzTeHJOhQiWWrVAAA0F9bW5t8Pp/6+vokSQUFBSosLJTNFvUG4wAAAMCIEUtPFPV3vE899ZSOPfZY1dTUaPny5dp333315JNPRs739vbq7bffHnxqAAAwaoRCIfn9fm3YsEF9fX1KSkrS5MmTVVxcTKEGAACAcSHq6Z+333677rrrLv3mN7+RJD3zzDM677zz1N3drZ/85CdDFhAAAIwsHR0d8vl86unpkSTl5eWpqKhIdrvd4mQAAADA8Im6VFuzZo3mzZsX+fiUU05RQUGBjj32WPX19emEE04YkoAAAGBkCIfDqq2tVX19vSQpMTFRbrdbmZmZFicDAAAAhl/UpVpWVpZqa2s1ceLEyLHDDjtM//jHP3TMMcfI5/MNSUAAAGC9rq4ueb1edXd3S5JycnJUUlLC6DQAAACMW1GXat/73vf0yiuv6Pvf/36/44ceeqhefPFFHXPMMXEPBwAArGWapurq6lRXVyfTNJWQkCCXyyWHw2F1NAAAAMBSUa8kfPHFFyslJWXAc7NmzdKLL76os846K27BAACAtbq7u7Vu3TrV1tbKNE05HA6Vl5dTqAEAAACSDNM0TatDWCmWrVIBABgPTNNUQ0ODampqZJqm7Ha7SkpKlJ2dLcMwrI4HAAAADJlYeqKop38OpK+vTxs3bpTT6eSn1gAAjAG9vb3yer3q6OiQJGVmZsrtdisxMdHiZAAAAMDIEvX0z9tuu01dXV2SpFAopEsvvVQZGRnaddddlZ+fr/POO099fX1DFhQAAAwd0zTV2NioyspKdXR0yGazyeVyqaysjEINAAAAGEDUpdqiRYvU1tYmSbr77rv1yCOP6IEHHtCqVav02GOP6aWXXtLdd989ZEEBAMDQ2DLy3O/3KxwOKz09XeXl5crLy2O6JwAAALANUU///PbSa0899ZRuueUWnXvuuZKk6dOnS5J+//vf67LLLotzxKFRUVGhiooKhUIhq6MAAGAJ0zTV0tKiqqoqhUIhGYahoqIi5efnU6YBAAAAOxD1RgU2m021tbUqKChQfn6+li5dqt133z1yfsOGDdp9990ja7CMFmxUAAAYj4LBoPx+v1pbWyVJqamp8ng829zpGwAAABgPhmyjggcffFAZGRlKSkpSU1NTv3NtbW1KTk6OPS0AABhWgUBAPp9PwWBQhmHI6XTK6XQyOg0AAACIQdSlWmlpqR588EFJUnJysj799FMdcsghkfNvvfWWdtlll/gnBAAAcREKhVRVVaXm5mZJm/8/93g8SktLszgZAAAAMPpEXapt3Lhxu+cPOOCAfiUbAAAYOdrb2+X1eiM7dRcUFKiwsFA2W9R7FgEAAAD4lpimf27P97///XjdCgAAxEkoFFJNTY0aGxslSUlJSfJ4PEpPT7c4GQAAADC6xa1Uq66uVl9fn0pLS+N1SwAAsBM6Ojrk8/nU09MjScrLy1NRUZHsdrvFyQAAAIDRL26l2uGHH67KykqFQqF43RIAAAxCOBxWbW2t6uvrJUmJiYlyu93KzMy0OBkAAAAwdsStVHviiSfU2dkZr9sBAIBB6OrqktfrVXd3tyQpJydHJSUljE4DAAAA4ixupdqMGTPidSsAABAj0zRVV1enuro6maaphIQEuVwuORwOq6MBAAAAY1LcSjUAAGCN7u5u+Xy+yIhxh8Mhl8ulhAT+mwcAAACGii1eN1q5ciVTSwAAGEamaaqhoUFr1qxRZ2en7Ha7PB6PSktLKdQAAACAIRbX77hN04zn7QAAwDb09vbK6/Wqo6NDkpSRkSG3262kpCSLkwEAAADjQ9Sl2vz587d7vrW1VYZh7HQgAACwbaZpqqmpSdXV1QqHw7LZbCouLlZubi7/DwMAAADDKOpS7cUXX9SRRx6pwsLCAc+HQqG4hQIAAFvr6+uTz+dTW1ubJCk9PV1ut1vJyckWJwMAAADGn6hLtWnTpunEE0/UT37ykwHPr1ixQv/4xz/iFgwAAGxmmqZaW1vl9/sVCoVkGIaKioqUn5/P6DQAAADAIlFvVLDffvvp008/3eb55ORklZaWxiXUcKioqND06dM1Y8YMq6MAALBNwWBQmzZt0qZNmxQKhZSamqqpU6eqoKCAQg0AAACwkGFGubtAT0+PQqGQ0tLShjrTsAoEAnI4HGptbVVWVpbVcQAAiAgEAvL5fAoGgzIMQ06nU06nkzINAAAAGCKx9ERRT/9kvRYAAIZHKBRSVVWVmpubJW3+P9jj8Yy5H2wBAAAAo1nU0z8H8qMf/UjV1dXxygIAwLjX3t6uysrKSKFWUFCgqVOnUqgBAAAAI0zUI9UG8s4776irqyteWQAAGLfC4bCqq6vV2NgoSUpKSpLb7VZGRobFyQAAAAAMZKdKNQAAsPM6Ojrk8/nU09MjScrNzVVxcbHsdrvFyQAAAABsy06VahMmTFBiYmK8sgAAMK6Ew2HV1taqvr5ekpSYmCi3263MzEyLkwEAAADYkZ0q1T7//PN45QAAYFzp6uqS1+tVd3e3JCknJ0clJSWMTgMAAABGCaZ/AgAwjEzTVF1dnerq6mSaphISEuRyueRwOKyOBgAAACAGg9r9MysrS+vXr9/qfQAAsG09PT1at26damtrZZqmsrKyVF5eTqEGAAAAjEKDGqlmmuaA7wMAgK2ZpqnGxkZVV1fLNE3Z7XaVlJQoOztbhmFYHQ8AAADAIDD9EwCAIdTb2yuv16uOjg5JUkZGhtxut5KSkixOBgAAAGBnUKoBADAETNNUc3OzqqqqFA6HZbPZVFxcrNzcXEanAQAAAGMApRoAAHHW19cnn8+ntrY2SVJaWpo8Ho+Sk5MtTgYAAAAgXijVAACIo5aWFvn9foVCIRmGoaKiIuXn5zM6DQAAABhjKNUAAIiDYDAov9+v1tZWSVJqaqo8Ho9SUlIsTgYAAABgKFCqAQCwkwKBgHw+n4LBoAzDkNPplNPpZHQaAAAAMIYNqlT78Y9/rKysrK3eBwBgPAmFQqqurlZTU5MkKTk5WR6PR2lpaRYnAwAAADDUDNM0TatDWCkQCMjhcKi1tZVyEAAQtfb2dnm9XvX19UmS8vPzVVRUJJvNZnEyAAAAAIMVS08U83f+N9xwgzo7O7c63tXVpRtuuCHW2wEAMKqEw2H5/X6tX79efX19SkpK0qRJk1RSUkKhBgAAAIwjMY9Us9vtqq6ultPp7He8sbFRTqdToVAorgGHSkVFhSoqKhQKhVRZWclINQDADnV0dMjn86mnp0eSlJubq+LiYtntdouTAQAAAIiHWEaqxbymmmmaAy68vHLlSuXm5sZ6O8ssWLBACxYsiHyxAADYlnA4rLq6OtXV1UmSEhMT5Xa7lZmZaXEyAAAAAFaJulTLycmRYRgyDEPl5eX9irVQKKT29nb98pe/HJKQAABYpaurS16vV93d3ZKk7OxsuVwuRqcBAAAA41zUpdo999wj0zR13nnn6frrr+83uispKUllZWU68MADhyQkAADDzTRN1dfXq7a2VqZpKiEhQS6Xi9HNAAAAACTFUKqdffbZkqSJEyfqBz/4gRISYp45CgDAqNDT0yOv1xvZmCcrK0sul0uJiYkWJwMAAAAwUsS8Tdmhhx6qb775RldddZVOP/30yPoyr7zyir744ou4BwQAYLiYpqmGhgZVVlaqs7NTdrtdHo9HEyZMoFADAAAA0E/Mpdrbb7+tPfbYQx988IEWL16s9vZ2SZs3Krj22mvjHhAAgOHQ29urDRs2qKqqSqZpKiMjQ1OnTo2sKQoAAAAA3xZzqXbFFVfopptu0uuvv66kpKTI8cMPP1zvv/9+XMMBADDUTNNUU1OTKisr1d7eLpvNppKSEk2cOLHf/3MAAAAA8G0xL4y2atUqPfXUU1sddzqdamhoiEsoAACGQ19fn/x+vwKBgCQpLS1NHo9HycnJFicDAAAAMNLFXKplZ2erurpaEydO7Hf83//+t1wuV9yCAQAwlFpaWuT3+xUKhWQYhoqKipSfn89UTwAAAABRiXn652mnnabLL79cNTU1MgxD4XBYy5Yt06WXXqqzzjprKDICABA3wWBQ33zzjTZt2qRQKKTU1FRNnTpVBQUFFGoAAAAAohbzSLWbb75ZCxYskMfjUSgU0vTp0xUKhXTGGWfoqquuGoqMAADERSAQkM/nUzAYlGEYcjqdcjqdlGkAAAAAYmaYpmkO5oFer1erVq1Se3u79tlnH02dOjXe2YZFIBCQw+FQa2ursrKyrI4DABgCoVBI1dXVampqkiQlJyfL4/EoLS3N4mQAAAAARpJYeqKYR6pt4fF4IqPVVq1apebmZuXk5Az2dgAADIn29nb5fD719vZKkvLz81VUVCSbLeYVEAAAAAAgIuZXFBdddJEefvhhSZt/8n/ooYdq3333lcfj0dKlS+OdDwCAQQmHw6qqqtL69evV29urpKQkTZo0SSUlJRRqAAAAAHZazK8qnn32We21116SpBdffFHr16/XV199pYsvvlhXXnll3AMCABCrzs5OrVmzRg0NDZKk3NxcTZ06VRkZGRYnAwAAADBWxFyqNTQ0qKioSJL08ssv65RTTlF5ebnOO+88rVq1Ku4BAQCIVjgcVk1NjdauXauenh4lJiZq4sSJcrvdstvtVscDAAAAMIbEXKoVFhbqyy+/VCgU0quvvqojjzxS0uZRAbxgAQBYpaurS2vXrlVdXZ0kKTs7W+Xl5crMzLQ4GQAAAICxKOaNCs4991ydcsopKi4ulmEYmj17tiTpgw8+0K677hr3gAAAbI9pmqqvr1dtba1M01RCQoJcLpccDofV0QAAAACMYTGXatddd5322GMPbdq0SSeffLKSk5MlSXa7XVdccUXcAwIAsC09PT3yer3q7OyUJGVlZcnlcikxMdHiZAAAAADGuqhKtdzcXFVWVio/P1/nnXee7r333q2m05x99tlDEhAAgO8yTVONjY2qrq6WaZqy2WxyuVzKzs6WYRhWxwMAAAAwDkS1plpvb68CgYAk6fHHH1d3d/eQhgIAYFt6e3u1YcMGVVVVyTRNZWRkqLy8XDk5ORRqAAAAAIZNVCPVDjzwQB1//PHab7/9ZJqmfvOb3yg1NXXAax955JG4BgQAQNo8Oq25uVlVVVUKh8Oy2WwqKipSXl4eZRoAAACAYRdVqfaf//mfuvvuu7Vu3TpJUmtrK6PVAADDpq+vT36/PzJqOi0tTR6PJ7KuJwAAAAAMN8M0TTOWB0ycOFEff/yx8vLyhirTsAoEAnI4HGptbVVWVpbVcQAA39HS0iK/369QKCTDMFRYWKiCggJGpwEAAACIu1h6opg3KjjssMOUlJQUl6AAAGxLMBhUVVWVWlpaJEmpqalyu93bXH4AAAAAAIYTGxUAAEacQCCgyspKtbS0yDAMOZ1OTZ48mUINAAAAwIjBRgUAgBEjFAqpurpaTU1NkqTk5GR5PB6lpaVZnAwAAAAA+ot5owLDMMbERgUVFRWqqKhQKBSyOgoAQFJ7e7t8Pp96e3slSfn5+SoqKpLNFtWgagAAAAAYVmxUwEYFAGCpcDismpoaNTQ0SJKSkpLkdruVkZFhcTIAAAAA403cNyr4tg0bNgw6GAAA39bZ2Smv16uenh5JmzfGKS4ult1utzgZAAAAAGzfoObUvP3225o3b56mTJmiKVOm6Nhjj9W7774b72wAgDFqy+i0tWvXqqenRwkJCSorK5Pb7aZQAwAAADAqxFyq/ed//qdmz56ttLQ0/eY3v4lsWnDEEUfoqaeeGoqMAIAxpKurS2vXrlVdXZ0kKTs7W+Xl5UzBBwAAADCqxLym2rRp0/Tzn/9cF198cb/jd911lx588EGtXr06rgGHGmuqAcDwME1T9fX1qq2tlWmastvtcrvdcjgcVkcDAAAAAEmx9UQxj1Rbv3695s2bt9XxY489lvXWAAAD6unp0bp161RTUyPTNJWVlaXy8nIKNQAAAACjVswbFXg8Hi1ZskRTpkzpd/yNN96Qx+OJWzAAwOhnmqYaGxtVXV0t0zRls9nkcrmUnZ0twzCsjgcAAAAAgxZzqXbJJZfoN7/5jVasWKGZM2dKkpYtW6bHHntM9957b9wDAgBGp97eXvl8PrW3t0uSMjIy5Ha7lZSUZHEyAAAAANh5MZdq559/voqKinTnnXfqmWeekbR5nbWnn35axx13XNwDAgBGF9M01dzcrKqqKoXDYRmGoeLiYuXl5TE6DQAAAMCYEfNGBWMNGxUAQPz09fXJ7/crEAhIktLS0uTxeJScnGxxMgAAAADYsVh6oqhGqpmmyegCAMB2tbS0yO/3KxQKyTAMFRYWqqCggP8/AAAAAIxJUe3+udtuu+m//uu/1Nvbu93r1qxZo/PPP1+33HJLXMIBAEa+YDCoTZs2adOmTQqFQkpNTdWUKVPkdDop1AAAAACMWVGNVPvDH/6gyy+/XL/61a905JFHav/991dJSYlSUlLU3NysL7/8Uu+9956++OILXXDBBTr//POHOjcAYAQIBALy+XwKBoMyDEMFBQVyOp2y2aL6mQ0AAAAAjFoxran23nvv6emnn9a7776rb775Rl1dXcrPz9c+++yjOXPm6Mwzz1ROTs5Q5o071lQDgNiFQiFVV1erqalJkpScnCyPx6O0tDSLkwEAAADA4MXSE7FRAaUaAMSkvb1dPp8vsiRAfn6+ioqKGJ0GAAAAYNSL+0YFAACEw2HV1NSooaFBkpSUlCS3262MjAyLkwEAAADA8KNUAwDsUGdnp7xer3p6eiRJubm5Ki4ult1utzgZAAAAAFiDUg0AsE3hcFh1dXWqr6+XaZpKSEiQ2+1mujwAAACAcY9SDQAwoK6uLvl8PnV1dUmSsrOzVVJSooQE/usAAAAAAF4ZAQD6MU1T9fX1qq2tlWmastvtcrlcys7OtjoaAAAAAIwYg9qqbd26dbrqqqt0+umnq66uTpL0yiuv6IsvvohrOADA8Orp6dG6detUU1Mj0zSVlZWl8vJyCjUAAAAA+I6YS7W3335be+yxhz744AMtXrxY7e3tkqSVK1fq2muvjXtAAMDQM01TDQ0NWrNmjTo7O2Wz2eR2uzVhwgQlJiZaHQ8AAAAARpyYS7UrrrhCN910k15//XUlJSVFjh9++OF6//334xoOADD0ent7tWHDBlVVVSkcDisjI0Pl5eXKzc2VYRhWxwMAAACAESnmNdVWrVqlp556aqvjTqdTDQ0NcQkFABh6pmmqubk5UqYZhqHi4mLl5eVRpgEAAADADsRcqmVnZ6u6uloTJ07sd/zf//63XC5X3IIBAIZOX1+f/H6/AoGAJCktLU0ej0fJyckWJwMAAACA0SHm6Z+nnXaaLr/8ctXU1MgwDIXDYS1btkyXXnqpzjrrrKHICACIo9bWVlVWVioQCMgwDBUVFWny5MkUagAAAAAQg5hHqt18881asGCBPB6PQqGQpk+frlAopDPOOENXXXXVUGQEAMRBMBhUVVWVWlpaJEkpKSnyeDxKTU21NhgAAAAAjEKGaZrmYB64adMmff7552pvb9c+++yjqVOnxjvbsAgEAnI4HGptbVVWVpbVcQBgSAQCAfn9fvX19UnavA6m0+mUzRbzgGUAAAAAGLNi6YliHqm2RWlpqUpLSwf7cADAMAiFQqqurlZTU5MkKTk5WR6PR2lpaRYnAwAAAIDRLeZS7bzzztvu+UceeWTQYQAA8dPe3i6fz6fe3l5JUn5+voqKihidBgAAAABxEHOp1tzc3O/jvr4+ff7552ppadHhhx8et2AAgMEJh8OqqalRQ0ODJCkpKUlut1sZGRkWJwMAAACAsSPmUu25557b6lg4HNb555+vyZMnxyUUAGBwOjs75fV61dPTI0nKzc1VcXGx7Ha7xckAAAAAYGwZ9EYF3/X1119r1qxZqq6ujsfthg0bFQAYC8LhsOrq6lRfXy/TNJWQkCC3282/awAAAAAQg2HZqOC71q1bp2AwGK/bAQCi1N3dLa/Xq66uLklSdna2SkpKlJAQt3/iAQAAAADfEfMrroULF/b72DRNVVdX66WXXtLZZ58dt2AAgO0zTVP19fWqra2VaZqy2+1yuVzKzs62OhoAAAAAjHkxl2r//ve/+31ss9lUUFCgO++8c4c7gwIA4qOnp0der1ednZ2SpKysLLlcLiUmJlqcDAAAAADGh5hLtbfeemsocgAAomCaphobG1VTU6NwOCybzaaSkhLl5OTIMAyr4wEAAADAuMGCOwAwSvT29srn86m9vV2SlJGRIbfbraSkJIuTAQAAAMD4E1Wpts8++0Q9AuLTTz/dqUAAgP5M01RLS4v8fr/C4bAMw1BxcbHy8vIYnQYAAAAAFomqVDv++OOHOAYAYCB9fX3y+/0KBAKSpLS0NHk8HiUnJ1ucDAAAAADGN8M0TdPqEFYKBAJyOBxqbW1VVlaW1XEAIKK1tVV+v1/BYFCGYaiwsFAFBQWMTgMAAACAIRJLT8SaagAwwoRCIfn9frW0tEiSUlJS5PF4lJqaam0wAAAAAECELdYHhEIh3XHHHfre976noqIi5ebm9nuzwgknnKCcnByddNJJljw/AMRLW1ubKisrI4Wa0+nUlClTKNQAAAAAYISJuVS7/vrrddddd+nUU09Va2urFi5cqPnz58tms+m6664bgog7duGFF+qJJ56w5LkBIB5CoZB8Pp82bNigvr4+JScna8qUKSoqKpLNFvM/1QAAAACAIRbzK7Unn3xSDz74oC655BIlJCTo9NNP10MPPaRrrrlG77///lBk3KFZs2YpMzPTkucGgJ3V3t6uNWvWqKmpSZKUn5+vqVOnKi0tzeJkAAAAAIBtiblUq6mp0R577CFJysjIUGtrqyTpmGOO0UsvvRRzgHfeeUfz5s1TSUmJDMPQ888/v9U1FRUVKisrU0pKig444AB9+OGHMT8PAIw04XBYVVVVWr9+vXp7e5WUlKRJkyappKSE0WkAAAAAMMLF/KrN7XarurpakjR58mS99tprkqSPPvpIycnJMQfo6OjQXnvtpYqKigHPP/3001q4cKGuvfZaffrpp9prr700Z84c1dXVxfxcktTT06NAINDvDQCGW2dnp9asWaOGhgZJUm5urqZOnaqMjAyLkwEAAAAAohFzqXbCCSdoyZIlkqRf//rXuvrqqzV16lSdddZZOu+882IOcPTRR+umm27SCSecMOD5u+66Sz/72c907rnnavr06XrggQeUlpamRx55JObnkqTf//73cjgckTePxzOo+wDAYJimqdraWq1bt049PT1KSEhQWVmZ3G637Ha71fEAAAAAAFFKiPUBt9xyS+T9U089VRMmTNC//vUvTZ06VfPmzYtruN7eXn3yySdatGhR5JjNZtPs2bO1fPnyQd1z0aJFWrhwYeTjQCBAsQZgWHR3d8vr9aqrq0uS5HA45HK5lJAQ8z/FAAAAAACLxfxKrru7WykpKZGPv//97+v73/9+XENt0dDQoFAopMLCwn7HCwsL9dVXX0U+nj17tlauXKmOjg653W79/e9/14EHHjjgPZOTkwc1TRUABss0TdXX16u2tlamacput8vlcik7O9vqaAAAAACAQYq5VHM6nTrhhBP04x//WEccccSIWEz7jTfesDoCAAyop6dHXq9XnZ2dkqTMzEy53W4lJiZanAwAAAAAsDNibsQef/xxdXZ26rjjjpPL5dJFF12kjz/+eCiyKT8/X3a7XbW1tf2O19bWqqioaEieEwDiwTRNNTY2as2aNers7JTNZpPb7VZZWRmFGgAAAACMAYPaqODvf/+7amtrdfPNN+vLL7/U97//fZWXl+uGG26Ia7ikpCTtt99+kY0RJCkcDmvJkiXbnN4JAFbr7e3Vhg0b5Pf7FQ6HlZ6ervLycuXm5sowDKvjAQAAAADiYNBzNzMzM3Xuuefqtdde02effab09HRdf/31Md+nvb1dK1as0IoVKyRJGzZs0IoVK7Rp0yZJ0sKFC/Xggw/q8ccf1+rVq3X++eero6ND55577mCjA8CQME1Tzc3NWrNmjdrb22UYhkpKSjRp0iQlJSVZHQ8AAAAAEEeD3nKuu7tbL7zwgp566im9+uqrKiws1G9/+9uY7/Pxxx/rsMMOi3y8ZWfOs88+W4899phOPfVU1dfX65prrlFNTY323nvvyPMBwEgRDAbl8/kUCAQkSWlpafJ4PGyMAgAAAABjlGGaphnLA/75z3/qqaee0vPPP6+EhASddNJJOvPMM3XIIYcMVcYhUVFRoYqKCoVCIVVWVqq1tVVZWVlWxwIwCrW2tsrv9ysYDMowDBUWFqqgoICpngAAAAAwygQCATkcjqh6ophLtbS0NB1zzDE688wzNXfu3FG/4HYsXywA+LZQKCS/36+WlhZJUkpKijwej1JTU60NBgAAAAAYlFh6opinf9bW1iozM3PQ4QBgLGhra5PP51NfX58kyel0yul0ymYb9FKVAAAAAIBRJOZSjUINwHgWCoVUXV2tpqYmSVJycrLcbrfS09MtTgYAAAAAGE6D3qgAAMab9vZ2+Xw+9fb2SpLy8/NVVFTE6DQAAAAAGIco1QBgB8LhsGpqatTQ0CBJSkxMlMfjUUZGhsXJAAAAAABWoVQDgO3o7OyU1+tVT0+PJCk3N1fFxcWy2+0WJwMAAAAAWGnQpdratWu1bt06HXLIIUpNTZVpmjIMI57ZAMAypmmqrq5OdXV1Mk1TCQkJcrvd7BIMAAAAAJAkxbwQUGNjo2bPnq3y8nLNnTtX1dXVkqSf/OQnuuSSS+IecKhUVFRo+vTpmjFjhtVRAIww3d3dWrt2rWpra2WaphwOh8rLyynUAAAAAAARMZdqF198sRISErRp0yalpaVFjp966ql69dVX4xpuKC1YsEBffvmlPvroI6ujABghTNNUfX291qxZo66uLtntdpWWlmrChAlKSGC2PAAAAADg/8T8KvG1117TP//5T7nd7n7Hp06dqm+++SZuwQBgOPX09Mjn86mjo0OSlJmZKbfbrcTERIuTAQAAAABGophLtY6Ojn4j1LZoampScnJyXEIBwHAxTVNNTU2qrq5WOByWzWZTSUmJcnJyWCcSAAAAALBNMU//PPjgg/XEE09EPjYMQ+FwWLfddpsOO+ywuIYDgKHU29urDRs2yO/3KxwOKz09XeXl5crNzaVQAwAAAABsV8wj1W677TYdccQR+vjjj9Xb26vLLrtMX3zxhZqamrRs2bKhyAgAcWWaplpaWlRVVaVQKCTDMFRcXKy8vDzKNAAAAABAVGIu1XbffXdVVlbq/vvvV2Zmptrb2zV//nwtWLBAxcXFQ5ERAOImGAzK7/ertbVVkpSWlia3262UlBSLkwEAAAAARhPDNE3T6hBWCgQCcjgcam1tVVZWltVxAAyh1tZW+f1+BYNBGYYhp9Mpp9PJ6DQAAAAAgKTYeqKY11SbMmWKrrvuOq1Zs2bQAQFgOIVCIW3atEnffPONgsGgUlJSNGXKFBUWFlKoAQAAAAAGJeZSbcGCBXrppZe0yy67aMaMGbr33ntVU1MzFNmGVEVFhaZPn64ZM2ZYHQXAEGpra1NlZaVaWlokSU6nU1OmTFFqaqq1wQAAAAAAo9qgp39WVlbqySef1N/+9jdt2LBBhx12mH784x/rrLPOinfGIcX0T2BsCoVCqq6uVlNTkyQpOTlZbrdb6enpFicDAAAAAIxUsfREcVlT7f3339f555+vzz77TKFQaGdvN6wo1YCxp6OjQ16vV729vZKkvLw8FRUVyW63W5wMAAAAADCSxdITxbz757d9+OGHeuqpp/T0008rEAjo5JNP3pnbAcBOCYfDqq2tVX19vSQpMTFRHo9HGRkZFicDAAAAAIw1MZdq3532efjhh+vWW2/V/PnzeeEKwDKdnZ3yer3q6emRJOXk5KikpITRaQAAAACAIRFzqbbrrrtqxowZWrBggU477TQVFhYORS4AiIppmqqrq1NdXZ1M01RCQoLcbjfTuQEAAAAAQyrmUu3rr7/W1KlThyILAMSku7tbXq9XXV1dkiSHwyGXy6WEhJ2a2Q4AAAAAwA7F/MqTQg2A1UzTVENDg2pqamSapux2u1wulxwOhwzDsDoeAAAAAGAciKpUy83NVWVlpfLz85WTk7PdF61NTU1xCwcA39XT0yOfz6eOjg5JUmZmptxutxITEy1OBgAAAAAYT6Iq1e6++25lZmZG3mckCIDhZpqmmpqaVF1drXA4LJvNppKSkh0W/QAAAAAADAXDNE3T6hBWCgQCcjgcam1tZWFzYITq6+uTz+dTW1ubJCk9PV0ej0dJSUkWJwMAAAAAjCWx9ES2WG9ut9tVV1e31fHGxkbZ7fZYb2eZiooKTZ8+XTNmzLA6CoBtME1Tzc3NqqysVFtbmwzDUElJiSZNmkShBgAAAACwVMwj1Ww2m2pqauR0Ovsdr6qq0uTJkyO78I0WjFQDRqZgMCi/36/W1lZJUlpamtxut1JSUixOBgAAAAAYq2LpiaLe/fO+++6TJBmGoYceekgZGRmRc6FQSO+884523XXXQUYGgP/T2toqv9+vYDAowzDkdDrldDpZOw0AAAAAMGJEXardfffdkjZPx3rggQf6TfVMSkpSWVmZHnjggfgnBDBuhEIhVVVVqbm5WZKUkpIij8ej1NRUi5MBAAAAANBf1KXahg0bJEmHHXaYFi9erJycnCELBWD8aWtrk8/nU19fnySpoKBAhYWFstliXvoRAAAAAIAhF3WptsVbb701FDkAjFOhUEg1NTVqbGyUJCUnJ8vtdis9Pd3iZAAAAAAAbFvMQ0BOPPFE3XrrrVsdv+2223TyySfHJRSA8aGjo0Nr1qyJFGp5eXmaMmUKhRoAAAAAYMSLuVR75513NHfu3K2OH3300XrnnXfiEgrA2BYOh1VdXa1169apt7dXiYmJmjhxolwuV7/1GgEAAAAAGKlinv7Z3t6upKSkrY4nJiYqEAjEJRSAsaurq0ter1fd3d2SpJycHJWUlFCmAQAAAABGlZhHqu2xxx56+umntzr+X//1X5o+fXpcQgEYe0zTVG1trdauXavu7m4lJCSorKxMHo+HQg0AAAAAMOrEPFLt6quv1vz587Vu3TodfvjhkqQlS5bob3/7m/7+97/HPSCA0a+7u1ter1ddXV2SJIfDIZfLpYSEmP8JAgAAAABgRIj5Fe28efP0/PPP6+abb9azzz6r1NRU7bnnnnrjjTd06KGHDkVGAKOUaZpqaGhQTU2NTNOU3W6Xy+WSw+GQYRhWxwMAAAAAYNAM0zRNq0NYKRAIyOFwqLW1VVlZWVbHAcaM3t5eeb1edXR0SJIyMzPldruVmJhocTIAAAAAAAYWS08U85pqktTS0qKHHnpI//Ef/6GmpiZJ0qeffiq/3z+Y21mioqJC06dP14wZM6yOAowppmmqsbFRlZWV6ujokM1mk8vlUllZGYUaAAAAAGDMiHmk2meffabZs2fL4XBo48aN+vrrrzVp0iRdddVV2rRpk5544omhyjokGKkGxE9fX598Pp/a2tokSenp6fJ4PAPuGAwAAAAAwEgzpCPVFi5cqHPOOUdr1qxRSkpK5PjcuXP1zjvvxJ4WwKhnmqaam5tVWVmptrY2GYah4uJiTZo0iUINAAAAADAmxbxRwUcffaQ///nPWx13uVyqqamJSygAo0cwGJTf71dra6skKS0tTW63u1/pDgAAAADAWBNzqZacnKxAILDV8crKShUUFMQlFIDRIRAIyOfzKRgMyjAMOZ1OOZ1OdvYEAAAAAIx5MU//PPbYY3XDDTeor69PkmQYhjZt2qTLL79cJ554YtwDAhh5QqGQvF6vNm7cqGAwqJSUFE2ZMkWFhYUUagAAAACAcSHmUu3OO+9Ue3u7nE6nurq6dOihh2rKlCnKzMzU7373u6HICGAEaWtrU2VlpZqbmyVJBQUFmjJlilJTUy1OBgAAAADA8Il5+qfD4dDrr7+u9957T5999pna29u17777avbs2UORD8AIEQqFVFNTo8bGRkmbp4K73W6lp6dbnAwAAAAAgOFnmKZpWh3CSrFslQqMVx0dHfJ6vert7ZUk5eXlqaioSHa73eJkAAAAAADETyw9UVQj1e677z79/Oc/V0pKiu67777tXpuRkaHddttNBxxwQPSJAYxI4XBYtbW1qq+vlyQlJibK7XYrMzPT4mQAAAAAAFgrqpFqEydO1Mcff6y8vDxNnDhxu9f29PSorq5OF198sW6//fa4BR0qjFQDBtbV1SWv16vu7m5JUk5OjkpKShidBgAAAAAYs2LpiYZk+ufrr7+uM844IzK6ZSSjVAP6M01TdXV1qqurk2maSkhIkNvt5u8HAAAAAGDMi/v0z1gddNBBuuqqq4bi1gCGUHd3t7xer7q6uiRt3pjE5XIpIWFI/qkAAAAAAGDUsg3mQUuWLNExxxyjyZMna/LkyTrmmGP0xhtvRM6npqbqwgsvjFtIAEPLNE3V19drzZo16urqkt1ul8fjUWlpKYUaAAAAAAADiLlU++Mf/6ijjjpKmZmZuvDCC3XhhRcqKytLc+fOVUVFxVBkBDCEent7tX79elVXV8s0TWVmZqq8vFw5OTkyDMPqeAAAAAAAjEgxr6nmdrt1xRVX6IILLuh3vKKiQjfffLP8fn9cAw6ViooKVVRUKBQKqbKykjXVMO6YpqmmpiZVV1crHA7LZrOpuLhYubm5lGkAAAAAgHFpSDcqyMjI0IoVKzRlypR+x9esWaN99tlH7e3tsSe2EBsVYDzq6+uTz+dTW1ubJCk9PV0ej0dJSUkWJwMAAAAAwDqx9EQxT/889thj9dxzz211/H/+5390zDHHxHo7AMPINE01NzersrJSbW1tMgxDxcXFmjRpEoUaAAAAAAAxiGoF8vvuuy/y/vTp0/W73/1OS5cu1YEHHihJev/997Vs2TJdcsklQ5MSwE4LBoPy+/1qbW2VtHlDEY/Ho5SUFIuTAQAAAAAw+kQ1/XPixInR3cwwtH79+p0ONZyY/onxIBAIyOfzKRgMyjAMOZ1OOZ1O1k4DAAAAAOBbYumJohqptmHDhrgEAzC8QqGQqqqq1NzcLElKSUmRx+NRamqqxckAAAAAABjdoirVBtLQ0CBJys/Pj1sYAPHT3t4ur9ervr4+SVJBQYEKCwtls8W8lCIAAAAAAPiOmF5dt7S0aMGCBcrPz1dhYaEKCwuVn5+vCy64QC0tLUMUEUAsQqGQ/H6/1q9fr76+PiUlJWny5MkqLi6mUAMAAAAAIE6iHqnW1NSkAw88UH6/X2eeeaamTZsmSfryyy/12GOPacmSJfrXv/6lnJycIQsLYPs6Ojrk8/nU09MjScrLy1NRUZHsdrvFyQAAAAAAGFuiLtVuuOEGJSUlad26dSosLNzq3A9/+EPdcMMNuvvuu+MeEsD2hcNh1dbWqr6+XpKUmJgot9utzMxMi5MBAAAAADA2RT0X7Pnnn9cdd9yxVaEmSUVFRbrtttv03HPPxTUcgB3r6urS2rVrI4VaTk6OysvLKdQAAAAAABhCUY9Uq66u1m677bbN87vvvrtqamriEgrAjpmmqbq6OtXV1ck0TSUkJMjlcsnhcFgdDQAAAACAMS/qUi0/P18bN26U2+0e8PyGDRuUm5sbt2AAtq27u1s+n0+dnZ2SJIfDIZfLpYSEQW/oCwAAAAAAYhD19M85c+boyiuvVG9v71bnenp6dPXVV+uoo46KazgA/Zmmqfr6eq1Zs0adnZ2y2+3yeDwqLS2lUAMAAAAAYBgZpmma0Vzo8/m0//77Kzk5WQsWLNCuu+4q0zS1evVq/fGPf1RPT48+/vhjeTyeoc4cV4FAQA6HQ62trcrKyrI6DrBNvb298nq96ujokCRlZmbK7XYrMTHR4mQAAAAAAIwNsfREUQ9tcbvdWr58uX71q19p0aJF2tLFGYahI488Uvfff/+oK9SA0cA0TTU1Nam6ulrhcFg2m03FxcXKzc2VYRhWxwMAAAAAYFyKab7YxIkT9corr6i5uVlr1qyRJE2ZMoW11IAh0tfXJ5/Pp7a2NklSenq6PB6PkpKSLE4GAAAAAMD4NqhFmHJycvS9730v3lkA/C/TNNXa2iq/369QKCTDMFRUVKT8/HxGpwEAAAAAMAKwsjkwwgSDQfn9frW2tkqSUlNT5fF4lJKSYnEyAAAAAACwBaUaMIIEAgH5fD4Fg0EZhiGn0ymn08noNAAAAAAARphxW6pVVFSooqJCoVDI6iiAQqGQqqqq1NzcLElKTk6Wx+NRWlqaxckAAAAAAMBADHPLNp7jVCxbpQJDob29XV6vV319fZKkgoICFRYWymazWZwMAAAAAIDxJZaeaNyOVAOsFg6HVV1drcbGRklSUlKSPB6P0tPTLU4GAAAAAAB2hFINsEBHR4d8Pp96enokSXl5eSoqKpLdbrc4GQAAAAAAiAalGjCMwuGwamtrVV9fL0lKTEyU2+1WZmamxckAAAAAAEAsKNWAYdLV1SWv16vu7m5JUk5OjkpKShidBgAAAADAKESpBgwx0zRVV1enuro6maaphIQEuVwuORwOq6MBAAAAAIBBolQDhlB3d7d8Pp86OzslSQ6HQy6XSwkJ/NUDAAAAAGA045U9MARM01RjY6Oqq6tlmqbsdrtKSkqUnZ0twzCsjgcAAAAAAHYSpRoQZ729vfJ6vero6JAkZWRkyO12KykpyeJkAAAAAAAgXijVgDgxTVPNzc2qqqpSOByWzWZTcXGxcnNzGZ0GAAAAAMAYQ6kGxEFfX598Pp/a2tokSenp6XK73UpOTrY4GQAAAAAAGAqUasBOamlpkd/vVygUkmEYKioqUn5+PqPTAAAAAAAYwyjVgEEKBoPy+/1qbW2VJKWmpsrj8SglJcXiZAAAAAAAYKhRqgGDEAgE5PP5FAwGZRiGnE6nnE4no9MAAAAAABgnKNWAGIRCIVVVVam5uVmSlJycLI/Ho7S0NIuTAQAAAACA4USpBkSpvb1dXq9XfX19kqSCggIVFhbKZrNZnAwAAAAAAAw3SjVgB8LhsKqrq9XY2ChJSkpKktvtVkZGhsXJAAAAAACAVSjVgO3o6OiQz+dTT0+PJCk3N1fFxcWy2+0WJwMAAAAAAFaiVAMGEA6HVVdXp7q6OklSYmKi3G63MjMzLU4GAAAAAABGAko14Du6urrk9XrV3d0tScrJyVFJSQmj0wAAAAAAQASlGvC/TNOMjE4zTVMJCQlyuVxyOBxWRwMAAAAAACMMpRogqaenR16vV52dnZKkrKwsud1uJSTwVwQAAAAAAGyNxgDjmmmaamxsVHV1tUzTlN1uV0lJibKzs2UYhtXxAAAAAADACEWphnGrt7dXXq9XHR0dkqSMjAy53W4lJSVZnAwAAAAAAIx0lGoYd0zTVHNzs6qqqhQOh2Wz2VRcXKzc3FxGpwEAAAAAgKhQqmFc6evrk8/nU1tbmyQpLS1NHo9HycnJFicDAAAAAACjCaUaxo2Wlhb5/X6FQiEZhqGioiLl5+czOg0AAAAAAMRs3JZqFRUVqqioUCgUsjoKhlgwGJTf71dra6skKTU1VR6PRykpKRYnAwAAAAAAo5VhmqZpdQgrBQIBORwOtba2Kisry+o4iLNAICCfz6dgMCjDMOR0OuV0OhmdBgAAAAAAthJLTzRuR6phbAuFQqqurlZTU5MkKTk5WR6PR2lpaRYnAwAAAAAAYwGlGsac9vZ2eb1e9fX1SZLy8/NVVFQkm81mcTIAAAAAADBWUKphzAiHw6qpqVFDQ4MkKSkpSW63WxkZGRYnAwAAAAAAYw2lGsaEjo4O+Xw+9fT0SJJyc3NVXFwsu91ucTIAAAAAADAWUaphVAuHw6qrq1NdXZ0kKTExUW63W5mZmRYnAwAAAAAAYxmlGkatrq4ueb1edXd3S5Kys7PlcrkYnQYAAAAAAIYcpRpGHdM0VV9fr9raWpmmqYSEBLlcLjkcDqujAQAAAACAcYJSDaNKT0+PvF6vOjs7JUlZWVlyuVxKTEy0OBkAAAAAABhPKNUwKpimqcbGRlVXV8s0TdntdpWUlCg7O1uGYVgdDwAAAAAAjDOUahjxent75fP51N7eLknKyMiQ2+1WUlKSxckAAAAAAMB4RamGEcs0TTU3N6uqqkrhcFg2m01FRUXKy8tjdBoAAAAAALAUpRpGpL6+Pvn9fgUCAUlSWlqaPB6PkpOTLU4GAAAAAABAqYYRqKWlRX6/X6FQSIZhqKioSPn5+YxOAwAAAAAAIwalGkaMYDCoqqoqtbS0SJJSU1Pl8XiUkpJibTAAAAAAAIDvoFTDiBAIBOTz+RQMBmUYhpxOp5xOJ6PTAAAAACBKoVBIfX19VscARrTExETZ7fa43ItSDZYKhUKqrq5WU1OTJCk5OVkej0dpaWkWJwMAAACA0cE0TdXU1ERm/QDYvuzsbBUVFe30QB5KNVimvb1dPp9Pvb29kqT8/HwVFRXJZrNZnAwAAAAARo8thZrT6VRaWhozfoBtME1TnZ2dqqurkyQVFxfv1P0o1TDswuGwampq1NDQIElKSkqS2+1WRkaGxckAAAAAYHQJhUKRQi0vL8/qOMCIl5qaKkmqq6uT0+ncqamglGoYVp2dnfJ6verp6ZEk5ebmqri4OG7zmQEAAABgPNmyhhpL6ADR2/L3pa+vj1INI184HFZdXV1kiGViYqLcbrcyMzMtTgYAAAAAox9TPoHoxevvC6UahlxXV5e8Xq+6u7slbV4Q0OVyMToNAAAAAACMWqwIjyFjmqbq6uq0du1adXd3KyEhQRMmTFBpaSmFGgAAAACMIOFQWBuXbtSqv63SxqUbFQ6FrY4UF2VlZbrnnnt26h5Lly6VYRhx211148aNMgxDK1asiMv9DMPQ888/H5d7xVs0n+tjjz2m7OzsuD1nvH+/todSDUOip6dH69atU01NjUzTVFZWlqZOnSqHw2F1NAAAAADAt6xevFr3lt2rxw97XIvPWKzHD3tc95bdq9WLVw/5cy9fvlx2u10/+tGPhvy5ojFr1ixddNFF/Y7NnDlT1dXVw/p6dnvF0HeLwurqah199NHDli3eTj31VFVWVlodY1Ao1RBXpmmqoaFBlZWV6uzslM1mk8fj0YQJE5SYmGh1PAAAAADAt6xevFrPnPSMAr5Av+MBf0DPnPTMkBdrDz/8sH7961/rnXfeUVVV1ZA+12AlJSWpqKhoxK5bV1RUpOTk5EE/vre3d1CPM01TwWBw0M+7RWpqqpxO507fxwqUaoib3t5ebdiwQVVVVTJNUxkZGSovL1dOTs6I/ccHAAAAAMYS0zTV29Eb1Vt3oFuv/OYVyRzoRpt/eeXCV9Qd6I7qfqY50I22rb29XU8//bTOP/98/ehHP9Jjjz0WObdlpNaSJUu0//77Ky0tTTNnztTXX38duWbdunU67rjjVFhYqIyMDM2YMUNvvPHGNp/vvPPO0zHHHNPvWF9fn5xOpx5++GGdc845evvtt3XvvffKMAwZhqGNGzcOOGps2bJlmjVrltLS0pSTk6M5c+aoublZkvTqq6/qoIMOUnZ2tvLy8nTMMcdo3bp1MX1tYvHd6Z9er1ennHKKsrOzlZubq+OOO04bN26MnD/nnHN0/PHH63e/+51KSkq0yy67SJL++te/av/991dmZqaKiop0xhlnRDYblP7v9+SVV17Rfvvtp+TkZL333nsKh8O67bbbNGXKFCUnJ6u0tFS/+93v+mVcv369DjvsMKWlpWmvvfbS8uXLI+cGmv754osvasaMGUpJSVF+fr5OOOGEyLkd5RxObFSAnWaappqbm1VVVaVwOCybzaaioiLl5eVRpgEAAADAMOrr7NPvM34fn5uZUpuvTbc6bo3q8kXti5SUnhT17Z955hntuuuu2mWXXfTjH/9YF110kRYtWtTvdeSVV16pO++8UwUFBfrlL3+p8847T8uWLZO0uZSbO3eufve73yk5OVlPPPGE5s2bp6+//lqlpaVbPd9Pf/pTHXLIIaqurlZxcbEk6R//+Ic6Ozt16qmn6qSTTlJlZaV233133XDDDZKkgoKCfoWUJK1YsUJHHHGEzjvvPN17771KSEjQW2+9pVAoJEnq6OjQwoULteeee6q9vV3XXHONTjjhBK1YsUI229COberr69OcOXN04IEH6t1331VCQoJuuukmHXXUUfrss8+UlLT592fJkiXKysrS66+/3u+xN954o3bZZRfV1dVp4cKFOuecc/Tyyy/3e44rrrhCd9xxhyZNmqScnBwtWrRIDz74oO6++24ddNBBqq6u1ldffdXvMVdeeaXuuOMOTZ06VVdeeaVOP/10rV27VgkJW9dSL730kk444QRdeeWVeuKJJ9Tb29svQ7Q5hwOlGnZKX1+f/H6/AoHNQ4XT0tLk8Xh2augpAAAAAGDse/jhh/XjH/9YknTUUUeptbVVb7/9tmbNmhW55ne/+50OPfRQSZvLnB/96Efq7u5WSkqK9tprL+21116Ra2+88UY999xzeuGFF3TBBRds9XwzZ87ULrvsor/+9a+67LLLJEmPPvqoTj75ZGVkZEjaPNUzLS1NRUVF28x92223af/999cf//jHyLHddtst8v6JJ57Y7/pHHnlEBQUF+vLLL7X77rtH++WRJLnd7q2OdXZ2bvP6p59+WuFwWA899FCknHz00UeVnZ2tpUuX6oc//KEkKT09XQ899FCkZJM2j+TbYtKkSbrvvvs0Y8YMtbe3R74+knTDDTfoyCOPlCS1tbXp3nvv1f3336+zzz5bkjR58mQddNBB/XJdeumlkXXzrr/+eu22225au3atdt11160+h9/97nc67bTTdP3110eOffv3Odqcw4FSDYPW0tIiv9+vUCgkwzBUWFiogoICRqcBAAAAgEUS0xK1qH1RVNd+8843emruUzu87oyXz9CEQyZE9dzR+vrrr/Xhhx/queeekyQlJCTo1FNP1cMPP9yvVNtzzz0j728ZXVZXV6fS0lK1t7fruuuu00svvaTq6moFg0F1dXVp06ZN23zen/70p/rLX/6iyy67TLW1tXrllVf05ptvRp1b2jxS7eSTT97m+TVr1uiaa67RBx98oIaGBoXDm3dS3bRp04Cl2m677aZvvvlGknTwwQfrlVdeiZx79913lZmZ2e/6b399vmvlypVau3btVo/p7u7uNwV1jz326FeoSdInn3yi6667TitXrlRzc3O/3NOnT49ct//++0feX716tXp6enTEEUdsM5O07d/HgUq1FStW6Gc/+9k27xVtzuFAqYaYBYNBVVVVReaTp6amyu12KzU11dpgAAAAADDOGYYR9RTMyT+crCx3lgL+wMDrqhlSljtLk384WTZ7fKctPvzwwwoGgyopKYkcM01TycnJuv/++yPHvr3h3ZYBHFtKlEsvvVSvv/667rjjDk2ZMkWpqak66aSTtrvw/llnnaUrrrhCy5cv17/+9S9NnDhRBx98cEzZd/Tad968eZowYYIefPBBlZSUKBwOa/fdd99mrpdffll9fX0D3nvixIlbrTc20JTJLdrb27XffvvpySef3OpcQUFB5P309PR+5zo6OjRnzhzNmTNHTz75pAoKCrRp0ybNmTNnq9zffmy0PcD2fh+/a3v3jCXncKBUQ0wCgYB8Pp+CwaAMw1BBQYGcTueQzwsHAAAAAMSXzW7TUfcepWdOekYy1L9Y+98JSEfdc1TcC7VgMKgnnnhCd955Z2Q64hbHH3+8/va3vw04gum7li1bpnPOOSeyiH17e/tW6599V15eno4//ng9+uijWr58uc4999x+55OSkiJro23LnnvuqSVLlvSbnrhFY2Ojvv76az344IORsu69997b7v0mTNjxKMBo7bvvvnr66afldDqVlZUV9eO++uorNTY26pZbbpHH45Ekffzxxzt83NSpU5WamqolS5bopz/96aBzf9uWr+93f292JudQoQlBVEKhkHw+nzZu3KhgMKjk5GRNnjxZRUVFFGoAAAAAMEpNmz9Npzx7irJc/QuYLHeWTnn2FE2bPy3uz/mPf/xDzc3N+slPfqLdd9+939uJJ56ohx9+OKr7TJ06VYsXL9aKFSu0cuVKnXHGGdsc/fRtP/3pT/X4449r9erVkXXAtigrK9MHH3ygjRs39pu6+W2LFi3SRx99pF/96lf67LPP9NVXX+lPf/qTGhoalJOTo7y8PP3lL3/R2rVr9eabb2rhwoXRfWHi4Mwzz1R+fr6OO+44vfvuu9qwYYOWLl2q3/zmN/L5fNt8XGlpqZKSkvSHP/xB69ev1wsvvKAbb7xxh8+XkpKiyy+/XJdddpmeeOIJrVu3Tu+//37Uv4cDufbaa/W3v/1N1157rVavXq1Vq1bp1ltv3amcQ4U2BDvU3t6uNWvWqKmpSZKUn5+vqVOnKi0tzeJkAAAAAICdNW3+NF248UKd/dbZmv/UfJ391tm6cMOFQ1KoSZunfs6ePVsOh2OrcyeeeKI+/vhjffbZZzu8z1133aWcnBzNnDlT8+bN05w5c7Tvvvvu8HGzZ89WcXGx5syZ02/6qbR5Sqndbtf06dMjUwu/q7y8XK+99ppWrlyp733vezrwwAP1P//zP0pISJDNZtN//dd/6ZNPPtHuu++uiy++WLfffvsOM8VLWlqa3nnnHZWWlmr+/PmaNm2afvKTn6i7u3u7I9cKCgr02GOP6e9//7umT5+uW265RXfccUdUz3n11Vfrkksu0TXXXKNp06bp1FNPVV1d3aA/h1mzZunvf/+7XnjhBe299946/PDD9eGHH+50zqFgmKY50MzpcSMQCMjhcKi1tTWmoZHjQTgcVk1NjRoaGiRtHgbrdruHfTcNAAAAAMDAuru7tWHDBk2cOFEpKSlWxxkV2tvb5XK59Oijj2r+/PlWx4EFtvf3JpaeiDXVMKDOzk55vV719PRIknJzc1VcXCy73W5xMgAAAAAAYhcOh9XQ0KA777xT2dnZOvbYY62OhFGOUg39hMNh1dXVqb6+XqZpKiEhQW63m1F8AAAAAIBRbdOmTZo4caLcbrcee+yx7e6iCUSDP0GI6Orqks/nU1dXlyQpOztbJSUl/EMDAAAAABj1ysrKNM5XwEKc0ZZApmmqvr5etbW1Mk1Tdrtdbrd7wEUjAQAAAAAAQKk27vX09Mjr9aqzs1OSlJWVJZfLpcTERIuTAQAAAAAAjFyUauOUaZpqbGxUdXW1TNOUzWaTy+VSdna2DMOwOh4AAAAAAMCIRqk2DvX29srn86m9vV2SlJGRIbfbraSkJIuTAQAAAAAAjA6UauOIaZpqbm5WVVWVwuGwDMNQcXGx8vLyGJ0GAAAAAAAQA5vVAeLhH//4h3bZZRdNnTpVDz30kNVxRqS+vj5988038vl8CofDSktLU3l5ufLz8ynUAAAAAAAAYjTqS7VgMKiFCxfqzTff1L///W/dfvvtamxstDqWJcKhsDYu3ahVf1uljUs3KhwKS5JaW1tVWVmpQCAgwzBUVFSkyZMnKzk52eLEAAAAAIARIRySapdKG/+2+ddwyOpEI0ZZWZnuueceq2Nsk2EYev7557d5funSpTIMQy0tLXF5vo0bN8owDK1YsSIu9xvNRn2p9uGHH2q33XaTy+VSRkaGjj76aL322mtWxxp2qxev1r1l9+rxwx7X4jMW6/HDHtc9ZffonT+/o2+++UahUEipqamaMmWKnE4no9MAAAAAAJt5F0svlElLDpP+dcbmX18o23x8CJ1zzjkyDEO33HJLv+PPP//8kL9m3V4xNGvWLF100UWRjz/66CP9/Oc/H9I8Q2nmzJmqrq6Ww+GwOsqYY3mp9s4772jevHkqKSnZZrtaUVGhsrIypaSk6IADDtCHH34YOVdVVSWXyxX52OVyye/3D0f0EWP14tV65qRnFPAF+h1v87fprfPfUtWSKjmdTk2ePFmpqakWpQQAAAAAjDjexdK7J0mdvv7HO/2bjw9xsZaSkqJbb71Vzc3NQ/o8O6OgoEBpaWmDfnxvb++gH9vX1zfox26RlJSkoqIiBtcMActLtY6ODu21116qqKgY8PzTTz+thQsX6tprr9Wnn36qvfbaS3PmzFFdXd0wJx2ZwqGwXr3wVckc4OT/Hvvyri/lLHDKZrP8txsAAAAAMJRMUwp2RPfWG5A+/o22+4Ly4ws3XxfN/cyB7rN9s2fPVlFRkX7/+99v85r//u//1m677abk5GSVlZXpzjvv7He+rKxMN998s8477zxlZmaqtLRUf/nLX2LOsi3fnf7Z0tKin/70pyooKFBWVpYOP/xwrVy5MnL+uuuu0957762HHnpIEydOVEpKiiTp1Vdf1UEHHaTs7Gzl5eXpmGOO0bp16yKP2zJ67umnn9ahhx6qlJQUPfnkk5KkRx55JPI1KC4u1gUXXNAvY0NDg0444QSlpaVp6tSpeuGFFyLnBpr+uWzZMs2aNUtpaWnKycnRnDlzIsXmjnLi/1jeshx99NG66aabdMIJJwx4/q677tLPfvYznXvuuZo+fboeeOABpaWl6ZFHHpEklZSU9BuZ5vf7VVJSss3n6+npUSAQ6Pc2mm16d9NWI9T6MaU2X5s2vbtp+EIBAAAAAKwR6pSeyYju7VmH1LW9mV6m1OXbfF009wt1xhzXbrfr5ptv1h/+8Af5fL6tzn/yySc65ZRTdNppp2nVqlW67rrrdPXVV+uxxx7rd92dd96p/fffX//+97/1q1/9Sueff76+/vrrmPNE4+STT1ZdXZ1eeeUVffLJJ9p33311xBFHqKmpKXLN2rVr9d///d9avHhxZIppR0eHFi5cqI8//lhLliyRzWbTCSecoHA43O/+V1xxhS688EKtXr1ac+bM0Z/+9CctWLBAP//5z7Vq1Sq98MILmjJlSr/HXH/99TrllFP02Wefae7cuTrzzDP75fm2FStW6IgjjtD06dO1fPlyvffee5o3b55CoVBMOSElWB1ge3p7e/XJJ59o0aJFkWM2m02zZ8/W8uXLJUnf+9739Pnnn8vv98vhcOiVV17R1Vdfvc17/v73v9f1118/5NmHS1t1W1yvAwAAAABgOJ1wwgnae++9de211+rhhx/ud+6uu+7SEUccEXmdX15eri+//FK33367zjnnnMh1c+fO1a9+9StJ0uWXX667775bb731lnbZZZftPvfMmTO3mtXV1dWlvffee8Dr33vvPX344Yeqq6uLbP53xx136Pnnn9ezzz4bWXutt7dXTzzxhAoKCiKPPfHEE/vd65FHHlFBQYG+/PJL7b777pHjF110kebPnx/5+KabbtIll1yiCy+8MHJsxowZ/e51zjnn6PTTT5ck3Xzzzbrvvvv04Ycf6qijjtrqc7jtttu0//77649//GPk2G677RZzTozwUq2hoUGhUEiFhYX9jhcWFuqrr76SJCUkJOjOO+/UYYcdpnA4rMsuu0x5eXnbvOeiRYu0cOHCyMeBQEAej2doPoFhkFmcGdfrAAAAAACjmD1NOqU9umvr3pGWzt3xdbNelpyHRPfcg3Trrbfq8MMP16WXXtrv+OrVq3Xcccf1O/aDH/xA99xzj0KhkOx2uyRpzz33jJw3DENFRUWRZaOOPvpovfvuu5KkCRMm6Isvvohc+/TTT2vatGn97n/mmWduM+fKlSvV3t6+Ve/Q1dXVb4rkhAkT+hVqkrRmzRpdc801+uCDD9TQ0BAZ+bVp06Z+ZdX+++8feb+urk5VVVU64ogjtpnpu59/enq6srKytrls1ooVK3TyySdv817R5sQIL9Wideyxx+rYY4+N6trk5ORImzwWlB5cqix3lgL+wMDT4A0py52l0oNLhz0bAAAAAGCYGYaUkB7dtUU/lNLcmzcl2NYLyjT35uts9nim3MohhxyiOXPmaNGiRf1GoEUrMTGx38eGYUTKoIceekhdXV0DXufxeLaaSrm9Df7a29tVXFyspUuXbnUuOzs78n56+ta/B/PmzdOECRP04IMPqqSkROFwWLvvvvtWGxl8+7HRbja4vc//u3Z0z2hzYoSXavn5+bLb7aqtre13vLa2VkVFRRalGllsdpuOuvcoPXPSM5Kh/v8O/u/GHkfdc5RsdsuXzwMAAAAAjCQ2u7TfvZt3+dzWC8r97hnyQm2LW265RXvvvXe/KZvTpk3TsmXL+l23bNkylZeXR0ap7YjL5Ypbxn333Vc1NTVKSEhQWVlZ1I9rbGzU119/rQcffFAHH3ywpM1TSXckMzNTZWVlWrJkiQ477LDBxu5nzz331JIlSwZcGmuwOcerEd20JCUlab/99tOSJUsix8LhsJYsWaIDDzzQwmQjy7T503TKs6coy5XV73iWO0unPHuKps2fto1HAgAAAADGNc986eBnpbTvFE9p7s3HPfMHftwQ2GOPPXTmmWfqvvvuixy75JJLtGTJEt14442qrKzU448/rvvvv3+raaLDZfbs2TrwwAN1/PHH67XXXtPGjRv1/9u796Cqqj6M489GIUAFRBFBQSxTaTQMFbyUSZlMTfaCNZU1iXQvSMmhm1re3u6aZlDaZcSu2kxpkxVqGGmGBhmWSQZm8zIFqFkikkqw3j8azngExeOFDYfvZ4YZ99p7r/Xb53hm9jyz9l5ff/21pk+froKCghOe17lzZ3Xp0kWvvvqqSkpKtH79eqdXU53MrFmzNH/+fC1atEjFxcXaunWrXnrppdO+hscee0z5+fm6//779f333+unn37SK6+8on379p1RnW2R7TPVqqqqVFJS4tjevXu3CgsLFRgYqPDwcE2dOlVJSUkaMmSIYmJitHDhQh06dEjJyck2Vt3yRI6PVL//9NP/Nv5PB8sOqlNIJ4VfFs4MNQAAAADAyYWNl3r8R9q7Ufq7TPIJkYIua7YZaseaM2eOVqxY4diOjo7W+++/ryeeeEJz585VSEiI5syZc1qPiJ4NlmXp008/1fTp05WcnKy9e/eqe/fuGjVqVIP3wR/Lw8NDy5cv1+TJkzVgwAD169dPixYt0ujRo5scMykpSYcPH9aCBQuUnp6url276oYbbjjta+jbt6/Wrl2radOmKSYmRj4+PoqNjdWECRPOqM62yDLGNPbgdLPJzc1tdApjUlKSY4ncjIwMPf/88yovL9egQYO0aNEixcbGnpXxKysr5e/vrwMHDsjPz6/pEwAAAAAAaCEOHz6s3bt3q3fv3vL29ra7HKBVONnvxpWcyPaZaqNHj1ZTuV5qaqpSU1PP6riZmZnKzMxUbW3tWe0XAAAAAAAA7q/NPhuYkpKiHTt2KD8/3+5SAAAAAAAA0Mq02VANAAAAAAAAOF2EagAAAAAAAICLCNUAAAAAAGjlbF6DEGhVztbvhVANAAAAAIBWytPTU5JUXV1tcyVA61H/e6n//Zwu21f/BAAAAAAAp6ddu3YKCAjQnj17JEm+vr6yLMvmqoCWyRij6upq7dmzRwEBAWrXrt0Z9UeoBgAAAABAK9a9e3dJcgRrAE4uICDA8bs5E202VMvMzFRmZqZqa2vtLgUAAAAAgNNmWZZCQkLUrVs31dTU2F0O0KJ5enqe8Qy1epZp428zrKyslL+/vw4cOCA/Pz+7ywEAAAAAAIBNXMmJWKgAAAAAAAAAcBGhGgAAAAAAAOAiQjUAAAAAAADARW12oYJ69a+Uq6ystLkSAAAAAAAA2Kk+HzqVJQjafKh28OBBSVJYWJjNlQAAAAAAAKAlOHjwoPz9/U96TJtf/bOurk6///67OnXqJMuy7C7njFVWViosLEylpaWsZgoAAE4Z9xAAAMBV7nj/YIzRwYMHFRoaKg+Pk781rc3PVPPw8FDPnj3tLuOs8/Pzc5v/0AAAoPlwDwEAAFzlbvcPTc1Qq8dCBQAAAAAAAICLCNUAAAAAAAAAFxGquZnzzjtPM2fO1HnnnWd3KQAAoBXhHgIAALiqrd8/tPmFCgAAAAAAAABXMVMNAAAAAAAAcBGhGgAAAAAAAOAiQjUAAAAAAADARYRqAAAAAAAAgIsI1dxMZmamIiIi5O3trdjYWH3zzTd2lwQAAFqwDRs2aNy4cQoNDZVlWVq1apXdJQEAgBbu6aef1tChQ9WpUyd169ZNCQkJ2rlzp91lNTtCNTeyYsUKTZ06VTNnztTWrVsVFRWl+Ph47dmzx+7SAABAC3Xo0CFFRUUpMzPT7lIAAEAr8eWXXyolJUWbN2/WunXrVFNTo7Fjx+rQoUN2l9asLGOMsbsInB2xsbEaOnSoMjIyJEl1dXUKCwvTAw88oEcffdTm6gAAQEtnWZZWrlyphIQEu0sBAACtyN69e9WtWzd9+eWXGjVqlN3lNBtmqrmJo0eP6ttvv9WYMWMcbR4eHhozZozy8vJsrAwAAAAAALizAwcOSJICAwNtrqR5Eaq5iX379qm2tlbBwcFO7cHBwSovL7epKgAAAAAA4M7q6uqUlpamkSNHasCAAXaX06za210AAAAAAAAAWqeUlBRt375dX331ld2lNDtCNTfRtWtXtWvXThUVFU7tFRUV6t69u01VAQAAAAAAd5WamqrVq1drw4YN6tmzp93lNDse/3QTXl5eGjx4sHJychxtdXV1ysnJ0fDhw22sDAAAAAAAuBNjjFJTU7Vy5UqtX79evXv3trskWzBTzY1MnTpVSUlJGjJkiGJiYrRw4UIdOnRIycnJdpcGAABaqKqqKpWUlDi2d+/ercLCQgUGBio8PNzGygAAQEuVkpKid999Vx999JE6derkeJe7v7+/fHx8bK6u+VjGGGN3ETh7MjIy9Pzzz6u8vFyDBg3SokWLFBsba3dZAACghcrNzVVcXFyD9qSkJGVlZTV/QQAAoMWzLKvR9qVLl2rSpEnNW4yNCNUAAAAAAAAAF/FONQAAAAAAAMBFhGoAAAAAAACAiwjVAAAAAAAAABcRqgEAAAAAAAAuIlQDAAAAAAAAXESoBgAAAAAAALiIUA0AAAAAAABwEaEaAAAAAAAA4CJCNQAAABdkZWUpICDAtvEty9KqVatsGTsiIkILFy48oz5mzZqlQYMGnZV6AAAA7ESoBgAA3Fppaaluv/12hYaGysvLS7169dKUKVP0xx9/2F1ai3Wi4DA/P1933333GfWdnp6unJycM+oDAACgJSBUAwAAbuuXX37RkCFDVFxcrPfee08lJSVavHixcnJyNHz4cO3fv/+E5x49evSc1VVTU3PO+j6XgoKC5Ovre0Z9dOzYUV26dDlLFTV0qt/bufx+AQBA20CoBgAA3FZKSoq8vLy0du1aXX755QoPD9fVV1+tzz//XL/99pumT5/uODYiIkJz587VxIkT5efn55iRlZWVpfDwcPn6+ioxMbHRGW4fffSRoqOj5e3trfPPP1+zZ8/WP//849hvWZZeeeUVXXfdderQoYOefPLJUzqvuLhYo0aNkre3ty666CKtW7euyWs+cuSIJk+erG7dusnb21uXXnqp8vPzHftzc3NlWZY++eQTXXzxxfL29tawYcO0fft2x/7k5GQdOHBAlmXJsizNmjXL8Rkd+/inZVlasmSJrr32Wvn6+ioyMlJ5eXkqKSnR6NGj1aFDB40YMUK7du1ynHP845/1Yxz7FxER4di/fft2XX311erYsaOCg4N12223ad++fY79o0ePVmpqqtLS0tS1a1fFx8c3+rlMmjRJCQkJevLJJxUaGqp+/fo5xj/+cdqAgABlZWVJkn799VdZlqUPP/xQcXFx8vX1VVRUlPLy8pr8LgAAgHsjVAMAAG5p//79WrNmje6//375+Pg47evevbtuvfVWrVixQsYYR/u8efMUFRWl7777To8//ri2bNmiO+64Q6mpqSosLFRcXJz++9//OvW1ceNGTZw4UVOmTNGOHTu0ZMkSZWVlOYKzerNmzVJiYqJ++OEH3X777U2eV1dXp/Hjx8vLy0tbtmzR4sWL9cgjjzR53Q8//LA++OADLVu2TFu3blWfPn0UHx/fYFbeQw89pPnz5ys/P19BQUEaN26campqNGLECC1cuFB+fn4qKytTWVmZ0tPTTzhefRBZWFio/v3765ZbbtE999yjxx57TAUFBTLGKDU19YTn149RVlamkpIS9enTR6NGjZIk/fXXX7riiit0ySWXqKCgQNnZ2aqoqNCNN97o1MeyZcvk5eWlTZs2afHixSccKycnRzt37tS6deu0evXqJj/LY02fPl3p6ekqLCxU3759NWHCBKcAFAAAtEEGAADADW3evNlIMitXrmx0/wsvvGAkmYqKCmOMMb169TIJCQlOx0yYMMFcc801Tm033XST8ff3d2xfeeWV5qmnnnI65q233jIhISGObUkmLS3N6ZimzluzZo1p3769+e233xz7P/vss5NeU1VVlfH09DTvvPOOo+3o0aMmNDTUPPfcc8YYY7744gsjySxfvtxxzB9//GF8fHzMihUrjDHGLF261Oka6/Xq1cssWLDA6bpmzJjh2M7LyzOSzBtvvOFoe++994y3t7dje+bMmSYqKqpB33V1dSYxMdEMHjzYVFdXG2OMmTt3rhk7dqzTcaWlpUaS2blzpzHGmMsvv9xccskljX4ex0pKSjLBwcHmyJEjTu2NfZ7+/v5m6dKlxhhjdu/ebSSZ119/3bH/xx9/NJJMUVFRk+MCAAD31d6mLA8AAKBZmGNmojVlyJAhTttFRUVKTEx0ahs+fLiys7Md29u2bdOmTZucZqbV1tbq8OHDqq6udryD7Pi+mzqvqKhIYWFhCg0NdRr7ZHbt2qWamhqNHDnS0ebp6amYmBgVFRU1uI56gYGB6tevX4NjTsXFF1/s+HdwcLAkaeDAgU5thw8fVmVlpfz8/E7Yz7Rp05SXl6eCggLHzMJt27bpiy++UMeOHRscv2vXLvXt21eSNHjw4FOqdeDAgfLy8jqlY4937HWGhIRIkvbs2aP+/fufVn8AAKD1I1QDAABuqU+fPrIsq9FgTPo3MOvcubOCgoIcbR06dHB5nKqqKs2ePVvjx49vsM/b2/uEfZ/qeS2dp6en49+WZZ2wra6u7oR9vP3221qwYIFyc3PVo0cPR3tVVZXGjRunZ599tsE59cGWdOrfW2PHWZbVIHhtbCEJV68JAAC4P0I1AADglrp06aKrrrpKL7/8sh588EGn96qVl5frnXfe0cSJEx0BSWMiIyO1ZcsWp7bNmzc7bUdHR2vnzp3q06ePS/U1dV5kZKRKS0tVVlbmCJCOH/t4F1xwgePdYr169ZL0b0CUn5+vtLS0BtcRHh4uSfrzzz/1888/KzIyUpLk5eWl2tpal67ndOXl5enOO+/UkiVLNGzYMKd90dHR+uCDDxQREaH27c/NbWtQUJDKysoc28XFxaqurj4nYwEAAPfCQgUAAMBtZWRk6MiRI4qPj9eGDRtUWlqq7OxsXXXVVerRo0eDxQSON3nyZGVnZ2vevHkqLi5WRkaG06OfkvTEE0/ozTff1OzZs/Xjjz+qqKhIy5cv14wZM07ad1PnjRkzRn379lVSUpK2bdumjRs3Oq1W2pgOHTrovvvu00MPPaTs7Gzt2LFDd911l6qrq3XHHXc4HTtnzhzl5ORo+/btmjRpkrp27aqEhARJ/67yWVVVpZycHO3bt++chUzl5eVKTEzUzTffrPj4eJWXl6u8vFx79+6V9O/qrfv379eECROUn5+vXbt2ac2aNUpOTj5rod8VV1yhjIwMfffddyooKNC9997rNCsNAADgRAjVAACA27rwwgtVUFCg888/XzfeeKMuuOAC3X333YqLi1NeXp4CAwNPev6wYcP02muv6cUXX1RUVJTWrl3bICyLj4/X6tWrtXbtWg0dOlTDhg3TggULHDPFTqSp8zw8PLRy5Ur9/fffiomJ0Z133tlkCChJzzzzjK6//nrddtttio6OVklJidasWaPOnTs3OG7KlCkaPHiwysvL9fHHHzveNzZixAjde++9uummmxQUFKTnnnuuyXFPx08//aSKigotW7ZMISEhjr+hQ4dKkkJDQ7Vp0ybV1tZq7NixGjhwoNLS0hQQECAPj7NzGzt//nyFhYXpsssu0y233KL09HTHe/AAAABOxjKuvL0XAAAArVpubq7i4uL0559/KiAgwO5yAAAAWi1mqgEAAAAAAAAuIlQDAAAAAAAAXMTjnwAAAAAAAICLmKkGAAAAAAAAuIhQDQAAAAAAAHARoRoAAAAAAADgIkI1AAAAAAAAwEWEagAAAAAAAICLCNUAAAAAAAAAFxGqAQAAAAAAAC4iVAMAAAAAAABc9H+TzMtTooJtagAAAABJRU5ErkJggg==\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNUAAAIjCAYAAAAkzS0sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACLF0lEQVR4nOzdd3hb5d3/8Y+WZcu25HGUvQmZQAIhUAIpAUIDKRQIq4ynrC4aWmjKfGghQMsOCRSXtmx4KA3kRykzHWkpECgQaAKUDEISQiAklofkJVvj/P5IpVq2JUuObHm8X9fly/Z9dI6+dmJb+ui+v7fFNE1TAAAAAAAAANJmzXUBAAAAAAAAQF9DqAYAAAAAAABkiFANAAAAAAAAyBChGgAAAAAAAJAhQjUAAAAAAAAgQ4RqAAAAAAAAQIYI1QAAAAAAAIAMEaoBAAAAAAAAGSJUAwAAAAAAADJEqAYAADAA7dq1S6eddprKy8tlsVi0bNmytM/dtm2bLBaLHnnkkfjY4sWLZbFYslZfR/cBAADQmxCqAQAApOmpp56SxWLRH/7wh3bHpk2bJovFor///e/tjo0aNUqzZs3K6L5+9atfdWug9OMf/1h/+tOfdM011+jxxx/Xcccd12331dPeeOMNLV68WLW1tbkuBQAA9GOEagAAAGk64ogjJEmvv/56wnggENCHH34ou92u1atXJxz77LPP9Nlnn8XPTVd3h2p/+9vfdNJJJ+nyyy/Xueeeq0mTJnXbffW0N954QzfccAOhGgAA6FaEagAAAGkaNmyYxo4d2y5Ue/PNN2Wapk4//fR2x2KfZxqqdYdwOKyWlhZJ0u7du1VSUpLbggAAAPowQjUAAIAMHHHEEfrXv/6lpqam+Njq1as1depUHX/88frnP/+paDSacMxisejwww+XJD388MM6+uijNWjQIDmdTk2ZMkX33Xdfwn2MGTNG//73v/WPf/xDFotFFotFc+bMiR+vra3VZZddppEjR8rpdGr8+PG67bbbEu431pPszjvv1LJly7TPPvvI6XTqV7/6lSwWi0zTVEVFRfz6klRdXa3LL79c+++/v4qKiuR2u3X88cdr3bp1Wfv+zZkzR/vtt5/effddzZo1SwUFBRo7dqx+/etfp3X+3/72N82ePVuFhYUqKSnRSSedpPXr18ePL168WFdccYUkaezYsfGvb9u2bVn7GgAAACTJnusCAAAA+pIjjjhCjz/+uN5666140LV69WrNmjVLs2bNkt/v14cffqgDDjggfmzSpEkqLy+XJN13332aOnWqvvGNb8hut+v555/XD37wA0WjUS1cuFCStGzZMv3whz9UUVGRrr32WknS4MGDJUmNjY068sgj9fnnn+t73/ueRo0apTfeeEPXXHONdu7c2W7DgYcffljBYFDf/e535XQ6ddBBB+nxxx/X//zP/+jYY4/Vt771rfhtt2zZomeffVann366xo4dq127duk3v/mNjjzySH300UcaNmxYVr6HNTU1mj9/vs444wydddZZeuqpp3TxxRcrLy9PF154YdLz/vrXv+r444/XuHHjtHjxYjU1NemXv/ylDj/8cL333nsaM2aMFixYoE2bNunJJ5/U0qVLZRiGJMnr9WaldgAAgDgTAAAAafv3v/9tSjJvuukm0zRNMxQKmYWFheajjz5qmqZpDh482KyoqDBN0zQDgYBps9nM73znO/HzGxsb211z3rx55rhx4xLGpk6dah555JHtbnvTTTeZhYWF5qZNmxLGr776atNms5nbt283TdM0t27dakoy3W63uXv37nbXkWQuXLgwYSwYDJqRSCRhbOvWrabT6TRvvPHGhDFJ5sMPPxwfu/766810HloeeeSRpiRzyZIl8bHm5mZz+vTp5qBBg8yWlpak9xG7TVVVVXxs3bp1ptVqNb/1rW/Fx+644w5Tkrl169ZO6wEAAOgqln8CAABkYPLkySovL4/3Slu3bp0aGhriu3vOmjUrvlnBm2++qUgkktBPraCgIP6x3++Xz+fTkUceqS1btsjv93d6/08//bRmz56t0tJS+Xy++NvcuXMViUT06quvJtz+1FNPTXuWltPplNW65+FhJBJRVVWVioqKNHHiRL333ntpXSMddrtd3/ve9+Kf5+Xl6Xvf+552796td999t8Nzdu7cqbVr1+r8889XWVlZfPyAAw7Qscceq5deeilr9QEAAKSDUA0AACADFotFs2bNivdOW716tQYNGqTx48dLSgzVYu9bh2qrV6/W3Llz4z3BvF6v/vd//1eS0grVPv74Y61cuVJerzfhbe7cuZL2bEDQ2tixY9P+2qLRqJYuXap9991XTqdThmHI6/Xq/fffT6u2dA0bNkyFhYUJYxMmTJCkpL3PPv30U0nSxIkT2x2bPHmyfD6fGhoaslYjAABAZ+ipBgAAkKEjjjhCzz//vD744IN4P7WYWbNm6YorrtDnn3+u119/XcOGDdO4ceMkSZ988omOOeYYTZo0SXfddZdGjhypvLw8vfTSS1q6dGnCRgPJRKNRHXvssbryyis7PB4Lp2Jaz4zrzM0336yf/exnuvDCC3XTTTeprKxMVqtVl112WVq1AQAADCSEagAAABmKzTx7/fXXtXr1al122WXxYzNmzJDT6dQrr7yit956S/Pnz48fe/7559Xc3KznnntOo0aNio///e9/b3cfsR0529pnn31UX18fn5mWTStWrNBRRx2lBx98MGG8trY23vA/G7744gs1NDQkzFbbtGmTpD07n3Zk9OjRkqSNGze2O7ZhwwYZhhG/XrLvHQAAQDax/BMAACBDBx98sPLz8/XEE0/o888/T5ipFtths6KiQg0NDQlLP202myTJNM34mN/v18MPP9zuPgoLC1VbW9tu/IwzztCbb76pP/3pT+2O1dbWKhwOd/nrstlsCbVJe3q4ff75512+ZkfC4bB+85vfxD9vaWnRb37zG3m9Xs2YMaPDc4YOHarp06fr0UcfTfi+fPjhh/rzn/+cEF7GwrWOvn8AAADZwkw1AACADOXl5WnmzJl67bXX5HQ62wVBs2bN0pIlSyQl9lP72te+pry8PJ144on63ve+p/r6et1///0aNGiQdu7cmXCNGTNm6L777tPPf/5zjR8/XoMGDdLRRx+tK664Qs8995xOOOEEnX/++ZoxY4YaGhr0wQcfaMWKFdq2bVuXZ5WdcMIJuvHGG3XBBRdo1qxZ+uCDD/TEE0/El69my7Bhw3Tbbbdp27ZtmjBhgpYvX661a9fqt7/9rRwOR9Lz7rjjDh1//PE67LDDdNFFF6mpqUm//OUv5fF4tHjx4vjtYv8e1157rb75zW/K4XDoxBNPbNfHDQAAYG8wUw0AAKALYmFZbLlna4cffrgkqbi4WNOmTYuPT5w4UStWrJDFYtHll1+uX//61/rud7+rSy+9tN31r7vuOs2fP1+33367zjrrLN14442SJJfLpX/84x+64oor9Morr+jSSy/Vrbfeqo8//lg33HCDPB5Pl7+m//3f/9VPfvIT/elPf9Kll16q9957Ty+++KJGjhzZ5Wt2pLS0VC+99JLWrFmjK664Qp999pnuvfdefec730l53ty5c7Vy5UqVl5fruuuu05133qmvfOUrWr16dcKGDDNnztRNN92kdevW6fzzz9dZZ52lysrKrH4NAAAAFrPtHH8AAACgm8yZM0c+n08ffvhhrksBAADYK8xUAwAAAAAAADJEqAYAAAAAAABkiFANAAAAAAAAyBA91QAAAAAAAIAMMVMNAAAAAAAAyBChGgAAAAAAAJAhe64LyLVoNKovvvhCxcXFslgsuS4HAAAAAAAAOWKapurq6jRs2DBZrannog34UO2LL77QyJEjc10GAAAAAAAAeonPPvtMI0aMSHmbAR+qFRcXS9rzzXK73TmuBgAAAAAAALkSCAQ0cuTIeF6UyoAP1WJLPt1uN6EaAAAAAAAA0moRxkYFAAAAAAAAQIYI1QAAAAAAAIAMEaoBAAAAAAAAGSJUAwAAAAAAADJEqAYAAAAAAABkiFANAAAAAAAAyBChGgAAAAAAAJChARuqVVRUaMqUKZo5c2auSwEAAAAAAEAfYzFN08x1EbkUCATk8Xjk9/vldrtzXQ4AAAAAAAByJJOcaMDOVAMAAAAAAAC6ilANAAAAAAAAyBChGgAAAAAAAJAhQjUAAAAAAAAgQ/ZcF4Asikakytekpp1SwVDJO1uy2nJdFQAAAAAAQL9DqNZffPaM9O6lUuOO/465Rkgz7pZGLshdXQAAAAAAoP9hYg+hWr/w2TPSa6dJMhPHGz/fMz57BcEaAAAAAADIDib2SKKnWt8Xjez5j9w2UJP+O/buZXtuBwAAAAAAsDdiE3taB2rSfyf2fPZMburKAUK1vq7ytfb/kROYUuNn2vXhCu3atUs1NTVqaGhQOByWaXYUxAEAAAAAAHTgPxN7TCb2SGL5Z9/XtDOtmzXXblOtdiWMWa1W5eXlyel0Ki8vL/7mdDrlcDhksVi6o2IAAAAAANCLmaapSCSilpYWNTc3q6WlRS0tLbL6XtXwxh1KnhbsmdijytekwXN6ruAcIVTr6wqGpnWz4kETZC0qi/8whEIhRaNRBYNBBYPBdre3WCwJQVvb8M1qZZIjAAAAAAB9lWmaCoVCCaFZ7K25uVnRaLTdOSV1qVbKtZLmBKC+jlCtr/PO3tMMsPFzddxXzSK5Rqh0wjdU2moXjmg02u4HpvXnpmmqublZzc3NHd6tw+HoMHBzOp2y2QbWbh8AAAAAAPRGsdlmHT33D4VCnbaFavvc3+WaIqWTq6U5AaivI1Tr66y2PbtrvHaaJIsSg7X/TMicsazdtrZWq1X5+fnKz89vd8lYWt1R2BZLq0OhkEKhkBoaGtqdb7PZOpzd5nQ6ZbfbWVYKAAAAAEAWmKapcDicNDgLh8Mpz2+7Sq1te6h2q9S886UPO5/YI+/srH2NvdmADdUqKipUUVGhSKQfNM8buUCavSLJdrbLMt7OtvUPVVFRUcKx2LrqjsK22A9sJBJRU1OTmpqakl47WR83lpUCAAAAAPBfsYktyZZpdjbbzGaztXsOHnvLuJ96Fyf29FcWc4BvARkIBOTxeOT3++V2u3Ndzt6JRvY0A2zauWeqpXd2j/9H3tuppan6uLGsFAAAAADQH6WavBIKhTo9v6PALPZ8ulueS3/2TAcTe0Z2aWJPb5NJTkSo1p9CtV7ONM2kPdzSSdftdnvSZaU2m41lpQAAAACAXql1m6WOnhd3torOarUmDc1ytuqrF0zs6Q6Z5EQDdvknep7FYpHT6ZTT6VRxcXHCsdbrwDsK3CKRiMLhsMLhsBobG9tdO/YLJtmyUgI3AAAAAEB3ar0hYEdLNdOdSNLRUs1e2Z/capMGz8l1FTlFqIZewWKxyOFwyOFwqLCwsN3x2LLS1r+YWk+FjUajCgaDCgaDHV471bJS+rgBAAAAADqTTo/xVJI9N43tsEnLo76HUA19gs1mU0FBgQoKCtoda/1qQEevCJimqebmZjU3N3d47bZbBLcO3Ox2fkQAAAAAYKBo3baoo+eZ0Wg05fk2my3lMs1eN9sMe4XEAH2e1WpVfn6+8vPz2x1rvW69o1cTYruohEIhNTQ0tDu/9S/EtlNw+YUIAAAAAH1P6w322j5PTGeDvdjEjI6WadLve2AhVEO/1np6bVFRUcKx2NTdZMtKw+GwIpGImpqa1NTUlPTayfq4sawUAAAAAHperGd3R33NMlmm2VFoRgshtEaohgHLYrHIbrfLbrfL5XK1O9761Yu2wVvs1YtUy0pT9XFjrTwAAAAAdF3bNkBtn7eluylAR8/beuWmAOiVCNWAJFL1cWu7zr7tTLfWxzvS+hd421c/+AUOAAAAYKBrvbIo2TLNVGKb4SV73sVEB2QDoRrQBRaLRU6nU06ns92x2FTjZIFbJBJROBxWOBxWY2Nju/OtVmvKZaUEbgAAAAD6g1Q9sFtaWhSJRFKen+y5U+yN507oboRqQJbFXhFxOBwqLCxsdzxVH7dQKKRoNKpgMKhgMNjhtVMtK2VtPwAAAIDepG1bnbZv6SzT7Cg0czqdbAqAnCNUA3pYqmWlbfsCtH21prM+bq2nN7cN3Ox2ftwBAAAAZFfblTptn8ekuylAsmWaTBxAb8azbKAXsVqtys/PV35+frtjradGdzTTLRqNKhQKKRQKqaGhod35Npst6R8qlpUCAAAASCb2XCPZMs1oNJryfJ6LoL8iVAP6iNav4LTVuolnR8tKw+GwIpGImpqa1NTUlPTayfq48eoQAAAA0L919Hyi9VtnHA5HymWaQH9EqAb0AxaLRXa7XXa7XS6Xq93xtn0MWv+hDIVCnS4rTdXHjT+QAAAAQO/XduVL7HlBKBSKb6iWSmyzto6eG/BCPAYqQjVgAEjVx800zZR93Fr3eeuI3W5POpXbbrczlRsAAADoIen0aE6Fx/ZAZgjVgAEu9oqT0+lsd6xt09G2S0sjkYjC4bDC4bAaGxvbnZ9si+vYq1n8UQYAAADSl6ztS+tVKKlYLJb45mYdzTpjFQqQGUI1AEnF/ug6HA4VFha2O56qj1soFFI0GlUwGFQwGOzw2qmWlTJ9HAAAAANRbJlmR6FZbIOyVKxWa8plmrywDWQPoRqALku1rLTt1PO24Vtnfdxir6B1FLjZ7fzqAgAAQN+VTs/jVFI9VrbZbARnQA8ZsM9MKyoqVFFR0WkzRgBdY7ValZ+fr/z8/HbH2jZJbTvTLbZldygUUkNDQ7vz2ZIbAAAAvVmqNiotLS0Kh8Mpz2+9qqOjWWes6gB6B4vZWQTezwUCAXk8Hvn9frnd7lyXAwx4yfpExD5O9wFIsj5uPAABAABANsReCE62TLOzp9o2m63DwIwXioHcyiQnGrAz1QD0ThaLRXa7XXa7XS6Xq93xtlPl2/Zx62xZaao+bjRmBQAAQGutZ5t19NizMzz2BPo3QjUAfUqqPm6maabcQrx1n7eOsIU4AADAwJKqLUlLS0un7YJiu90newzJ40egfyNUA9BvWCwWOZ1OOZ3OdsdS9bVobm5WJBJROBxWOBxWY2Nju/NjD5iSLSvlARMAAEDv1PqF1Y6Wana2TDP2wmtHSzV54RUY2AjVAAwIFotFDodDDodDhYWF7Y531Mct9nkoFFI0GlUwGFQwGOzw2qmm9tPHDQAAoPu0ffG0qz15O3os53A4WKYJIClCNQBQ6mWlrV/d7OhVzs76uKXa8txu59cwAABAZzpq89F6k4BoNJry/Na7x7d9PMaqAwBdxbM5AOiE1WpVfn6+8vPz2x1L1Yejubk5vitUKBRSQ0NDu/NbP8Bru6SAB3gAAGAgab0hVdvVA7ENqVKJvZCZbJkmAGQbv1kAYC+0Xi7QlmmaKZeVhsNhRSIRNTU1qampKem1k/VxY1kpAADoS9q+GNn2sVFnmwLw2AhAb0OoBgDdxGKxyG63y263y+VytTve+tXYjrZo72xZKVu0AwCA3qajthmtH+OkuylA28DM6XSyKQCAXodQDQByJFUft476hrT+vPUD1o60fkDa9tVcHpACAICuaj0TP9kyzVRim0cle5zCC4MA+hJCNQDohSwWi5xOp5xOZ7tjbXe4avtgNhwOx98aGxvbnW+1WlMunSBwAwBgYGu9TLOjFhadbQrAYw0AAwWhGgD0MbFXeB0OhwoLC9sdT9XHLRQKKRqNKhgMKhgMdnjtVMtK6VUCAED/kKwNRSxMS3dTgI4eN9hsNoIzAAMCoRoA9DOplpV21OekdfjWWR+3tg+gWwdu7KoFAEDv0XZme9u/+eFwOOX5bV9oazvrjBfaAIBQDQAGFKvVqvz8fOXn57c71nZHrrYz3SKRiEKhkEKhkBoaGtqdb7PZkj7wZqkHAADZF41Gky7TjPVgTcVmsyVsBMDfbgDIDKEaAEBS4ivSbbVuStzRstJwOKxIJKKmpiY1NTUlvXay3iq82g0AQMcikUiHgVmqDYta62iJZutlmgCAriNUAwB0ymKxyG63y263y+VytTuerC9LbBewzpaVpurjxgN+AEB/1nameNsXsCKRSMrzY5sCdPR3lBeuAKB7EaoBAPZaqj5usScLsScIbV9tb93nrSN2uz3pslK73c7SFABAr9e2p2nbv4WdbQrA30IA6J0I1QAA3aqzZaWtmyi3fZIRDofjb42Nje3Oj706n2xZKU8yAAA9IdYmIdkyzVAolPL8jnbfbv3GrG0A6J0I1QAAOWOxWORwOORwOFRYWNjueKo+bqFQSNFoVMFgUMFgsMNrp1pWynIYAEAm2s68bvuCUGebAlit1g5fBGJTAADouwjVAAC9VqplpbEdz1o/uWn9cWd93BwOR9LAzW7nzyMADERte4S2/rsS6xGaSqq/LTabjeAMAPoZnjUAAPqk2Cv+Tqez3bG2TZ/bziqIRCIKhUIKhUJqaGhod77NZkvau4bZBADQd8XaDiRbphkOh1Oen2w3a2ZBA8DARKgGAOh3OuvjlmpZaTgcViQSUVNTk5qampJeO1kfN55QAUBudTSTufXv/Ew2BWj7e55NAQAArRGqAQAGFIvFIrvdLrvdLpfL1e546x3a2u5YGlv6k2pZaao+bjSaBoDsaL3JTdvf2elsCtDZMk0AANJBqAYAQCtWq1X5+fnKz89vd6xtk+q2syBaB3IdaT37oe1MN2Y/AMB/tV7G39FSzUgkkvL8ZLtDx974fQsAyAZCNQAA0tTZstLWMyfaPgkMh8Pxt8bGxnbnJ3sCGFtWyhNAAP1NrL9lsuAs3WWaHf3eZFMAAEBPIFQDACALYsuJHA6HCgsL2x1vvaNc2x1LQ6GQotGogsGggsFgh9dOtayUPm4AeqO2Lza0/R2Y7qYA/O4DAPRWhGoAAPQAm82mgoICFRQUtDvWUVPt1h931sctVW8gu50/9QC6j2maSWfoxpbFp8JuywCAvmzAPtKuqKhQRUVFp/0YAADoblarVU6nU06ns92x1n2FOnrSGls+FQqF1NDQ0O58nrAC2FvJZtqm6iHZWiz4T7ZMEwCAvspidtasoJ8LBALyeDzy+/1yu925LgcAgLSZpplyWWm6S6uS9XFjaRUwMLQN79su1ezsRWiLxdLhhgD8LgEA9EWZ5EQDdqYaAAB9ncVikd1ul91ul8vlane89W6kbXcsDYVCnS4rTdXLiNklQN/S+vdBsmXmqbB7MQAA7RGqAQDQT1mtVuXn5ys/P7/dsdjMlGR93Fo/Ae8IT7CB3iXVzNVYkJ5KbLOVZD/XBOkAALRHqAYAwADUele9tjrasa/1E/RwOBx/a2xsbHe+1WpNuayUwA3omo7C8NY/o51tChDr35hsmSY/mwAAZIZQDQAAJIjNWHE4HCosLGx3PFUft1AopGg0qmAwqGAw2OG1Uy0rpfcSBrrWP19tf85iy7ZTabsbcOufMZvNRnAGAEAWEaoBAICM2Gw2FRQUqKCgoN2xaDSacllpZ33c2gYCrQM3u52HLej70pkJmkrbYLrtzDOCaQAAeg6PTgEAQNbElpc5nc52xzraYbB1mBCJRBQKhRQKhdTQ0NDufJvNljRIYOkaepOOwuXWb50t07TZbB0u0+T/OgAAvQuhGgAA6BGd9XFLtaw0HA4rEomoqalJTU1NSa+drI8bs3eQbZFIJGlvs842BZDa767bdpkmAADo/QjVAABAzlksFtntdtntdrlcrnbHW+9G2lEft86Wlabq40aAgY6kM7MyldiGHR39vyPoBQCgfyBUAwAAvZ7ValV+fr7y8/PbHUu2I2Ls89aBXEfsdnvSZaV2u52ldv1Y6/8bbUOzWA/AVGL/dzpaqsn/HQAA+j9CNQAA0Kd1tqy0s6bwsbfGxsZ258dmGyVbVkpo0rvFlhUnW6aZ6aYAbd+Y5QgAwMBGqAYAAPoti8Uih8Mhh8OhwsLCdsdT9XELhUKKRqMKBoMKBoMdXjvVslKW9/UM0zQ73Ayg9UzFVFpvgNHRMk2CUwAAkAyhGgAAGLBsNpsKCgpUUFDQ7liyHRxjn3fWx83hcCQN3Ox2HoJlonX42TYAjfXUSyX2b9HRMk2bzUZwBgAAuoRHdAAAAB2wWq1yOp1yOp3tjqXTxD4UCikUCqmhoaHd+a1nR7UNegbi7KjYMt2OlmnGlummkmz3V2YNAgCA7kSoBgAAkKHO+rglW1Yam1kViUTU1NSkpqampNdO1setWwKiaESqfE1q2ikVDJW8syVrdvuFtd0UoKOZf6m03lCi7feFTQEAAEAuEKoBAABkkcVikd1ul91ul8vlane8dbjU0cyszpaVpurj1qXG+Z89I717qdS4479jrhHSjLulkQvSvkzbMLHt1xgKhVKeH+t/l2wGH5sCAACA3oZQDQAAoAdZrVbl5+crPz+/3bHYstJkfdxaB3IdaT2bq20o1eFsrs+ekV47TVKbWWKNn+8Zn70iIVhrvey1o0AwEol0+rWnWqbJbDMAANCXEKoBAAD0Ep0tKw2Hw0n7uIXD4fhbY2Nju/PbBVoOm0rf+aEsMtU+yjJlyqLo2z/Ul5aD1RKKJMykS8Vut3cYmjmdTjYFAAAA/QqhGgAAQB8QWx7pcDhUWFjY7niqPm6xWW7BYFDBYFCSVFj/jsqDXyS/P5myNX+h4Pa/qKFoZkIdyZafsikAAAAYSAjVAAAA+gGbzaaCggIVFBS0OxaNRtstK3U0t9+VtCPlrhaVjhgxoHcnBQAA6AihGgAAQD9ntVrldDrldDr/O2g7QPq483NLhk6Wysq6rzgAAIA+ivn5AAAAA5F39p5dPjvoqLaHRXKN3HM7AAAAtEOoBgAAMBBZbdKMu//zSdtg7T+fz1i253YAAABoh1ANAABgoBq5QJq9QnINTxx3jdgzPnJBbuoCAADoA+ipBgAAMJCNXCANP0mqfE1q2ikVDN2z5JMZagAAACkRqgEAAAx0Vps0eE6uqwAAAOhTWP4JAAAAAAAAZIhQDQAAAAAAAMgQoRoAAAAAAACQIUI1AAAAAAAAIEOEagAAAAAAAECGMtr9c/369fr973+v1157TZ9++qkaGxvl9Xp14IEHat68eTr11FPldDq7q1YAAAAAAACgV7CYpml2dqP33ntPV155pV5//XUdfvjhOuSQQzRs2DAVFBSourpaH374oV577TUFAgFdeeWVuuyyy/pMuBYIBOTxeOT3++V2u3NdDgAAAAAAAHIkk5worZlqp556qq644gqtWLFCJSUlSW/35ptv6u6779aSJUv0v//7vxkVDQAAAAAAAPQVac1UC4VCcjgcaV8009vnEjPVAAAAAAAAIGWWE6W1UUGmAVlfCdQAAAAAAACArsho98+mpia9/vrr+uijj9odCwaDeuyxx7JWGAAAAAAAANBbpR2qbdq0SZMnT9ZXv/pV7b///jryyCO1c+fO+HG/368LLrigW4oEAAAAAAAAepO0Q7WrrrpK++23n3bv3q2NGzequLhYhx9+uLZv396d9QEAAAAAAAC9Ttqh2htvvKFbbrlFhmFo/Pjxev755zVv3jzNnj1bW7Zs6c4aAQAAAAAAgF4l7VCtqalJdrs9/rnFYtF9992nE088UUceeaQ2bdrULQUCAAAAAAAAvY2985vsMWnSJK1Zs0aTJ09OGL/33nslSd/4xjeyWxkAAAAAAADQS6U9U+2UU07Rk08+2eGxe++9V2eddZZM08xaYen67LPPNGfOHE2ZMkUHHHCAnn766R6vAQAAAAAAAAOLxcxFEpZFO3fu1K5duzR9+nR9+eWXmjFjhjZt2qTCwsK0zg8EAvJ4PPL7/XK73d1cLQAAAAAAAHqrTHKitJd/ttXc3CxJcjqdXb1EVgwdOlRDhw6VJA0ZMkSGYai6ujrtUA0AAAAAAADIVNrLPyXpL3/5i+bPn6/S0lK5XC65XC6VlpZq/vz5+utf/9qlAl599VWdeOKJGjZsmCwWi5599tl2t6moqNCYMWOUn5+vQw89VG+//XaH13r33XcViUQ0cuTILtUCAAAAAAAApCPtUO3RRx/V/Pnz5fF4tHTpUr3wwgt64YUXtHTpUpWUlGj+/Pl6/PHHMy6goaFB06ZNU0VFRYfHly9frkWLFun666/Xe++9p2nTpmnevHnavXt3wu2qq6v1rW99S7/97W9T3l9zc7MCgUDCGwAAAAAAAJCJtHuqTZgwQZdeeqkWLlzY4fFf/epXWrp0qT7++OOuF2Ox6A9/+INOPvnk+Nihhx6qmTNnxncZjUajGjlypH74wx/q6quvlrQnKDv22GP1ne98R//zP/+T8j4WL16sG264od04PdUAAAAAAAAGtkx6qqU9U2379u2aO3du0uPHHHOMduzYkX6VaWhpadG7776bcL9Wq1Vz587Vm2++KUkyTVPnn3++jj766E4DNUm65ppr5Pf742+fffZZVmsGAAAAAABA/5d2qDZ16lQ9+OCDSY8/9NBDmjJlSlaKivH5fIpEIho8eHDC+ODBg/Xll19KklavXq3ly5fr2Wef1fTp0zV9+nR98MEHSa/pdDrldrsT3gAAAAAAAIBMpL3755IlS3TCCSdo5cqVmjt3bjzo2rVrl1atWqUtW7boxRdf7LZCkzniiCMUjUZ7/H4BAAAAAAAwcKUdqs2ZM0cffvih7rvvPv3zn/+MzxQbMmSIjj/+eH3/+9/XmDFjslqcYRiy2WzatWtXwviuXbs0ZMiQrN4XAAAAAAAAkK60QzVJGjNmjG677bbuqqWdvLw8zZgxQ6tWrYpvXhCNRrVq1SpdcsklPVYHAAAAAAAA0FpGoVp3qK+v1+bNm+Ofb926VWvXrlVZWZlGjRqlRYsW6bzzztPBBx+sQw45RMuWLVNDQ4MuuOCCHFYNAAAAAACAgWyvQrWvf/3reuCBBzR06NAuX2PNmjU66qij4p8vWrRIknTeeefpkUce0ZlnnqnKykpdd911+vLLLzV9+nStXLmy3eYFAAAAAAAAQE+xmKZpdvXk4uJirVu3TuPGjctmTT2ioqJCFRUVikQi2rRpk/x+PzuBAgAAAAAADGCBQEAejyetnMjaQzX1OgsXLtRHH32kd955J9elAAAAAAAAoI/Z61DNYrFkow4AAAAAAACgz8iop5rVam0Xoo0fP16SZJqmLBaLIpFI9qoDAAAAAAAAeqGMQrWtW7fGPzZNU/vtt59eeukljR49OuuFAQAAAAAAAL1VRqFa2/DMYrFoxIgRhGoAAAAAAAAYUAbsRgUAAAAAAABAV2U0U62t0aNHy+FwZKsWAAAAAAAA9AHRSFTbX9uuup11Kh5arFGzR8lqG1hzt/YqVPvwww+zVUePq6ioUEVFBRsrAAAAAAAAZGD9M+u18tKVCuwIxMfcI9w67u7jNHnB5BxW1rMspmmauS4ilwKBgDwej/x+v9xud67LAQAAAAAA6LXWP7NeT532lNQ2TbLseXfGijP6dLCWSU7UpXl5jz/+uA4//HANGzZMn376qSRp2bJl+uMf/9iVywEAAAAAAKCXi4QjevnSl9sHalJ8bOVlKxWNRHu0rlzJOFS77777tGjRIs2fP1+1tbXx5ZMlJSVatmxZtusDAAAAAABADzBNU6FQSA0NDaqtrdXu3bu1Y8cObd26VRs3btSrj7+quh11KS4gBT4LaPtr23uu6BzKuKfaL3/5S91///06+eSTdeutt8bHDz74YF1++eVZLQ4AAAAAAADZEY1GFQ6H1dLSopaWFoVCoXbvU3UJa9zdmNb91O1MEbz1IxmHalu3btWBBx7YbtzpdKqhoSErRQEAAAAAACAzkUhEoVAoHpK1DcxCoVCn17BYLLLb7crLy1NeXp4cDkf8ff6B+VqjNZ1eo3hocTa+nF4v41Bt7NixWrt2rUaPHp0wvnLlSk2e3Hcb0QEAAAAAAPRWpmkqGo2mnGUWDoc7vY7FYmkXlrV9b7FYOjy38JhCuUe4Ffg80HFfNcueXUBHzR61l19t35BxqLZo0SItXLhQwWBQpmnq7bff1pNPPqlbbrlFDzzwQHfUCAAAAAAA0K+ZphlfmtlRYNbS0qJotPMNAKxWa4ezzGLv7XZ70tCs02vbrDru7uP27P5pUWKw9p9LHrfsOFltXdoXs8+xmKkWyybxxBNPaPHixfrkk08kScOGDdMNN9ygiy66KOsFdrdMtkoFAAAAAADoitgmAKlCs3QiGrvd3i4sa/2xzWbr9q9l/TPrtfLSlQrsCMTH3CPdOm7ZcZq8oG+vYswkJ+pSqBbT2Nio+vp6DRo0qKuXyJmKigpVVFQoEolo06ZNhGoAAAAAAKDLotFo0l5msffpcDgcHYZlsfdWa++YBRaNRLX9te2q21mn4qHFGjV7VL+YodZjoVp/wEw1AAAAAADQmUgkkhCStW7+39LSknY/s1SBWap+ZugZmeREGfdUS2b9+vX6+te/ri1btmTrkgAAAAAAAN0u1s8s1fLMSCTS6XVi/cySbQKwN/3M0PtkLVRraWnRp59+mq3LAQAAAAAAZEW2+pnZbLaUs8xsNhuh2QCSdqi2aNGilMcrKyv3uhgAAAAAAIBMte5n1tH7UCiUVmjWup9ZstAMiEk7VLv77rs1ffr0pOtJ6+vrs1YUAAAAAABATCQSSbkJQCb9zJL1NHM4HL1mEwD0DWmHauPHj9ePf/xjnXvuuR0eX7t2rWbMmJG1wgAAAAAAQP9nmma7TQDavk+nn5nFYkm5NJNNAJBtaYdqBx98sN59992koZrFYklrKiUAAAAAABg4Yv3MUi3PjEajnV4n1s8s2fJM+pmhp6Udqi1ZskTNzc1Jj0+bNi2tHwIAAAAAANB/xPqZpQrN0pmEY7fbOwzL6GeG3irtUG3IkCHdWQcAAAAAAOiFWvczS7YJQGfa9jPr6D39zNDXpB2qAQAAAACA/iXWzyxZaJZpP7NUoRlLM9HfZC1UW7dunQ466KC0fth6g4qKClVUVPSZegEAAAAAyJRpmgqHwyk3AUi3n1mqwMxutxOaYcCxmFnaXWDdunU68MAD+1xftUAgII/HI7/fL7fbnetyAAAAAABIW2wTgFShWab9zNr2MottAgAMBJnkRGnPVFuwYEHK436/n1QaAAAAAIAsikajKQOzdPqZSUo6y4x+ZkDXpR2qPf/88zr22GM1ePDgDo+zjBIAAAAAgMxEIpF2PcxaB2bhcLjTa9DPDMiNtEO1yZMn69RTT9VFF13U4fG1a9fqhRdeyFphAAAAAAD0ZbF+Zqk2AUinhZLVak0ZmtHPDMiNtEO1GTNm6L333ksaqjmdTo0aNSprhQEAAAAA0Jtls59ZqllmNpuN0AzohdLeqKC5uVmRSEQul6u7a+pRbFQAAAAAAOhINBpNGZqFQqG0QrPWzf+ThWYAeodu2ajA6XTudWEAAAAAAPQWbfuZtX2fbj+zVJsA2O12NgEA+qm0Q7WYSCSSkKK/9dZbam5u1mGHHSaHw5HV4gAAAAAA6ArTNJOGZrGP09lwz2q1Jt0xk35mwMCWdqi2c+dOnX766frnP/+pww8/XM8++6z+53/+Ry+99JIkad9999Urr7yioUOHdluxAAAAAABI/+1nlmp5ZjqbANhstpSbANDPDEAyaYdqV111lUzT1B/+8Ac98cQTOuGEE2Sz2fTZZ58pEono7LPP1i9+8Qvde++93VkvAAAAAGAAiPUzSzbLLN1+Zna7PenSTPqZAdgbaYdqf/3rX/XMM8/oK1/5ig4//HAZhqG//OUvGj58uCTpxhtv1He+851uKxQAAAAA0H9EIpFONwHoTKyfWbLAzOFw0M8MQLdJO1SrqamJB2hlZWVyuVwaPXp0/Pj48eO1c+fO7FfYTSoqKlRRUZHWGnoAAAAAQPpi/cyShWYtLS1pPRezWCxJe5nFQjOWZgLIlbRDtUGDBmnnzp0aOXKkJOmSSy5RWVlZ/HhNTY0KCwuzX2E3WbhwoRYuXBjfKhUAAAAAkB7TNBUOh1NuApBuP7NUmwDQzwxAb5Z2qDZ9+nS9+eabOuSQQyRJt956a8Lx119/XQcccEB2qwMAAAAA9LjYJgAdhWWx93vTz6x1aAYAfVXaodof//jHlMdnzpypI488cq8LAgAAAAB0r2g0mnKWWTr9zCQlDctiH9PPDEB/lnao1pnYDDYAAAAAQO6YptkuNGsboIXD4U6v07afWUfvWZoJYCDLWqi2c+dOhUIhjRo1KluXBAAAAAC0EetnlmoTgHT6mVmt1g6b/8fe2+12QjMASCFrodrRRx+tTZs2sZsmAAAAAOyFjvqZtX2fbj+zVJsAWK1WQjMA2AtZC9Uee+wxNTY2ZutyAAAAANAvRaPRlJsAhMPhtEIzh8PRYVgWG2cTAADoXlkL1WbOnJmtSwEAAABAnxWJRFLOMku3n1lnmwAwywwAcitroRoAAAAA9HemabYLzdoGZ+m0xLFarUlnmeXl5dHPDAD6gKyFauvWrdNBBx1ETzUAAAAAfVasn1mqTQDSWZpps9lSbgJgs9kIzQCgj8vqTLV0/rgAAAAAQK7E+pkl62kWCoUy7meWLDQDAPRvaYdqCxYsSHnc7/fzSgsAAACAnIpEIp1uAtCZWD+zVJsAWK3WHvhqAAC9Wdqh2vPPP69jjz1WgwcP7vA4yz4BAAAAdKeO+pm1fZ/O8xKLxZJyaSabAAAA0pF2qDZ58mSdeuqpuuiiizo8vnbtWr3wwgtZKwwAAADAwGKapsLhcMpNAKLRaKfXsdlsKTcBoJ8ZACAb0g7VZsyYoffeey9pqOZ0OjVq1KisFQYAAACgf4lGo/HQLNlss3T6mdnt9qSzzGKhGQAA3c1iprm7QHNzsyKRiFwuV3fX1CMqKipUUVGhSCSiTZs2ye/3y+1257osAAAAoM+KRqNJd8yMbQLQmbb9zDp6Tz8zAEB3CQQC8ng8aeVEaYdq/VUm3ywAAABgoDJNs11o1jZAS3cTgFSzzOhnBgDIpUxyorSXf3bk61//uh544AENHTp0by4DAAAAIMc66mfW9n06/cysVmvKTQDsdjuhGQCgX9irUO3VV19VU1NTtmoBAAAA0E1M00walsXeZ9rPrKPNAOhnBgAYKPYqVAMAAADQO0Sj0aTLMmPv05FqWWZeXh79zAAA+I+9CtVGjx4th8ORrVoAAAAAJBGJRFLOMqOfGQAAPWuvQrUPP/wwW3UAAAAAA5Zpmu1Cs7bBWSQS6fQ6sX5myUIz+pkBAJA9LP8EAAAAulm2+pnZbLaUmwDYbDZCMwAAekiXQjW32621a9dq3LhxCR8DAAAAA1HrfmYdvQ+FQmmFZq2b/ycLzQAAQO/QpVCt9QOCdB4cAAAAAH1ZJBJJuQlAuv3MUgVmDoeDTQAAAOhDWP4JAACAAa2jfmZt36fbzyxZaEY/MwAA+h9CNQAAAPRrpmkqHA6n3AQgGo12ep1YP7NkwRn9zAAAGFgI1QAAANCnRaPReGiWbLZZOi1L7HZ70llm9DMDAABtEaoBAACgV2vdzyzZJgCdifUzS9XTjH5mAAAgE4RqAAAAyJlYP7NUoVm6mwCkWprpcDhYmgkAALKKUA0AAGCAi0ai2v7adtXtrFPx0GKNmj1KVlt2Zm111M+s7ft0+5klW5ZJPzMAAJALXQrVzj33XLnd7nYfAwAAoG9Z/8x6rbx0pQI7AvEx9wi3jrv7OE1eMLnT803TTDnLrKWlZa/6mbUOzQAAAHoTi5nOo5x+LBAIyOPxyO/3Ew4CAIABZf0z6/XUaU9JbR8N/mfC1xkrztDEkycm3TEz9j4dycIy+pkBAIDeJJOcKOOZajfeeKMuv/xyuVyuhPGmpibdcccduu666zK9JAAAAHpYNBLVyktXtg/UpD1jFun5hc+rZWyLLLbUyyrpZwYAAAaijGeq2Ww27dy5U4MGDUoYr6qq0qBBgxSJRLJaYHdjphoAABiItr2yTY8e9WintzvigSM0+NDBKWeZ2e12QjMAANAvdOtMNdM0O3zQtG7dOpWVlWV6uZypqKhQRUVFnwsBAQAA9lYoFNKODTvSuq2Rb2jq1KmEZgAAAG2kHaqVlpbKYrHIYrFowoQJCQ+sIpGI6uvr9f3vf79biuwOCxcu1MKFC+MJJAAAQH8XDAbl8/lUU1OjZkdzWud4hnsI1AAAADqQdqi2bNkymaapCy+8UDfccENCEJWXl6cxY8bosMMO65YiAQAA0DWmaaq+vl4+n091dXXx8ZFHjFTRsCLV76zvuK+aZc8uoKNmj+q5YgEAAPqQtEO18847T5I0duxYHX744bLbM145CgAAgB4SjUZVW1srn8+nYDAYH/d4PDIMQ4WFhZr/y/l7dv+0KDFY+8/EtOOWHSerjV05AQAAOpLxo6QjjzxSn376qX7605/qrLPO0u7duyVJL7/8sv79739nvUAAAACkLxwOa9euXdqwYYN27NihYDAoq9UqwzA0adIkjR49WoWFhZKkyQsm64wVZ8g9PLEJr3uEW2esOEOTF0zOxZcAAADQJ2S8++c//vEPHX/88Tr88MP16quvav369Ro3bpxuvfVWrVmzRitWrOiuWrsFu38CAID+oLm5WZWVlaqpqVHs4Z3D4ZBhGCorK5PNZkt6bjQS1fbXtqtuZ52KhxZr1OxRzFADAAADUrfu/nn11Vfr5z//uRYtWqTi4uL4+NFHH617770382oBAADQJaZpqqGhQT6fT4FAID5eUFAgwzBUUlKS1iYDVptVY+aM6cZKAQAA+p+MQ7UPPvhAv/vd79qNDxo0SD6fLytFAQAAILloNCq/3y+fz6empqb4uNvtjvdLY8dOAACA7pVxqFZSUqKdO3dq7NixCeP/+te/NHz48KwVBgAAgESRSERVVVWqqqpSKBSSJFksFpWVlckwDDmdzhxXCAAAMHBkHKp985vf1FVXXaWnn35aFotF0WhUq1ev1uWXX65vfetb3VEjAADAgNbc3Cyfz6eamhpFo1FJkt1uj/dLY1d2AACAnpfxI7Cbb75ZCxcu1MiRIxWJRDRlyhRFIhGdffbZ+ulPf9odNQIAAAw4pmmqsbFRPp9Pfr8/Pp6fny+v1yuPxyOrlc0EAAAAciXj3T9jPvvsM33wwQeqr6/XgQceqH333TfbtfUIdv8EAAC9iWma8X5pjY2N8fHi4mIZhqGioiL6pQEAAHSTbt39M2bkyJHx2WoffPCBampqVFpa2tXLAQAADGiRSETV1dXy+XwJ/dJKS0tlGIby8/NzXCEAAABayzhUu+yyy7T//vvroosuUiQS0ZFHHqk33nhDLpdLL7zwgubMmdMNZQIAAPRPLS0t8vl8qq6uTuiXVl5ervLycvqlAQAA9FIZP0pbsWKFzj33XEnS888/ry1btmjDhg16/PHHde2112r16tVZLxIAAKC/aWxsVGVlpQKBgGLdOJxOp7xer0pKSuiXBgAA0MtlHKr5fD4NGTJEkvTSSy/pjDPO0IQJE3ThhRfq7rvvznqBAAAA/YVpmgoEAqqsrEzol1ZUVCTDMFRcXEy/NAAAgD4i41Bt8ODB+uijjzR06FCtXLlS9913n6Q9r7babLasFwgAANDXRSIR1dTUyOfzqaWlRdKefmklJSUyDEMFBQU5rhAAAACZyjhUu+CCC3TGGWdo6NChslgsmjt3riTprbfe0qRJk7JeIAAAQF/V0tKiqqoqVVdXKxKJSJJsNlu8X5rD4chxhQAAAOiqjEO1xYsXa//999f27dt1+umny+l0StrzAPHqq6/OeoEAAAB9TVNTkyorK+X3+xP6pRmGoZKSEmb3AwAA9ANphWplZWXatGmTDMOI904rLi5OuM15553XLQUCAAD0BaZpqq6uTpWVlWpoaIiPFxYWyuv10i8NAACgn0lrW6mWlhYFAgFJ0qOPPqpgMNitRQEAAPQV0WhUVVVV2rRpk7Zt26aGhoZ4v7Tx48drn332kdvtJlADAADoZ9KaqXbYYYfp5JNP1owZM2Sapn70ox8lbaj70EMPZbVAAACA3igUCqmqqkpVVVUJ/dLKyspUXl6uvLy8HFcIAACA7pRWqPZ///d/Wrp0qT755BNJkt/vZ7YaAAAYkJqamuTz+VRbWxvvl5aXlyfDMFRaWkq/NAAAgAHCYsYeDaZp7NixWrNmjcrLy7urph4VCATk8Xjk9/vldrtzXQ4AAOiFTNNUfX29KisrVV9fHx93uVzyer0s7wQAAOgnMsmJMt6o4KijjmI5AwAAGBCi0ahqa2vl8/kSZul7PB4ZhqHCwsIcVgcAAIBcYqMCAACANsLhsHbt2qUNGzZox44dCgaDslqtMgxDkyZN0ujRownUAAAABjg2KgAAAPiPYDAon8+nmpqaeL80h8MhwzBUVlZGvzQAAADEZbxRgcViYaMCAADQb5imqYaGBlVWVqquri4+XlBQIK/XK4/HQ780AAAAtDNgNyqoqKhQRUWFIpGINm3axEYFAAAMMNFoVH6/X5WVlQkvFrrdbnm9XrlcLsI0AACAASaTjQoyDtX6G3b/BABgYAmHw6qurpbP51M4HJYkWa1WlZaWyjAMOZ3OHFcIAACAXMn67p9t/eMf/9Cdd96p9evXS5KmTJmiK664QrNnz+7K5QAAALpdc3NzvF9aNBqVtKdfWnl5ucrKymS3d+lhEQAAAAaotHb/bO3//u//NHfuXLlcLv3oRz+Kb1pwzDHH6He/+1131AgAANAlpmmqvr5e27Zt08aNG1VVVaVoNKr8/HyNHDlSEydO1KBBgwjUAAAAkLGMl39OnjxZ3/3ud/XjH/84Yfyuu+7S/fffH5+91lew/BMAgP7HNM14v7Smpqb4eHFxsbxerwoLC+mXBgAAgHa6taea0+nUv//9b40fPz5hfPPmzdpvv/363K6ghGoAAPQfkUgk3i8tFApJkiwWS7xfWn5+fo4rBAAAQG/WrT3VRo4cqVWrVrUL1f76179q5MiRmV4OAABgr7W0tMjn86m6ujreL81ut6u8vFzl5eUs7wQAAEDWZfwI8yc/+Yl+9KMfae3atZo1a5YkafXq1XrkkUd09913Z71AAACAZBoaGuTz+eT3++Nj+fn5MgxDJSUlslozbh8LAAAApCXjUO3iiy/WkCFDtGTJEj311FOS9vRZW758uU466aSsFwgAANCaaZoKBAKqrKxUY2NjfLyoqEher1dFRUX0SwMAAEC3y7inWn9DTzUAAPqGSCSimpoa+Xw+tbS0SNrTL62kpESGYaigoCDHFQIAAKCvy3pPNdM0ecUXAADkREtLi6qqqlRdXa1IJCJJstls8X5pDocjxxUCAABgIEqr0cjUqVP1+9//Pv6qcDIff/yxLr74Yt16661ZKQ4AAAxcjY2N2r59uzZu3KjKykpFIhE5nU4NHz5ckydP1pAhQwjUAAAAkDNpzVT75S9/qauuuko/+MEPdOyxx+rggw/WsGHDlJ+fr5qaGn300Ud6/fXX9e9//1uXXHKJLr744u6uGwAA9EOmaaqurk6VlZVqaGiIjxcVFckwDBUXFzN7HgAAAL1CRj3VXn/9dS1fvlyvvfaaPv30UzU1NckwDB144IGaN2+ezjnnHJWWlnZnvVlHTzUAAHIv1i+tqqpKzc3Nkvb0S/N4PPJ6vfRLAwAAQI/IJCdiowJCNQAAciYUCqmqqkpVVVUJ/dLKyspkGAbLOwEAANCjsr5RAQAAQDY1NTXJ5/OptrZWsdf38vLyZBiGSktLZbPZclwhAAAAkBqhGgAA6BGxfmk+n0/19fXx8cLCQhmGIbfbTb80AAAA9BmEagAAoFtFo1HV1NTI5/Ml9Etzu93yer1yuVw5rhAAAADIHKEaAADoFuFwON4vLRwOS5KsVmu8X1peXl6OKwQAAAC6jlANAABkVTAYlM/nU01NTUK/tPLycpWVldEvDQAAAP1Cl0K1Tz75RA8//LA++eQT3X333Ro0aJBefvlljRo1SlOnTs12jQAAoJczTVP19fXy+Xyqq6uLj7tcLhmGIY/HQ780AAAA9CvWTE/4xz/+of33319vvfWWnnnmmXij4XXr1un666/PeoEAAKD3ivVL+/jjj7V169Z4oObxeLTPPvton332UUlJCYEaAAAA+p2MZ6pdffXV+vnPf65FixapuLg4Pn700Ufr3nvvzWpxAACgd0rWL620tFSGYcjpdOa4QgAAAKB7ZRyqffDBB/rd737XbnzQoEHy+XxZKQoAAPROzc3N8vl8qq6ujvdLczgcKi8vV3l5Of3SAAAAMGBkHKqVlJRo586dGjt2bML4v/71Lw0fPjxrhQEAgN7BNE01NDTI5/MpEAjExwsKCuL90qzWjDtKAAAAAH1axqHaN7/5TV111VV6+umnZbFYFI1GtXr1al1++eX61re+1R01AgCAHDBNU7W1tfL5fGpqaoqPu91uGYahwsJCeqUBAABgwMo4VLv55pu1cOFCjRw5UpFIRFOmTFEkEtHZZ5+tn/70p91RIwAA6EGRSCTeLy0UCkmSLBaLSktL5fV66ZcGAAAASLKYsYYoGdq+fbs+/PBD1dfX68ADD9S+++6b7dp6RCAQkMfjkd/vl9vtznU5AADkTEtLS7xfWjQalSTZ7fZ4vzS7PePX4gAAAIA+JZOcqMuPjkeNGqVRo0Z19XQAANBLxPql+f3++Fh+fr4Mw1BJSQn90gAAAIAOZByqXXjhhSmPP/TQQ10uBgAA9AzTNOX3++Xz+dTY2BgfLy4ulmEYKioqol8aAAAAkELGoVpNTU3C56FQSB9++KFqa2t19NFHZ60wAACQfZFIRNXV1aqqqlJLS4uk//ZLMwxD+fn5Oa4QAAAA6BsyDtX+8Ic/tBuLRqO6+OKLtc8++2SlKAAAkF2p+qWVlZXJ4XDkuEIAAACgb+nyRgVtbdy4UXPmzNHOnTuzcbkew0YFAID+rLGxMd4vLfYn3+l0yjAMlZaW0i8NAAAAaKVHNipo65NPPlE4HM7W5QAAQBeZpqlAICCfz6eGhob4eFFRkQzDUHFxMf3SAAAAgL2Ucai2aNGihM9N09TOnTv14osv6rzzzstaYQAAIDORSEQ1NTWqqqpSc3OzpD390kpKSmQYhgoKCnJcIQAAANB/ZByq/etf/0r43Gq1yuv1asmSJZ3uDAoAALIvFArF+6VFIhFJks1mU3l5ucrLy+mXBgAAAHSDjEO1v//9791RBwAAyFBTU5N8Pp9qa2sT+qWVl5ertLRUNpstxxUCAAAA/VfWeqoBAIDuZ5qm6urq5PP5VF9fHx8vLCyU1+ulXxoAAADQQ9IK1Q488MC0H6C/9957e1UQAABoLxqNqqamRj6fL6FfmsfjkWEYcrlcOa4QAAAAGFjSCtVOPvnkbi4DAAB0JBQKqaqqStXV1fFdtq1Wa7xfWl5eXo4rBAAAAAYmixlrwjJABQIBeTwe+f1+ud3uXJcDAIAkKRgMyufzqaamJt4vLS8vT4Zh0C8NAAAA6CaZ5ET0VAMAoJcwTVP19fXy+Xyqq6uLj7tcLnm9XrndbvqlAQAAAL1ExqFaJBLR0qVL9dRTT2n79u1qaWlJOF5dXZ214tJ1yimn6JVXXtExxxyjFStW9Pj9AwCwN6LRqGpra+Xz+RQMBuPjsX5phYWFOawOAAAAQEesmZ5www036K677tKZZ54pv9+vRYsWacGCBbJarVq8eHE3lNi5Sy+9VI899lhO7hsAgK4Kh8PatWuXNmzYoB07digYDMpqtcowDE2aNEmjR48mUAMAAAB6qYxnqj3xxBO6//779fWvf12LFy/WWWedpX322UcHHHCA/vnPf+pHP/pRd9SZ0pw5c/TKK6/0+P0CANAVHfVLczgcMgxDZWVl9EsDAAAA+oCMZ6p9+eWX2n///SVJRUVF8vv9kqQTTjhBL774YsYFvPrqqzrxxBM1bNgwWSwWPfvss+1uU1FRoTFjxig/P1+HHnqo3n777YzvBwCAXIr1S9u2bZs2bdqk6upqmaapgoICjRo1SpMmTZLX6yVQAwAAAPqIjEO1ESNGaOfOnZKkffbZR3/+858lSe+8846cTmfGBTQ0NGjatGmqqKjo8Pjy5cu1aNEiXX/99Xrvvfc0bdo0zZs3T7t37874vgAA6GnRaFQ1NTXavHmztmzZokAgIElyu90aN26cxo8fr5KSEjYgAAAAAPqYjJd/nnLKKVq1apUOPfRQ/fCHP9S5556rBx98UNu3b9ePf/zjjAs4/vjjdfzxxyc9ftddd+k73/mOLrjgAknSr3/9a7344ot66KGHdPXVV2d8f83NzWpubo5/HntyAwBANkUiEVVVVamqqkqhUEiSZLFYVFZWJsMwuvRCFAAAAIDeI+NQ7dZbb41/fOaZZ2r06NF64403tO++++rEE0/ManEtLS169913dc0118THrFar5s6dqzfffLNL17zlllt0ww03ZKtEAAASNDc3x/ulRaNRSZLdbo/3S7PbM/7TCwAAAKAXyviRfTAYVH5+fvzzr3zlK/rKV76S1aJifD6fIpGIBg8enDA+ePBgbdiwIf753LlztW7dOjU0NGjEiBF6+umnddhhh3V4zWuuuUaLFi2Kfx4IBDRy5MhuqR8AMDCYpqnGxkb5fL54r1FJys/Pl9frlcfjkdWacccFAAAAAL1YxqHaoEGDdMopp+jcc8/VMccc0yueJPz1r39N+7ZOp5MlNwCArDBNU36/Xz6fT42NjfHx4uJieb1eFRYW0isNAAAA6KcyTsQeffRRNTY26qSTTtLw4cN12WWXac2aNd1RmwzDkM1m065duxLGd+3apSFDhnTLfQIA0JlIJKLKykpt2LBB27dvV2NjY7xf2oQJEzR27FgVFRURqAEAAAD9WMah2imnnKKnn35au3bt0s0336yPPvpIX/nKVzRhwgTdeOONWS0uLy9PM2bM0KpVq+Jj0WhUq1atSrq8EwCA7tLS0qIvvvhC69ev186dOxUKhWS32zV48GBNnjxZI0aMSGiRAAAAAKD/spimae7tRT766COdc845ev/99xWJRDI6t76+Xps3b5YkHXjggbrrrrt01FFHqaysTKNGjdLy5ct13nnn6Te/+Y0OOeQQLVu2TE899ZQ2bNjQrtdaVwQCAXk8Hvn9frnd7r2+HgCg/2lsbFRlZWVCvzSn0ymv16uSkpJe0QoBAAAAwN7LJCfq8hZkwWBQzz33nH73u99p5cqVGjx4sK644oqMr7NmzRodddRR8c9jmwicd955euSRR3TmmWeqsrJS1113nb788ktNnz49fn8AAHQX0zQVCARUWVmZ0C+tqKhIXq+X5Z0AAADAAJfxTLU//elP+t3vfqdnn31Wdrtdp512ms455xx99atf7a4au0VFRYUqKioUiUS0adMmZqoBACTt6ZdWU1Mjn8+nlpYWSZLFYlFJSYkMw1BBQUGOKwQAAADQXTKZqZZxqOZyuXTCCSfonHPO0fz58+VwOPaq2Fxj+ScAQNrTL62qqkrV1dXxVgY2m03l5eUqLy/v83/vAAAAAHSuW5d/7tq1S8XFxV0uDgCA3qSpqSneLy32OpPT6ZRhGCotLaVfGgAAAIAOZRyqEagBAPo60zRVV1enyspKNTQ0xMcLCwvl9XpVXFxMvzQAAAAAKXV5owIAAPqaaDQa75fW3NwsaU+/NI/HI8Mw5HK5clwhAAAAgL6CUA0A0O+FQiFVVVWpqqoqoV9aWVmZysvLlZeXl+MKAQAAAPQ1hGoAgH6rqalJPp9PtbW18X5peXl58X5pNpstxxUCAAAA6Ku6HKpt3rxZn3zyib761a+qoKBApmnSfwYAkHOmaaq+vl6VlZWqr6+Pj7tcLnm9Xrndbv5eAQAAANhrGYdqVVVVOvPMM/W3v/1NFotFH3/8scaNG6eLLrpIpaWlWrJkSXfUCQBAStFoVLW1taqsrIz3S5Mkj8cjr9dLvzQAAAAAWWXN9IQf//jHstvt2r59e8ITlDPPPFMrV67ManHdqaKiQlOmTNHMmTNzXQoAYC+Ew2Ht2rVLGzZs0I4dO9Tc3Cyr1SrDMDRp0iSNHj2aQA0AAABA1lnMWJOZNA0ZMkR/+tOfNG3aNBUXF2vdunUaN26ctmzZogMOOCBhqU1fEAgE5PF45Pf75Xa7c10OACBNwWBQPp9PNTU18X5pDodDhmGorKyMfmkAAAAAMpZJTpTx8s+GhoYOX/Gvrq6W0+nM9HIAAKTNNE01NDSosrJSdXV18XGXyyXDMOTxeOiXBgAAAKBHZLz8c/bs2Xrsscfin1ssFkWjUd1+++066qijslocAADSnn5pNTU1+vjjj7Vly5Z4oObxeLTPPvton332UUlJCYEaAAAAgB6T8Uy122+/Xcccc4zWrFmjlpYWXXnllfr3v/+t6upqrV69ujtqBAAMUOFwWNXV1fL5fAqHw5Ikq9Wq0tJSGYbBDGkAAAAAOZNxqLbffvtp06ZNuvfee1VcXKz6+notWLBACxcu1NChQ7ujRgDAANPc3BzvlxaNRiXt6ZdWXl6u8vJy+qUBAAAAyLmMNyrob9ioAAB6h1i/NJ/Pp0AgEB8vKCiI90uzWjPuWgAAAAAAaevWjQrGjx+vc889V+ecc4723XffLhcJAIC0J0zz+/2qrKxUU1NTfNztdsswDBUWFtIrDQAAAECvk/FL/gsXLtSLL76oiRMnaubMmbr77rv15ZdfdkdtAIB+LBKJqLKyUhs2bND27dvV1NQki8WisrIyTZgwQWPGjFFRURGBGgAAAIBeqcvLPzdt2qQnnnhCTz75pLZu3aqjjjpK5557rr71rW9lu8ZuUVFRoYqKCkUiEW3atInlnwDQQ1paWuTz+VRdXR3vl2a32+P90uz2jCdRAwAAAEBWZLL8Mys91f75z3/q4osv1vvvv69IJLK3l+tR9FQDgJ4R65fm9/vjY/n5+TIMQyUlJfRLAwAAAJBz3dpTrbW3335bv/vd77R8+XIFAgGdfvrpe3M5AEA/Y5qmAoGAKisr1djYGB8vLi6WYRgs7wQAAADQZ2UcqrVd9nn00Ufrtttu04IFC1RUVNQdNQIA+phIJKKamhr5fD61tLRIkiwWi0pLS2UYhvLz83NcIQAAAADsnYxDtUmTJmnmzJlauHChvvnNb2rw4MHdURcAoA9qaWlRVVWVqqqq4v3SbDZbvF+aw+HIcYUAAAAAkB0Zh2obN27Uvvvu2x21AAD6qMbGxni/tFirTqfTKcMwVFpaSr80AAAAAP1OxqEagRoAQNrTL62urk6VlZVqaGiIjxcVFckwDBUXF9MvDQAAAEC/lVaoVlZWpk2bNsVnHKR6klRdXZ214gAAvU+sX1pVVZWam5sl7emXVlJSIsMwVFBQkOMKAQAAAKD7pRWqLV26VMXFxfGPmXkAAANPKBSK90uLRCKS9vRLKysrk2EY9EsDAAAAMKBYzFjzmwEqEAjI4/HI7/fL7XbnuhwA6HWamprk8/lUW1sb75eWl5cXn71ss9lyXCEAAAAAZEcmOVHGPdVsNpt27typQYMGJYxXVVVp0KBB8dkLvV1FRYUqKir6TL0A0JNi/dJ8Pp/q6+vj44WFhTIMQ263m1nLAAAAAAa0jGeqWa1Wffnll+1CtS+++EL77LOPmpqaslpgd2OmGgD8VzQaVU1NjXw+X0K/NI/HI8Mw5HK5clwhAAAAAHSfbpmpds8990ja8+TqgQceUFFRUfxYJBLRq6++qkmTJnWxZABALoXD4Xi/tHA4LGnPiyixfml5eXk5rhAAAAAAepe0Q7WlS5dK2rMk6Ne//nVCD528vDyNGTNGv/71r7NfIQCg2wSDQfl8PtXU1CT0SysvL1dZWRn90gAAAAAgibRDta1bt0qSjjrqKD3zzDMqLS3ttqIAAN3HNE3V19fL5/Oprq4uPu5yuWQYhjweD/3SAAAAAKATGW9U8Pe//7076gAAdLNoNKra2lr5fD4Fg8H4eKxfWmFhYQ6rAwAAAIC+JeNQ7dRTT9Uhhxyiq666KmH89ttv1zvvvKOnn346a8UBAPYe/dIAAAAAIPsyDtVeffVVLV68uN348ccfryVLlmSjJgBAFjQ3N6uysjKhX5rD4VB5ebnKy8vplwYAAAAAeyHjUK2+vr7DWQ0Oh0OBQCArRQEAusY0TTU0NMjn8yX8Ti4oKJBhGCopKaFfGgAAAABkgTXTE/bff38tX7683fjvf/97TZkyJStFAQAyY5qmampqtHnzZm3ZsiUeqLndbo0bN07jx49XaWkpgRoAAAAAZEnGM9V+9rOfacGCBfrkk0909NFHS5JWrVqlJ598kn5qANDDIpFIvF9aKBSSJFkslni/NKfTmeMKAQAAAKB/yjhUO/HEE/Xss8/q5ptv1ooVK1RQUKADDjhAf/3rX3XkkUd2R40AgDaam5vl8/lUU1OjaDQqSbLb7fF+aXZ7xr/eAQAAAAAZsJix7tUDVCAQkMfjkd/vl9vtznU5AJCUaZpqbGyUz+eT3++Pj+fn58vr9crj8chqzXhVPwAAAADgPzLJibo0laG2tlYrVqzQli1bdPnll6usrEzvvfeeBg8erOHDh3ep6J5WUVGhiooKRSKRXJcCACmZpim/3y+fz6fGxsb4eHFxsQzDUFFREb3SAAAAAKCHZTxT7f3339fcuXPl8Xi0bds2bdy4UePGjdNPf/pTbd++XY899lh31dotmKkGoLeKRCKqrq5WVVWVWlpaJO3pl1ZaWirDMJSfn5/jCgEAAACgf+nWmWqLFi3S+eefr9tvv13FxcXx8fnz5+vss8/OvFoAQIKWlhb5fD5VV1e365dWVlYmh8OR4woBAAAAABmHau+8845+85vftBsfPny4vvzyy6wUBQADUWNjoyorKxUIBBSbROx0OmUYhkpLS+mXBgAAAAC9SMahmtPpVCAQaDe+adMmeb3erBQFAAOFaZoKBALy+XxqaGiIjxcVFckwDBUXF9MvDQAAAAB6oYxDtW984xu68cYb9dRTT0na099n+/btuuqqq3TqqadmvUAA6I8ikYhqamrk8/kS+qWVlJTIMAwVFBTkuEIAAAAAQCoZb1Tg9/t12mmnac2aNaqrq9OwYcP05Zdf6rDDDtNLL72kwsLC7qq1W7BRAYCeFAqF4v3SYrsP22w2lZeXq7y8nH5pAAAAAJBD3bpRgcfj0V/+8he9/vrrev/991VfX6+DDjpIc+fO7XLBANDfNTU1qbKyUn6/P6FfWnl5uUpLS2Wz2XJcIQAAAAAgExnPVOtvmKkGoLuYpqm6ujr5fD7V19fHxwsLC+X1eumXBgAAAAC9TNZnqt1zzz367ne/q/z8fN1zzz0pb1tUVKSpU6fq0EMPTb9iAOhHotFovF9ac3OzpD390jwejwzDkMvlynGFAAAAAIC9ldZMtbFjx2rNmjUqLy/X2LFjU962ublZu3fv1o9//GPdcccdWSu0uzBTDUC2hEIhVVVVqaqqKqFfWllZmcrLy5WXl5fjCgEAAAAAqWSSE3XL8s+//OUvOvvss1VZWZntS2cdoRqAvdXU1CSfz6fa2tp4v7S8vDwZhkG/NAAAAADoQ7p1o4J0HHHEEfrpT3/aHZcGgF7BNE3V19ersrIyoV+ay+WS1+uV2+2mXxoAAAAA9GNdmqm2atUqLV26VOvXr5ckTZ48WZdddlmf3AGUmWoAMhGNRlVbWyufz6dgMBgfj/VLKywszGF1AAAAAIC9kUlOZM304r/61a903HHHqbi4WJdeeqkuvfRSud1uzZ8/XxUVFV0uGgB6s3A4rF27dmnDhg3asWOHgsGgrFarDMPQpEmTNHr0aAI1AAAAABhAMp6pNmLECF199dW65JJLEsYrKip088036/PPP89qgd2NmWoAUgkGg/L5fKqpqYn3S3M4HDIMQ2VlZfRLAwAAAIB+pFtnqtXW1uq4445rN/61r31Nfr8/08vlTEVFhaZMmaKZM2fmuhQAvUysX9rWrVu1adMmVVdXyzRNFRQUaNSoUZo0aZK8Xi+BGgAAAAAMYBmHat/4xjf0hz/8od34H//4R51wwglZKaonLFy4UB999JHeeeedXJcCoJeIRqOqqanR5s2btWXLFtXV1UmS3G63xo0bp/Hjx6ukpIQNCAAAAAAA6e3+ec8998Q/njJlin7xi1/olVde0WGHHSZJ+uc//6nVq1frJz/5SfdUCQDdKBwOq7q6WlVVVQqFQpIkq9Wq0tJSGYYhp9OZ4woBAAAAAL1NWj3Vxo4dm97FLBZt2bJlr4vqSfRUAwau5ubmeL+0aDQqSbLb7fF+aXZ7Wq87AAAAAAD6iUxyorSeMW7dujUrhQFArpmmqYaGBvl8PgUCgfh4fn6+vF6vPB6PrNaMV8YDAAAAAAaYLk/D8Pl8kiTDMLJWDAB0F9M05ff75fP51NjYGB8vLi6W1+tVYWEhvdIAAAAAAGnLaDpGbW2tFi5cKMMwNHjwYA0ePFiGYeiSSy5RbW1tN5UIAF0XiURUWVmpDRs2aPv27WpsbJTFYlFZWZkmTJigsWPHqqioiEANAAAAAJCRtGeqVVdX67DDDtPnn3+uc845R5MnT5YkffTRR3rkkUe0atUqvfHGGyotLe22YgEgXS0tLfL5fKqurk7ol1ZeXq7y8nL6pQEAAAAA9krazypvvPFG5eXl6ZNPPtHgwYPbHfva176mG2+8UUuXLs16kQCQrli/NL/fHx/Lz8+XYRgqKSmhXxoAAAAAICvS2v1TksaMGaPf/OY3mjdvXofHV65cqe9///vatm1bNuvrduz+CfR9pmkqEAiosrIyoV9aUVGRvF4vyzsBAAAAAGnJ+u6fkrRz505NnTo16fH99ttPX375ZfpVAsBeikQiqqmpkc/nU0tLiyTJYrGopKREhmGooKAgxxUCAAAAAPqrtEM1wzC0bds2jRgxosPjW7duVVlZWdYKA4BkWlpaVFVVperqakUiEUmSzWaL90tzOBw5rhAAAAAA0N+lHarNmzdP1157rf7yl78oLy8v4Vhzc7N+9rOf6bjjjst6gQAQ09jYGO+XFlu57nQ6ZRiGSktL6ZcGAAAAAOgxafdU27Fjhw4++GA5nU4tXLhQkyZNkmmaWr9+vX71q1+publZa9as0ciRI7u75qyipxrQu5mmqbq6OlVWVqqhoSE+XlhYKK/Xq+LiYvqlAQAAAACyolt6qo0YMUJvvvmmfvCDH+iaa66JzxKxWCw69thjde+99/a5QA1A7xWNRuP90pqbmyXt+X3j8Xjk9XrplwYAAAAAyKm0QzVJGjt2rF5++WXV1NTo448/liSNHz+eXmoAsiYUCqmqqkpVVVUJ/dLKyspUXl7ebvk5AAAAAAC5kFGoFlNaWqpDDjkk27UAGMCamprk8/lUW1sbnwmbl5cX75dms9lyXCEAAAAAAP/VpVANALIh1i/N5/Opvr4+Pu5yueT1euV2u+mXBgAAAADolQjVAPS4aDSq2tpaVVZWxvulSYr3S3O5XDmsDgAAAACAzhGqAegx4XA43i8tHA5LkqxWq8rKymQYBv3SAAAAAAB9xoAN1SoqKlRRURFvhA6g+wSDQfl8PtXU1MT7pTkcDhmGobKyMvqlAQAAAAD6HIsZe4Y7QAUCAXk8Hvn9frnd7lyXA/Qbpmmqvr5ePp9PdXV18XGXyyXDMOTxeOiXBgAAAADoVTLJiQbsTDUA3SMajcrv96uyslLBYDA+7vF4ZBiGXC4XYRoAAAAAoM8jVAOQFeFwWNXV1fL5fAn90kpLS2UYhpxOZ44rBAAAAAAgewjVAOyV5uZm+Xw+VVdXJ/RLKy8vV3l5Of3SAAAAAAD9EqEagIyZpqmGhgb5fD4FAoH4eEFBQbxfmtVqzWGFAAAAAAB0L0I1AGkzTVO1tbXy+XxqamqKj7vdbhmGocLCQvqlAQAAAAAGBEI1AJ2KRCLxfmmhUEiSZLFYVFpaKq/XS780AAAAAMCAQ6gGIKmWlpZ4v7RoNCpJstvt8X5pdju/QgAAAAAAAxPPiAG0E+uX5vf742P5+fkyDEMlJSX0SwMAAAAADHiEagAk7emX5vf75fP51NjYGB8vLi6WYRgqKiqiXxoAAAAAAP9BqAYMcJFIRDU1NfL5fGppaZH0335phmEoPz8/xxUCAAAAAND7EKoBA1SqfmllZWVyOBw5rhAAAAAAgN6LUA0YYBobG+P90kzTlCQ5nU4ZhqHS0lL6pQEAAAAAkAZCNWAAME1TgUBAPp9PDQ0N8fGioiIZhqHi4mL6pQEAAAAAkAFCNaAfi/VLq6qqUnNzs6Q9/dJKSkpkGIYKCgpyXCEAAAAAAH0ToRrQD4VCIVVVVamqqkqRSESSZLPZVF5ervLycvqlAQAAAACwlwjVgH6kqalJPp9PtbW18X5peXl58X5pNpstxxUCAAAAANA/EKoBfZxpmqqrq5PP51N9fX18vLCwUIZhyO120y8NAAAAAIAsI1QD+qhoNKqamhr5fL6Efmkej0eGYcjlcuW4QgAAAAAA+i9CNaCPCYVCqq6uVlVVlcLhsCTJarXG+6Xl5eXluEIAAAAAAPo/QjWgjwgGg/L5fKqpqaFfGgAAAAAAOUaoBvRipmmqvr5ePp9PdXV18XGXyyXDMOTxeOiXBgAAAABADhCqAb1QNBpVbW2tfD6fgsFgfDzWL62wsDCH1QEAAAAAAEI1oBcJh8Oqqqpq1y+trKxMhmHQLw0AAAAAgF6CUA3oBZqbm1VZWZnQL83hcMgwDJWVldEvDQAAAACAXoZQDcgR0zTV0NAgn8+nQCAQHy8oKJDX66VfGgAAAAAAvRihGtDDotGo/H6/fD6fmpqa4uNutzveL40wDQAAAACA3m3AhmoVFRWqqKhQJBLJdSkYICKRSLxfWigUkiRZLJZ4vzSn05njCgEAAAAAQLosZqyB0wAVCATk8Xjk9/vldrtzXQ76oebmZvl8PtXU1CgajUqS7HZ7vF+a3T5gs20AAAAAAHqVTHIins0D3cA0TTU2Nsrn88nv98fH8/Pz4/3SrFZrDisEAAAAAAB7g1ANyCLTNOP90hobG+PjxcXFMgxDRUVF9EsDAAAAAKAfIFQDsiASiai6ulo+ny+hX1ppaakMw1B+fn6OKwQAAAAAANlEqAbshZaWFvl8PlVXVyf0SysvL1d5eTn90gAAAAAA6Kd4xg90QWNjoyorKxUIBBTb68PpdMrr9aqkpIR+aQAAAAAA9HOEakCaTNNUIBBQZWVlQr+0oqIiGYah4uJi+qUBAAAAADBAEKoBnYhEIqqpqZHP51NLS4ukPf3SSkpKZBiGCgoKclwhAAAAAADoaYRqQBItLS2qqqpSdXW1IpGIJMlms8X7pTkcjhxXCAAAAAAAcoVQDWijqalJlZWV8vv9Cf3SDMNQSUmJbDZbjisEAAAAAAC5RqgGaE+/tLq6OlVWVqqhoSE+XlhYKK/XS780AAAAAACQgFANA1o0Go33S2tubpa0p1+ax+ORYRhyuVw5rhAAAAAAAPRGhGoYkEKhkKqqqlRVVZXQL62srEzl5eXKy8vLcYUAAAAAAKA3I1TDgNLU1CSfz6fa2tp4v7S8vDwZhqHS0lL6pQEAAAAAgLQQqqHfM01T9fX1qqysVH19fXzc5XLJ6/XK7XbTLw0AAABAnxeJRBQKhXJdBtCrORyOrE2oIVRDvxWNRlVbW6vKysp4vzRJ8X5phYWFOawOAAAAALLDNE19+eWXqq2tzXUpQJ9QUlKiIUOG7PUEG0I19DvhcDjeLy0cDkuSrFarysrKZBgG/dIAAAAA9CuxQG3QoEFyuVysxAGSME1TjY2N2r17tyRp6NChe3U9QjX0G8FgUD6fTzU1NfF+aQ6HQ4ZhqKysjH5pAAAAAPqdSCQSD9TKy8tzXQ7Q6xUUFEiSdu/erUGDBu1VVkCohj7NNE01NDSosrJSdXV18fGCggJ5vV55PB5epQEAAADQb8V6qLlcrhxXAvQdsZ+XUChEqIaBJxqNyu/3q7KyUsFgMD7udrvl9XqZ8gwAAABgQOH5D5C+bP28EKqhTwmHw6qurpbP50vol1ZaWirDMOR0OnNcIQAAAAAAGAisuS4ASEdzc7M+//xzbdiwQV9++aXC4bAcDoeGDBmiSZMmafjw4QRqAAAAANBF0UhU217Zpg+e/EDbXtmmaCSa65KyYsyYMVq2bNleXeOVV16RxWLJ2u6q27Ztk8Vi0dq1a7NyPYvFomeffTYr18q2dL7WRx55RCUlJVm7z2z/e6VCqIZeyzRN1dfXa9u2bdq4caOqqqoUjUZVUFCgkSNHauLEiRo0aJDsdiZcAgAAAEBXrX9mve4ec7cePepRPXP2M3r0qEd195i7tf6Z9d1+32+++aZsNpu+/vWvd/t9pWPOnDm67LLLEsZmzZqlnTt3yuPx9FgdqYKhtkHhzp07dfzxx/dYbdl25plnatOmTbkuo0sI1dDrmKap2tpabd68WVu2bFEgEJAkFRcXa9y4cRo/frxKS0tltfLfFwAAAAD2xvpn1uup055SYEcgYTzweUBPnfZUtwdrDz74oH74wx/q1Vdf1RdffNGt99VVeXl5GjJkSK/tWzdkyJC9WrnV0tLSpfNM04y3ZdobBQUFGjRo0F5fJxdIJdBrRCIRVVZWasOGDdq+fbuamppksVhUVlamCRMmaOzYsSoqKuq1v8gAAAAAINdM01RLQ0tab8FAUC//6GXJ7OhCe969fOnLCgaCaV3PNDu6UHL19fVavny5Lr74Yn3961/XI488Ej8Wm6m1atUqHXzwwXK5XJo1a5Y2btwYv80nn3yik046SYMHD1ZRUZFmzpypv/71r0nv78ILL9QJJ5yQMBYKhTRo0CA9+OCDOv/88/WPf/xDd999tywWiywWi7Zt29bhrLHVq1drzpw5crlcKi0t1bx581RTUyNJWrlypY444giVlJSovLxcJ5xwgj755JOMvjeZaLv887PPPtMZZ5yhkpISlZWV6aSTTtK2bdvix88//3ydfPLJ+sUvfqFhw4Zp4sSJkqTHH39cBx98sIqLizVkyBCdffbZ2r17d/y82Pfh5Zdf1owZM+R0OvX6668rGo3q9ttv1/jx4+V0OjVq1Cj94he/SKhxy5YtOuqoo+RyuTRt2jS9+eab8WMdLf98/vnnNXPmTOXn58swDJ1yyinxY53V2ZNYN4eca2lpkc/nU3V1taLRPev27Xa7ysvLVV5ezvJOAAAAAEhTqDGkW4puyc7FTKluR51u89yW1s2vqb9GeYV5aV/+qaee0qRJkzRx4kSde+65uuyyy3TNNdckTKS49tprtWTJEnm9Xn3/+9/XhRdeqNWrV0vaE8rNnz9fv/jFL+R0OvXYY4/pxBNP1MaNGzVq1Kh29/ftb39bX/3qV7Vz504NHTpUkvTCCy+osbFRZ555pk477TRt2rRJ++23n2688UZJktfrTQikJGnt2rU65phjdOGFF+ruu++W3W7X3//+d0UiEUlSQ0ODFi1apAMOOED19fW67rrrdMopp2jt2rXdvuIqFApp3rx5Ouyww/Taa6/Jbrfr5z//uY477ji9//77ysvb8++zatUqud1u/eUvf0k496abbtLEiRO1e/duLVq0SOeff75eeumlhPu4+uqrdeedd2rcuHEqLS3VNddco/vvv19Lly7VEUccoZ07d2rDhg0J51x77bW68847te++++raa6/VWWedpc2bN3f4fP/FF1/UKaecomuvvVaPPfaYWlpaEmpIt86eQFqBnGloaJDP55Pf74+PxVLokpISlncCAAAAQD/24IMP6txzz5UkHXfccfL7/frHP/6hOXPmxG/zi1/8QkceeaSkPWHO17/+dQWDQeXn52vatGmaNm1a/LY33XST/vCHP+i5557TJZdc0u7+Zs2apYkTJ+rxxx/XlVdeKUl6+OGHdfrpp6uoqEjSnqWeLpdLQ4YMSVr37bffroMPPli/+tWv4mNTp06Nf3zqqacm3P6hhx6S1+vVRx99pP322y/db48kacSIEe3GGhsbk95++fLlikajeuCBB+Lh5MMPP6ySkhK98sor+trXviZJKiws1AMPPBAP2aQ9M/lixo0bp3vuuUczZ85UfX19/PsjSTfeeKOOPfZYSVJdXZ3uvvtu3XvvvTrvvPMkSfvss4+OOOKIhLouv/zyeN+8G264QVOnTtXmzZs1adKkdl/DL37xC33zm9/UDTfcEB9r/e+cbp09gVANPco0TQUCAVVWVib8IigqKpLX62V5JwAAAADsBYfLoWvqr0nrtp+++ql+N/93nd7u7JfO1uivjk7rvtO1ceNGvf322/rDH/4gac9qpTPPPFMPPvhgQqh2wAEHxD+OzS7bvXu3Ro0apfr6ei1evFgvvviidu7cqXA4rKamJm3fvj3p/X7729/Wb3/7W1155ZXatWuXXn75Zf3tb39Lu25pz0y1008/Penxjz/+WNddd53eeust+Xy++Iqs7du3dxiqTZ06VZ9++qkkafbs2Xr55Zfjx1577TUVFxcn3L7196etdevWafPmze3OCQaDCUtQ999//4RATZLeffddLV68WOvWrVNNTU1C3VOmTInf7uCDD45/vH79ejU3N+uYY45JWpOU/N+xo1Bt7dq1+s53vpP0WunW2RMI1dAjIpGIampq5PP54k0QLRaLSktLVV5eroKCghxXCAAAAAB9n8ViSXsJ5j5f20fuEW4FPg903FfNIrlHuLXP1/aR1ZbdlUQPPvigwuGwhg0bFh8zTVNOp1P33ntvfMzh+G9QF5uAEQtRLr/8cv3lL3/RnXfeqfHjx6ugoECnnXZaysb73/rWt3T11VfrzTff1BtvvKGxY8dq9uzZGdXe2fPXE088UaNHj9b999+vYcOGKRqNar/99kta10svvaRQKNThtceOHduu31iqFkn19fWaMWOGnnjiiXbHvF5v/OPCwsKEYw0NDZo3b57mzZunJ554Ql6vV9u3b9e8efPa1d363HSfy6f6d2wr1TUzqbMnEKqhW7W0tKiqqkrV1dXx9eU2my3eL631DxYAAAAAoOdYbVYdd/dxeuq0pySLEoO1/ywgOm7ZcVkP1MLhsB577DEtWbIkvhwx5uSTT9aTTz7Z4QymtlavXq3zzz8/3sS+vr6+Xf+ztsrLy3XyySfr4Ycf1ptvvqkLLrgg4XheXl78uWsyBxxwgFatWpWwPDGmqqpKGzdu1P333x8P615//fWU1xs9uvNZgOk66KCDtHz5cg0aNEhutzvt8zZs2KCqqirdeuutGjlypCRpzZo1nZ637777qqCgQKtWrdK3v/3tLtfdWuz72/bfZm/q7C40rUK3aGxs1Pbt27Vx40ZVVlYqEonI6XRq+PDhmjx5soYMGUKgBgAAAAA5NnnBZJ2x4gy5hycGMO4Rbp2x4gxNXjA56/f5wgsvqKamRhdddJH222+/hLdTTz1VDz74YFrX2XffffXMM89o7dq1Wrdunc4+++yks59a+/a3v61HH31U69evj/cBixkzZozeeustbdu2LWHpZmvXXHON3nnnHf3gBz/Q+++/rw0bNui+++6Tz+eLr8b67W9/q82bN+tvf/ubFi1alN43JgvOOeccGYahk046Sa+99pq2bt2qV155RT/60Y+0Y8eOpOeNGjVKeXl5+uUvf6ktW7boueee00033dTp/eXn5+uqq67SlVdeqccee0yffPKJ/vnPf6b9b9iR66+/Xk8++aSuv/56rV+/Xh988IFuu+22vaqzuxCqIWti/dI++eQTbd68WbW1tTJNU0VFRRozZowmTJig8vJyNiAAAAAAgF5k8oLJunTbpTrv7+dpwe8W6Ly/n6dLt17aLYGatGfp59y5c+XxeNodO/XUU7VmzRq9//77nV7nrrvuUmlpqWbNmqUTTzxR8+bN00EHHdTpeXPnztXQoUM1b968hOWn0p4lpTabTVOmTIkvLWxrwoQJ+vOf/6x169bpkEMO0WGHHaY//vGPstvtslqt+v3vf693331X++23n3784x/rjjvu6LSmbHG5XHr11Vc1atQoLViwQJMnT9ZFF12kYDCYcuaa1+vVI488oqefflpTpkzRrbfeqjvvvDOt+/zZz36mn/zkJ7ruuus0efJknXnmmdq9e3eXv4Y5c+bo6aef1nPPPafp06fr6KOP1ttvv73XdXYHi2maHa2cHjACgYA8Ho/8fn9GUyPxX7F+aVVVVWpubpa0Z420x+OR1+ulXxoAAAAAdJNgMKitW7dq7Nixys/Pz3U5fUJ9fb2GDx+uhx9+WAsWLMh1OciBVD83meRE9FRDl4VCIVVVVamqqiqhX1pZWZkMw2B5JwAAAACg14hGo/L5fFqyZIlKSkr0jW98I9cloY8jVEPGmpqa5PP54ss7pT3NHA3DUGlpqWw2W44rBAAAAAAg0fbt2zV27FiNGDFCjzzySMpdNIF08D8IaTFNU3V1dfL5fKqvr4+PFxYWyjAMud3u+La4AAAAAAD0NmPGjNEA74CFLCNUQ0rRaFQ1NTXy+XwJ/dLcbre8Xq9cLleOKwQAAAAAAOh5hGroUDgcjvdLC4fDkiSr1Rrvl5aXl5fjCgEAAAAAAHKHUA0JgsGgfD6fampqEvqllZeXq6ysjH5pAAAAAAAAIlSD9vRLq6+vl8/nU11dXXzc5XLJMAx5PB76pQEAAAAAALRCqDaARaNR1dbWyufzKRgMxsc9Ho8Mw5DL5SJMAwAAAAAA6IA11wVkwwsvvKCJEydq33331QMPPJDrcnq9cDisXbt2acOGDdqxY4eCwaCsVqsMw9DEiRM1evRoFRYWEqgBAAAAAAAk0edDtXA4rEWLFulvf/ub/vWvf+mOO+5QVVVVrsvKiWgkqm2vbNMHT36gba9sUzQSTTje3Nyszz//XOvXr9euXbsUDoflcDg0ZMgQTZ48WcOGDZPT6cxR9QAAAACAnIlGpF2vSNue3PM+Gsl1Rb3GmDFjtGzZslyXkZTFYtGzzz6b9Pgrr7wii8Wi2trarNzftm3bZLFYtHbt2qxcry/r88s/3377bU2dOlXDhw+XJB1//PH685//rLPOOivHlfWs9c+s18pLVyqwIxAfc49wa96yeRo1b5R8Pp8Cgf8eKygokGEYKikpYUYaAAAAAAxknz0jvXup1Ljjv2OuEdKMu6WRC7rtbs8//3w9+uijuuWWW3T11VfHx5999lmdcsop8c3zusO2bds0duxY/etf/9L06dMTjs2ZM0fTp0+PB2nvvPOOCgsLu62W7jZr1izt3LlTHo8n16X0Ozmfqfbqq6/qxBNP1LBhw5KmqxUVFRozZozy8/N16KGH6u23344f++KLL+KBmiQNHz5cn3/+eU+U3musf2a9njrtqYRATZICnwf09OlP67XfvhYP1Nxut8aNG6fx48ertLSUQA0AAAAABrLPnpFeOy0xUJOkxs/3jH/2TLfefX5+vm677TbV1NR06/3sDa/XK5fL1eXzW1paunxuKBTq8rkxeXl5GjJkCM//u0HOQ7WGhgZNmzZNFRUVHR5fvny5Fi1apOuvv17vvfeepk2bpnnz5mn37t09XGnvFI1EtfLSlVJHAf5/xj644wOVeEo0ceJEjRkzRkVFRfwwAQAAAEB/ZJpSuCG9t5aAtOZHSvmEcs2le26XzvW6MLNs7ty5GjJkiG655Zakt/l//+//aerUqXI6nRozZoyWLFmScHzMmDG6+eabdeGFF6q4uFijRo3Sb3/724xrSabt8s/a2lp9+9vfltfrldvt1tFHH61169bFjy9evFjTp0/XAw88oLFjxyo/P1+StHLlSh1xxBEqKSlReXm5TjjhBH3yySfx82LLKpcvX64jjzxS+fn5euKJJyRJDz30UPx7MHToUF1yySUJNfp8Pp1yyilyuVzad9999dxzz8WPdbT8c/Xq1ZozZ45cLpdKS0s1b968eLDZWZ34r5yHascff7x+/vOf65RTTunw+F133aXvfOc7uuCCCzRlyhT9+te/lsvl0kMPPSRJGjZsWMLMtM8//1zDhg1Len/Nzc0KBAIJb33Z9te2t5uhlsCUmr5sUnRrlH5pAAAAANDfRRqlp4rSe1vhkZpSrfQypaYde26XzvUijRmXa7PZdPPNN+uXv/ylduzY0e74u+++qzPOOEPf/OY39cEHH2jx4sX62c9+pkceeSThdkuWLNHBBx+sf/3rX/rBD36giy++WBs3bsy4nnScfvrp2r17t15++WW9++67Ouigg3TMMceouro6fpvNmzfr//2//6dnnnkm3nusoaFBixYt0po1a7Rq1SpZrVadcsopikYT+6FfffXVuvTSS7V+/XrNmzdP9913nxYuXKjvfve7+uCDD/Tcc89p/PjxCefccMMNOuOMM/T+++9r/vz5OueccxLqaW3t2rU65phjNGXKFL355pt6/fXXdeKJJyoSiWRUJ3p5T7WWlha9++67uuaaa+JjVqtVc+fO1ZtvvilJOuSQQ/Thhx/q888/l8fj0csvv6yf/exnSa95yy236IYbbuj22ntK3c66rN4OAAAAAICedMopp2j69Om6/vrr9eCDDyYcu+uuu3TMMcfEn+dPmDBBH330ke644w6df/758dvNnz9fP/jBDyRJV111lZYuXaq///3vmjhxYsr7njVrlqzWxPlGTU1N7fqsxbz++ut6++23tXv37vjElTvvvFPPPvusVqxYoe9+97uS9uQZjz32mLxeb/zcU089NeFaDz30kLxerz766CPtt99+8fHLLrtMCxb8t5fdz3/+c/3kJz/RpZdeGh+bOXNmwrXOP//8eG/5m2++Wffcc4/efvttHXfcce2+httvv10HH3ywfvWrX8XHpk6dmnGd6OWhms/nUyQS0eDBgxPGBw8erA0bNkiS7Ha7lixZoqOOOkrRaFRXXnmlysvLk17zmmuu0aJFi+KfBwIBjRw5snu+gB5QPLQ4q7cDAAAAAPRhNpd0Rn16t939qvTK/M5vN+cladBX07vvLrrtttt09NFH6/LLL08YX79+vU466aSEscMPP1zLli1TJBKRzWaTJB1wwAHx4xaLRUOGDIm3jTr++OP12muvSZJGjx6tf//73/HbLl++XJMnT064/jnnnJO0znXr1qm+vr5d7tDU1JSwRHL06NEJgZokffzxx7ruuuv01ltvyefzxWd+bd++PSGsOvjgg+Mf7969W1988YWOOeaYpDW1/foLCwvldruTts1au3atTj/99KTXSrdO9PJQLV3f+MY39I1vfCOt2zqdzn61DHLU7FFyj3Ar8Hmg42Xwlj27gI6aParHawMAAAAA9DCLRbKnuVPlkK/t2eWz8XMlfULpGrHndlZbNqts56tf/armzZuna665JmEGWrocDkfC5xaLJR4GPfDAA2pqaurwdiNHjmy3lLKgoCDp/dTX12vo0KF65ZVX2h0rKSmJf9zRbqEnnniiRo8erfvvv1/Dhg1TNBrVfvvt124jg9bnpqqltVRff1udXTPdOtHLQzXDMGSz2bRr166E8V27dmnIkCE5qqp3sdqsOu7u4/TUaU9JFiX+HvzPXgTHLTtOVlvO2+cBAAAAAHoTq02acfeeXT6TPaGcsazbA7WYW2+9VdOnT09Ysjl58mStXr064XarV6/WhAkT4rPUOjN8+PCs1XjQQQfpyy+/lN1u15gxY9I+r6qqShs3btT999+v2bNnS9qzlLQzxcXFGjNmjFatWqWjjjqqq2UnOOCAA7Rq1aoOW2N1tc6BqlcnLXl5eZoxY4ZWrVoVH4tGo1q1apUOO+ywHFbWu0xeMFlnrDhD7uHuhHH3CLfOWHGGJi+YnORMAAAAAMCANnKBNHuF5GoTPLlG7BkfuaDj87rB/vvvr3POOUf33HNPfOwnP/mJVq1apZtuukmbNm3So48+qnvvvbfdMtGeMnfuXB122GE6+eST9ec//1nbtm3TG2+8oWuvvVZr1qxJel5paanKy8v129/+Vps3b9bf/va3hNZUqSxevFhLlizRPffco48//ljvvfeefvnLX3b5a7jmmmv0zjvv6Ac/+IHef/99bdiwQffdd598Pt9e1TkQ5XymWn19vTZv3hz/fOvWrVq7dq3Kyso0atQoLVq0SOedd54OPvhgHXLIIVq2bJkaGhp0wQUX5LDq3mfygsmaeNJEbX9tu+p21ql4aLFGzR7FDDUAAAAAQGojF0jDT5IqX5OadkoFQyXv7B6bodbajTfeqOXLl8c/P+igg/TUU0/puuuu00033aShQ4fqxhtv7NIS0WywWCx66aWXdO211+qCCy5QZWWlhgwZoq9+9avt+sG3ZrVa9fvf/14/+tGPtN9++2nixIm65557NGfOnE7v87zzzlMwGNTSpUt1+eWXyzAMnXbaaV3+GiZMmKA///nP+t///V8dcsghKigo0KGHHqqzzjprr+ociCymaXa0cLrHvPLKKx1OYTzvvPPiW+Tee++9uuOOO/Tll19q+vTpuueee3TooYdm5f4DgYA8Ho/8fr/cbnfnJwAAAAAA0EsEg0Ft3bpVY8eOVX5+fq7LAfqEVD83meREOZ+pNmfOHHWW611yySW65JJLsnq/FRUVqqioUCQSyep1AQAAAAAA0P8N2LWBCxcu1EcffaR33nkn16UAAAAAAACgjxmwoRoAAAAAAADQVYRqAAAAAAAAQIYI1QAAAAAA6ONyvAch0Kdk6+eFUA0AAAAAgD7K4XBIkhobG3NcCdB3xH5eYj8/XZXz3T8BAAAAAEDX2Gw2lZSUaPfu3ZIkl8sli8WS46qA3sk0TTU2Nmr37t0qKSmRzWbbq+sRqgEAAAAA0IcNGTJEkuLBGoDUSkpK4j83e2PAhmoVFRWqqKhQJBLJdSkAAAAAAHSZxWLR0KFDNWjQIIVCoVyXA/RqDodjr2eoxVjMAd7NMBAIyOPxyO/3y+1257ocAAAAAAAA5EgmOREbFQAAAAAAAAAZIlQDAAAAAAAAMkSoBgAAAAAAAGRowG5UEBNrKRcIBHJcCQAAAAAAAHIplg+lswXBgA/V6urqJEkjR47McSUAAAAAAADoDerq6uTxeFLeZsDv/hmNRvXFF1+ouLhYFosl1+XstUAgoJEjR+qzzz5jN1MAAJA2HkMAAIBM9cfHD6Zpqq6uTsOGDZPVmrpr2oCfqWa1WjVixIhcl5F1bre73/yHBgAAPYfHEAAAIFP97fFDZzPUYtioAAAAAAAAAMgQoRoAAAAAAACQIUK1fsbpdOr666+X0+nMdSkAAKAP4TEEAADI1EB//DDgNyoAAAAAAAAAMsVMNQAAAAAAACBDhGoAAAAAAABAhgjVAAAAAAAAgAwRqgEAAAAAAAAZIlTrZyoqKjRmzBjl5+fr0EMP1dtvv53rkgAAQC/26quv6sQTT9SwYcNksVj07LPP5rokAADQy91yyy2aOXOmiouLNWjQIJ188snauHFjrsvqcYRq/cjy5cu1aNEiXX/99Xrvvfc0bdo0zZs3T7t37851aQAAoJdqaGjQtGnTVFFRketSAADA/2/v/mOqqv84jr+O6R2CKaKIYgIpqbQUBX+gloqpzJYNbNO0Kf7KLEipYb+00sxWpmmNla6aWJn6h5HLFmg3UXNXByUulAzINua45K9sSCrB5/tH88wrEN5Srt7v87HdjfM5nx/vc+8/7LXPOecWsWfPHqWlpenAgQPatWuXamtrNX78eJ0/f97XpbUoyxhjfF0Ero+hQ4dq8ODBysrKkiTV19erR48eeuqpp/T888/7uDoAAHCzsyxLOTk5Sk5O9nUpAADgFnLy5El16dJFe/bs0ciRI31dTothp5qfuHTpkr7//nuNHTvWbmvVqpXGjh0rl8vlw8oAAAAAAIA/O3funCQpJCTEx5W0LEI1P3Hq1CnV1dUpLCzMoz0sLExut9tHVQEAAAAAAH9WX1+vjIwMjRgxQvfcc4+vy2lRrX1dAAAAAAAAAG5NaWlpKi4u1nfffefrUlocoZqf6Ny5s2677TZVVVV5tFdVValr164+qgoAAAAAAPir9PR07dixQ3v37tUdd9zh63JaHLd/+gmHw6H4+Hg5nU67rb6+Xk6nU8OGDfNhZQAAAAAAwJ8YY5Senq6cnBx9++23uvPOO31dkk+wU82PPPPMM0pNTdWgQYM0ZMgQrV27VufPn9esWbN8XRoAALhJVVdXq6yszD4+fvy4ioqKFBISooiICB9WBgAAblZpaWn67LPPtH37dt1+++32s9w7dOigtm3b+ri6lmMZY4yvi8D1k5WVpbfeektut1sDBgzQu+++q6FDh/q6LAAAcJPKz89XYmJig/bU1FRlZ2e3fEEAAOCmZ1lWo+0bNmzQzJkzW7YYHyJUAwAAAAAAALzEM9UAAAAAAAAALxGqAQAAAAAAAF4iVAMAAAAAAAC8RKgGAAAAAAAAeIlQDQAAAAAAAPASoRoAAAAAAADgJUI1AAAAAAAAwEuEagAAAAAAAICXCNUAAAC8kJ2dreDgYJ+tb1mWvvjiC5+sHRUVpbVr1/6nOZYuXaoBAwZcl3oAAAB8iVANAAD4tYqKCs2ePVvh4eFyOByKjIzUwoULdfr0aV+XdtNqKjgsKCjQvHnz/tPcmZmZcjqd/2kOAACAmwGhGgAA8Fu//PKLBg0apNLSUm3evFllZWVat26dnE6nhg0bpjNnzjQ59tKlSzesrtra2hs2940UGhqqwMDA/zRHu3bt1KlTp+tUUUPX+rvdyN8XAAD8fyBUAwAAfistLU0Oh0M7d+7UqFGjFBERoQkTJuibb77RiRMntHjxYrtvVFSUli9frhkzZqh9+/b2jqzs7GxFREQoMDBQKSkpje5w2759u+Li4hQQEKCePXtq2bJl+uuvv+zzlmXp/fff10MPPaSgoCCtWLHimsaVlpZq5MiRCggI0N13361du3Y1e80XL17UggUL1KVLFwUEBOjee+9VQUGBfT4/P1+WZemrr75S//79FRAQoISEBBUXF9vnZ82apXPnzsmyLFmWpaVLl9rf0ZW3f1qWpfXr1+vBBx9UYGCgYmJi5HK5VFZWptGjRysoKEjDhw9XeXm5Pebq2z8vr3HlJyoqyj5fXFysCRMmqF27dgoLC9P06dN16tQp+/zo0aOVnp6ujIwMde7cWUlJSY1+LzNnzlRycrJWrFih8PBw9enTx17/6ttpg4ODlZ2dLUn69ddfZVmWPv/8cyUmJiowMFCxsbFyuVzN/hYAAMC/EaoBAAC/dObMGeXl5enJJ59U27ZtPc517dpVjz76qLZu3SpjjN2+atUqxcbG6tChQ3rppZd08OBBzZkzR+np6SoqKlJiYqJee+01j7n27dunGTNmaOHChTp69KjWr1+v7OxsOzi7bOnSpUpJSdGPP/6o2bNnNzuuvr5ekyZNksPh0MGDB7Vu3To999xzzV73s88+q23btmnjxo364YcfFB0draSkpAa78hYtWqTVq1eroKBAoaGhmjhxomprazV8+HCtXbtW7du3V2VlpSorK5WZmdnkepeDyKKiIvXt21fTpk3T448/rhdeeEGFhYUyxig9Pb3J8ZfXqKysVFlZmaKjozVy5EhJ0u+//64xY8Zo4MCBKiwsVG5urqqqqjR58mSPOTZu3CiHw6H9+/dr3bp1Ta7ldDp17Ngx7dq1Szt27Gj2u7zS4sWLlZmZqaKiIvXu3VtTp071CEABAMD/IQMAAOCHDhw4YCSZnJycRs+//fbbRpKpqqoyxhgTGRlpkpOTPfpMnTrVPPDAAx5tU6ZMMR06dLCP77//fvP666979Pnkk09Mt27d7GNJJiMjw6NPc+Py8vJM69atzYkTJ+zzX3/99T9eU3V1tWnTpo3ZtGmT3Xbp0iUTHh5uVq5caYwxZvfu3UaS2bJli93n9OnTpm3btmbr1q3GGGM2bNjgcY2XRUZGmjVr1nhc15IlS+xjl8tlJJmPPvrIbtu8ebMJCAiwj1955RUTGxvbYO76+nqTkpJi4uPjTU1NjTHGmOXLl5vx48d79KuoqDCSzLFjx4wxxowaNcoMHDiw0e/jSqmpqSYsLMxcvHjRo72x77NDhw5mw4YNxhhjjh8/biSZDz/80D5/5MgRI8mUlJQ0uy4AAPBfrX2U5QEAALQIc8VOtOYMGjTI47ikpEQpKSkebcOGDVNubq59fPjwYe3fv99jZ1pdXZ0uXLigmpoa+xlkV8/d3LiSkhL16NFD4eHhHmv/k/LyctXW1mrEiBF2W5s2bTRkyBCVlJQ0uI7LQkJC1KdPnwZ9rkX//v3tv8PCwiRJ/fr182i7cOGC/vjjD7Vv377JeV588UW5XC4VFhbaOwsPHz6s3bt3q127dg36l5eXq3fv3pKk+Pj4a6q1X79+cjgc19T3aldeZ7du3SRJv/32m/r27fuv5gMAALc+QjUAAOCXoqOjZVlWo8GY9Hdg1rFjR4WGhtptQUFBXq9TXV2tZcuWadKkSQ3OBQQENDn3tY672bVp08b+27KsJtvq6+ubnOPTTz/VmjVrlJ+fr+7du9vt1dXVmjhxot58880GYy4HW9K1/26N9bMsq0Hw2tiLJLy9JgAA4P8I1QAAgF/q1KmTxo0bp/fee09PP/20x3PV3G63Nm3apBkzZtgBSWNiYmJ08OBBj7YDBw54HMfFxenYsWOKjo72qr7mxsXExKiiokKVlZV2gHT12lfr1auX/WyxyMhISX8HRAUFBcrIyGhwHREREZKks2fP6ueff1ZMTIwkyeFwqK6uzqvr+bdcLpfmzp2r9evXKyEhweNcXFyctm3bpqioKLVufWP+bQ0NDVVlZaV9XFpaqpqamhuyFgAA8C+8qAAAAPitrKwsXbx4UUlJSdq7d68qKiqUm5urcePGqXv37g1eJnC1BQsWKDc3V6tWrVJpaamysrI8bv2UpJdfflkff/yxli1bpiNHjqikpERbtmzRkiVL/nHu5saNHTtWvXv3Vmpqqg4fPqx9+/Z5vK20MUFBQXriiSe0aNEi5ebm6ujRo3rsscdUU1OjOXPmePR99dVX5XQ6VVxcrJkzZ6pz585KTk6W9PdbPqurq+V0OnXq1KkbFjK53W6lpKTokUceUVJSktxut9xut06ePCnp77e3njlzRlOnTlVBQYHKy8uVl5enWbNmXbfQb8yYMcrKytKhQ4dUWFio+fPne+xKAwAAaAqhGgAA8Ft33XWXCgsL1bNnT02ePFm9evXSvHnzlJiYKJfLpZCQkH8cn5CQoA8++EDvvPOOYmNjtXPnzgZhWVJSknbs2KGdO3dq8ODBSkhI0Jo1a+ydYk1pblyrVq2Uk5OjP//8U0OGDNHcuXObDQEl6Y033tDDDz+s6dOnKy4uTmVlZcrLy1PHjh0b9Fu4cKHi4+Pldrv15Zdf2s8bGz58uObPn68pU6YoNDRUK1eubHbdf+Onn35SVVWVNm7cqG7dutmfwYMHS5LCw8O1f/9+1dXVafz48erXr58yMjIUHBysVq2uz7+xq1evVo8ePXTfffdp2rRpyszMtJ+DBwAA8E8s483TewEAAHBLy8/PV2Jios6ePavg4GBflwMAAHDLYqcaAAAAAAAA4CVCNQAAAAAAAMBL3P4JAAAAAAAAeImdagAAAAAAAICXCNUAAAAAAAAALxGqAQAAAAAAAF4iVAMAAAAAAAC8RKgGAAAAAAAAeIlQDQAAAAAAAPASoRoAAAAAAADgJUI1AAAAAAAAwEv/Ax1iyiL/Gv07AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -723,18 +757,17 @@
" order_by_id=True,\n",
" colors=np.array(list(map(to_rgba, ('purple', 'orange')))),\n",
" size=(15, 6),\n",
- ")\n",
- "plt.savefig(\"ana_ord.png\")"
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 12,
+ "execution_count": 15,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGdCAYAAAAIbpn/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAArQUlEQVR4nO3de1iUdf7/8dcoOoowY6CArOAhzwfqq3agg2mipOV6wDS1Ky2rqyI3Jb8VXyuztkXd1ezotmVae0W6bmmHXbGixENYSp5qjdR0tUvA1GSEcjS5f3/0cy5HOQwI3vOh5+O67uviPn3u9wzMPS8+9+eecViWZQkAAMBADewuAAAAoKYIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAY4XYXUBdKysr04EDBxQeHi6Hw2F3OQAAIACWZenYsWOKjY1VgwYV97vU+yBz4MABxcXF2V0GAACogf3796t169YVrq/3QSY8PFzSr0+Ey+WyuRoAABAIj8ejuLg43/t4Rep9kDl9OcnlchFkAAAwTFXDQhjsCwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGCsELsLAICgl+mwuwIgeI2zbD08PTIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLGCJsjMmjVLDodDU6ZM8S07fvy4UlNTFRkZqbCwMKWkpKioqMi+IgEAQFAJiiCzceNGvfzyy0pISPBbPnXqVL3//vtatmyZcnJydODAAY0cOdKmKgEAQLCxPciUlJRo/PjxeuWVV3TRRRf5lhcXF2vhwoWaN2+err/+evXu3VuLFi3SZ599pg0bNthYMQAACBa2B5nU1FTdeOONSkpK8luel5enkydP+i3v0qWL4uPjlZube6HLBAAAQcjWL41csmSJvvzyS23cuPGcdYWFhWrcuLGaN2/utzw6OlqFhYUVtun1euX1en3zHo+n1uoFAADBxbYemf379+uBBx7Qm2++qSZNmtRauxkZGXK73b4pLi6u1toGAADBxbYgk5eXp4MHD6pXr14KCQlRSEiIcnJy9NxzzykkJETR0dE6ceKEjh496rdfUVGRYmJiKmw3PT1dxcXFvmn//v11/EgAAIBdbLu0NGDAAG3fvt1v2e23364uXbro4YcfVlxcnBo1aqTs7GylpKRIkvLz87Vv3z4lJiZW2K7T6ZTT6azT2gEAQHCwLciEh4erR48efsuaNWumyMhI3/JJkyYpLS1NERERcrlcmjx5shITE3XllVfaUTIAAAgytg72rcozzzyjBg0aKCUlRV6vV8nJyXrppZfsLgsAAAQJh2VZlt1F1CWPxyO3263i4mK5XC67ywFgokyH3RUAwWtc3cSIQN+/bf8cGQAAgJoiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjGVrkFmwYIESEhLkcrnkcrmUmJiolStX+tb369dPDofDb7rnnntsrBgAAASTEDsP3rp1a82aNUsdO3aUZVl6/fXXNWzYMG3evFndu3eXJN1111168sknffuEhobaVS4AAAgytgaZoUOH+s0//fTTWrBggTZs2OALMqGhoYqJibGjPAAAEOSCZozMqVOntGTJEpWWlioxMdG3/M0331SLFi3Uo0cPpaen66effqq0Ha/XK4/H4zcBAID6ydYeGUnavn27EhMTdfz4cYWFhWn58uXq1q2bJGncuHFq06aNYmNjtW3bNj388MPKz8/XO++8U2F7GRkZmjlz5oUqHwAA2MhhWZZlZwEnTpzQvn37VFxcrH/+85969dVXlZOT4wszZ/rkk080YMAA7dq1SxdffHG57Xm9Xnm9Xt+8x+NRXFyciouL5XK56uxxAKjHMh12VwAEr3F1EyM8Ho/cbneV79+298g0btxYHTp0kCT17t1bGzdu1LPPPquXX375nG2vuOIKSao0yDidTjmdzrorGAAABI2gGSNzWllZmV+Pypm2bNkiSWrVqtUFrAgAAAQrW3tk0tPTNXjwYMXHx+vYsWPKzMzU6tWrtWrVKu3evVuZmZkaMmSIIiMjtW3bNk2dOlV9+/ZVQkKCnWUDAIAgYWuQOXjwoG677TYVFBTI7XYrISFBq1at0sCBA7V//359/PHHmj9/vkpLSxUXF6eUlBQ9+uijdpYMAACCiO2DfetaoIOFAKBCDPYFKmbzYN+gGyMDAAAQKIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxbA0yCxYsUEJCglwul1wulxITE7Vy5Urf+uPHjys1NVWRkZEKCwtTSkqKioqKbKwYAAAEE1uDTOvWrTVr1izl5eVp06ZNuv766zVs2DB9/fXXkqSpU6fq/fff17Jly5STk6MDBw5o5MiRdpYMAACCiMOyLMvuIs4UERGhP//5zxo1apRatmypzMxMjRo1SpL0zTffqGvXrsrNzdWVV14ZUHsej0dut1vFxcVyuVx1WTqA+irTYXcFQPAaVzcxItD376AZI3Pq1CktWbJEpaWlSkxMVF5enk6ePKmkpCTfNl26dFF8fLxyc3MrbMfr9crj8fhNAACgfrI9yGzfvl1hYWFyOp265557tHz5cnXr1k2FhYVq3Lixmjdv7rd9dHS0CgsLK2wvIyNDbrfbN8XFxdXxIwAAAHaxPch07txZW7Zs0eeff657771XEyZM0H/+858at5eenq7i4mLftH///lqsFgAABJMQuwto3LixOnToIEnq3bu3Nm7cqGeffVZjxozRiRMndPToUb9emaKiIsXExFTYntPplNPprOuyAQBAELC9R+ZsZWVl8nq96t27txo1aqTs7Gzfuvz8fO3bt0+JiYk2VggAAIKFrT0y6enpGjx4sOLj43Xs2DFlZmZq9erVWrVqldxutyZNmqS0tDRFRETI5XJp8uTJSkxMDPiOJQAAUL/ZGmQOHjyo2267TQUFBXK73UpISNCqVas0cOBASdIzzzyjBg0aKCUlRV6vV8nJyXrppZfsLBkAAASRoPscmdrG58gAOG98jgxQMT5HBgAAoGYIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxrI1yGRkZOiyyy5TeHi4oqKiNHz4cOXn5/tt069fPzkcDr/pnnvusaliAAAQTGwNMjk5OUpNTdWGDRv00Ucf6eTJkxo0aJBKS0v9trvrrrtUUFDgm+bMmWNTxQAAIJiE2HnwrKwsv/nFixcrKipKeXl56tu3r295aGioYmJiLnR5AAAgyAXVGJni4mJJUkREhN/yN998Uy1atFCPHj2Unp6un376yY7yAABAkLG1R+ZMZWVlmjJliq6++mr16NHDt3zcuHFq06aNYmNjtW3bNj388MPKz8/XO++8U247Xq9XXq/XN+/xeOq8dgAAYI+Agsx7771X7YYHDhyopk2bBrx9amqqvvrqK61bt85v+d133+37uWfPnmrVqpUGDBig3bt36+KLLz6nnYyMDM2cObPa9QIAAPM4LMuyqtqoQYPqXYFyOBzauXOn2rdvH9D2999/v959912tWbNG7dq1q3Tb0tJShYWFKSsrS8nJyeesL69HJi4uTsXFxXK5XNV6HAAgScp02F0BELzGVRkjasTj8cjtdlf5/h3wpaXCwkJFRUUFtG14eHhA21mWpcmTJ2v58uVavXp1lSFGkrZs2SJJatWqVbnrnU6nnE5nQMcHAABmCyjITJgwoVqXiW699daAej9SU1OVmZmpd999V+Hh4SosLJQkud1uNW3aVLt371ZmZqaGDBmiyMhIbdu2TVOnTlXfvn2VkJAQcD0AAKB+CujSUp0d3FF+d+2iRYs0ceJE7d+/X7feequ++uorlZaWKi4uTiNGjNCjjz4a8GWiQLumAKBCXFoCKmbKpaXKDvTJJ5+oc+fO6tq1a7X2rSpDxcXFKScn53zKAwAA9Vi1P0dm9OjReuGFFyRJP//8s/r06aPRo0crISFBb7/9dq0XCAAAUJFqB5k1a9bo2muvlSQtX75clmXp6NGjeu655/THP/6x1gsEAACoSLWDTHFxse+Td7OyspSSkqLQ0FDdeOON2rlzZ60XCAAAUJFqB5m4uDjl5uaqtLRUWVlZGjRokCTpxx9/VJMmTWq9QAAAgIpUe7DvlClTNH78eIWFhalNmzbq16+fpF8vOfXs2bO26wMAAKhQtYPMfffdpyuuuEL79u3TwIEDfZ/62759e8bIAACAC6pGt1/37t1bvXv39lt244031kpBAAAAgQpojExaWppKS0sDbjQ9PV1HjhypcVEAAACBCCjIPPvss/rpp58CbvTFF1/U0aNHa1oTAABAQAK6tGRZljp16lThVwqcrTq9NwAAADUVUJBZtGhRtRuOjo6u9j4AAADVEfC3XwMAAASban8gHgAAQLAgyAAAAGMRZAAAgLEIMgAAwFg1DjK7du3SqlWr9PPPP0v69RZtAACAC6naQebw4cNKSkpSp06dNGTIEBUUFEiSJk2apAcffLDWCwQAAKhItYPM1KlTFRISon379ik0NNS3fMyYMcrKyqrV4gAAACpT7S+N/PDDD7Vq1Sq1bt3ab3nHjh313//+t9YKAwAAqEq1e2RKS0v9emJOO3LkiJxOZ60UBQAAEIhqB5lrr71Wb7zxhm/e4XCorKxMc+bMUf/+/Wu1OAAAgMpU+9LSnDlzNGDAAG3atEknTpzQQw89pK+//lpHjhzR+vXr66JGAACAclW7R6ZHjx769ttvdc0112jYsGEqLS3VyJEjtXnzZl188cV1USMAAEC5qt0jI0lut1vTp0+v7VoAAACqpUZB5vjx49q2bZsOHjyosrIyv3W///3va6UwAACAqlQ7yGRlZem2227ToUOHzlnncDh06tSpWikMAACgKtUeIzN58mTdfPPNKigoUFlZmd9EiAEAABdStYNMUVGR0tLSFB0dXRf1AAAABKzaQWbUqFFavXp1HZQCAABQPdUeI/PCCy/o5ptv1tq1a9WzZ081atTIb/0f/vCHWisOAACgMtUOMm+99ZY+/PBDNWnSRKtXr5bD4fCtczgcBBkAAHDBVPvS0vTp0zVz5kwVFxdr79692rNnj2/67rvvqtVWRkaGLrvsMoWHhysqKkrDhw9Xfn6+3zbHjx9XamqqIiMjFRYWppSUFBUVFVW3bAAAUA9VO8icOHFCY8aMUYMG1d71HDk5OUpNTdWGDRv00Ucf6eTJkxo0aJBKS0t920ydOlXvv/++li1bppycHB04cEAjR44872MDAADzOSzLsqqzw9SpU9WyZUv93//9X60X88MPPygqKko5OTnq27eviouL1bJlS2VmZmrUqFGSpG+++UZdu3ZVbm6urrzyyirb9Hg8crvdKi4ulsvlqvWaAfwGZDqq3gb4rRpXrRgRsEDfv6s9RubUqVOaM2eOVq1apYSEhHMG+86bN6/61f5/xcXFkqSIiAhJUl5enk6ePKmkpCTfNl26dFF8fHyFQcbr9crr9frmPR5PjesBAADBrdpBZvv27fqf//kfSdJXX33lt+7Mgb/VVVZWpilTpujqq69Wjx49JEmFhYVq3Lixmjdv7rdtdHS0CgsLy20nIyNDM2fOrHEdAADAHNUOMp9++mld1KHU1FR99dVXWrdu3Xm1k56errS0NN+8x+NRXFzc+ZYHAACCUI2+NLK23X///frggw+0Zs0atW7d2rc8JiZGJ06c0NGjR/16ZYqKihQTE1NuW06nU06ns65LBgAAQSCgIDNy5EgtXrxYLperyjuG3nnnnYAPblmWJk+erOXLl2v16tVq166d3/revXurUaNGys7OVkpKiiQpPz9f+/btU2JiYsDHAQAA9VNAQcbtdvvGv7jd7lo7eGpqqjIzM/Xuu+8qPDzcN+7F7XaradOmcrvdmjRpktLS0hQRESGXy6XJkycrMTExoDuWAABA/Rbw7ddPPvmkpk2bptDQ0No7eAWDgxctWqSJEydK+vUD8R588EG99dZb8nq9Sk5O1ksvvVThpaWzcfs1gPPG7ddAxWy+/TrgINOwYUMVFBQoKiqq1oq8EAgyAM4bQQaomM1BJuCP563m5+YBAADUuWp9z8D5fE4MAABAbavW7dedOnWqMswcOXLkvAoCAAAIVLWCzMyZM2v1riUAAIDzUa0gc8sttxg32BcAANRfAY+RYXwMAAAINty1BAAAjBXwpaWysrK6rAMAAKDaqnX7NQAAQDAhyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABjL1iCzZs0aDR06VLGxsXI4HFqxYoXf+okTJ8rhcPhNN9xwgz3FAgCAoGNrkCktLdUll1yiF198scJtbrjhBhUUFPimt9566wJWCAAAglmInQcfPHiwBg8eXOk2TqdTMTExF6giAABgkqAfI7N69WpFRUWpc+fOuvfee3X48OFKt/d6vfJ4PH4TAACon4I6yNxwww164403lJ2drdmzZysnJ0eDBw/WqVOnKtwnIyNDbrfbN8XFxV3AigEAwIXksCzLsrsISXI4HFq+fLmGDx9e4TbfffedLr74Yn388ccaMGBAudt4vV55vV7fvMfjUVxcnIqLi+VyuWq7bAC/BZkOuysAgte4uokRHo9Hbre7yvfvoO6ROVv79u3VokUL7dq1q8JtnE6nXC6X3wQAAOono4LM999/r8OHD6tVq1Z2lwIAAIKArXctlZSU+PWu7NmzR1u2bFFERIQiIiI0c+ZMpaSkKCYmRrt379ZDDz2kDh06KDk52caqAQBAsLA1yGzatEn9+/f3zaelpUmSJkyYoAULFmjbtm16/fXXdfToUcXGxmrQoEF66qmn5HQ67SoZAAAEEVuDTL9+/VTZWONVq1ZdwGoAAIBpjBojAwAAcCaCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsWwNMmvWrNHQoUMVGxsrh8OhFStW+K23LEuPP/64WrVqpaZNmyopKUk7d+60p1gAABB0bA0ypaWluuSSS/Tiiy+Wu37OnDl67rnn9Ne//lWff/65mjVrpuTkZB0/fvwCVwoAAIJRiJ0HHzx4sAYPHlzuOsuyNH/+fD366KMaNmyYJOmNN95QdHS0VqxYoVtuueVClgoAAIJQ0I6R2bNnjwoLC5WUlORb5na7dcUVVyg3N9fGygAAQLCwtUemMoWFhZKk6Ohov+XR0dG+deXxer3yer2+eY/HUzcFAgAA2wVtj0xNZWRkyO12+6a4uDi7SwIAAHUkaINMTEyMJKmoqMhveVFRkW9dedLT01VcXOyb9u/fX6d1AgAA+wRtkGnXrp1iYmKUnZ3tW+bxePT5558rMTGxwv2cTqdcLpffBAAA6idbx8iUlJRo165dvvk9e/Zoy5YtioiIUHx8vKZMmaI//vGP6tixo9q1a6fHHntMsbGxGj58uH1FAwCAoGFrkNm0aZP69+/vm09LS5MkTZgwQYsXL9ZDDz2k0tJS3X333Tp69KiuueYaZWVlqUmTJnaVDAAAgojDsizL7iLqksfjkdvtVnFxMZeZANRMpsPuCoDgNa5uYkSg799BO0YGAACgKgQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxgjrIPPHEE3I4HH5Tly5d7C4LAAAEiRC7C6hK9+7d9fHHH/vmQ0KCvmQAAHCBBH0qCAkJUUxMjN1lAACAIBTUl5YkaefOnYqNjVX79u01fvx47du3r9LtvV6vPB6P3wQAAOqnoA4yV1xxhRYvXqysrCwtWLBAe/bs0bXXXqtjx45VuE9GRobcbrdviouLu4AVAwCAC8lhWZZldxGBOnr0qNq0aaN58+Zp0qRJ5W7j9Xrl9Xp98x6PR3FxcSouLpbL5bpQpQKoTzIddlcABK9xdRMjPB6P3G53le/fQT9G5kzNmzdXp06dtGvXrgq3cTqdcjqdF7AqAABgl6C+tHS2kpIS7d69W61atbK7FAAAEASCOshMmzZNOTk52rt3rz777DONGDFCDRs21NixY+0uDQAABIGgvrT0/fffa+zYsTp8+LBatmypa665Rhs2bFDLli3tLg0AAASBoA4yS5YssbsEAAAQxIL60hIAAEBlCDIAAMBYBBkAAGAsggwAADAWQQYAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAY4XYXYDJZjpm2l0CENRmWDPsLgFAPUePDAAAMBZBBgAAGIsgAwAAjEWQAQAAxiLIAAAAYxFkAACAsQgyAADAWAQZAABgLIIMAAAwFkEGAAAYiyADAACMRZABAADGIsgAAABjEWQAAICxjAgyL774otq2basmTZroiiuu0BdffGF3SQAAIAgEfZBZunSp0tLSNGPGDH355Ze65JJLlJycrIMHD9pdGgAAsFnQB5l58+bprrvu0u23365u3brpr3/9q0JDQ/Xaa6/ZXRoAALBZiN0FVObEiRPKy8tTenq6b1mDBg2UlJSk3Nzccvfxer3yer2++eLiYkmSx+Op9fqO63ittwnUJ3XxurPFT3YXAASxOnqdnz5/WJZV6XZBHWQOHTqkU6dOKTo62m95dHS0vvnmm3L3ycjI0MyZM89ZHhcXVyc1AqjYLPcsu0sAUNfuctdp88eOHZPbXfExgjrI1ER6errS0tJ882VlZTpy5IgiIyPlcDhsrAx1zePxKC4uTvv375fL5bK7HAB1gNf5b4dlWTp27JhiY2Mr3S6og0yLFi3UsGFDFRUV+S0vKipSTExMufs4nU45nU6/Zc2bN6+rEhGEXC4XJzignuN1/ttQWU/MaUE92Ldx48bq3bu3srOzfcvKysqUnZ2txMREGysDAADBIKh7ZCQpLS1NEyZMUJ8+fXT55Zdr/vz5Ki0t1e233253aQAAwGZBH2TGjBmjH374QY8//rgKCwt16aWXKisr65wBwIDT6dSMGTPOubQIoP7gdY6zOayq7msCAAAIUkE9RgYAAKAyBBkAAGAsggwAADAWQQZq27at5s+ff15trF69Wg6HQ0ePHq2Vmvbu3SuHw6EtW7bUSnsOh0MrVqyolbZqWyCPdfHixbX6eUi1/fsCaqI2zj11qarzRrCf934rCDIGyM3NVcOGDXXjjTfaXYokqV+/fpoyZYrfsquuukoFBQUBfXhRbansJHL2CbKgoECDBw++YLXVtjFjxujbb7+1uwwYYuLEiXI4HJo1y/8rIlasWFHnn3Be2Zvx2eeOjRs36u67767TeuqSHec9nIsgY4CFCxdq8uTJWrNmjQ4cOGB3OeVq3LixYmJigvZrIGJiYs7rds0TJ07UaD/LsvTLL7/U+LinNW3aVFFRUefdDn47mjRpotmzZ+vHH3+0u5QKtWzZUqGhoTXev6avS0k6efJkjfc9LdjPe78VBJkgV1JSoqVLl+ree+/VjTfeqMWLF/vWne6RyM7OVp8+fRQaGqqrrrpK+fn5vm12796tYcOGKTo6WmFhYbrsssv08ccfV3i8O+64QzfddJPfspMnTyoqKkoLFy7UxIkTlZOTo2effVYOh0MOh0N79+4tt3dk/fr16tevn0JDQ3XRRRcpOTnZd1LNysrSNddco+bNmysyMlI33XSTdu/eXTtPWjnO7iLev3+/Ro8erebNmysiIkLDhg3T3r17fesnTpyo4cOH6+mnn1ZsbKw6d+4sSfr73/+uPn36KDw8XDExMRo3bpwOHjzo2+/087By5Ur17t1bTqdT69atU1lZmebMmaMOHTrI6XQqPj5eTz/9tF+N3333nfr376/Q0FBdcsklft/wXt6lpffff1+XXXaZmjRpohYtWmjEiBG+dVXVifovKSlJMTExysjIqHCbt99+W927d5fT6VTbtm01d+5cv/Vt27bVn/70J91xxx0KDw9XfHy8/va3v9VajWf3nB49elR33nmnWrZsKZfLpeuvv15bt271rX/iiSd06aWX6tVXX1W7du3UpEkTSVWfT073Ei1dulTXXXedmjRpojfffFOS9Nprr/meg1atWun+++/3q/HQoUMaMWKEQkND1bFjR7333nu+dcF+3vutIMgEuX/84x/q0qWLOnfurFtvvVWvvfbaOV9pPn36dM2dO1ebNm1SSEiI7rjjDt+6kpISDRkyRNnZ2dq8ebNuuOEGDR06VPv27Sv3eHfeeaeysrJUUFDgW/bBBx/op59+0pgxY/Tss88qMTFRd911lwoKClRQUFDuN4tv2bJFAwYMULdu3ZSbm6t169Zp6NChOnXqlCSptLRUaWlp2rRpk7Kzs9WgQQONGDFCZWVltfG0VerkyZNKTk5WeHi41q5dq/Xr1yssLEw33HCD33942dnZys/P10cffaQPPvjAt+9TTz2lrVu3asWKFdq7d68mTpx4zjEeeeQRzZo1Szt27FBCQoLS09M1a9YsPfbYY/rPf/6jzMzMcz7Ucfr06Zo2bZq2bNmiTp06aezYsRX25vzrX//SiBEjNGTIEG3evFnZ2dm6/PLL/R5jIHWi/mrYsKH+9Kc/6fnnn9f3339/zvq8vDyNHj1at9xyi7Zv364nnnhCjz32mN8/S5I0d+5c9enTR5s3b9Z9992ne++91++fpdp088036+DBg1q5cqXy8vLUq1cvDRgwQEeOHPFts2vXLr399tt65513fJevAj2fPPLII3rggQe0Y8cOJScna8GCBUpNTdXdd9+t7du367333lOHDh389pk5c6ZGjx6tbdu2aciQIRo/frxfPWcK5vNevWYhqF111VXW/PnzLcuyrJMnT1otWrSwPv30U8uyLOvTTz+1JFkff/yxb/t//etfliTr559/rrDN7t27W88//7xvvk2bNtYzzzzjm+/WrZs1e/Zs3/zQoUOtiRMn+uavu+4664EHHvBr83QtP/74o2VZljV27Fjr6quvDvhx/vDDD5Yka/v27ZZlWdaePXssSdbmzZsr3Of0MZs1a3bO5HA4/B6TJGv58uWWZVnW3//+d6tz585WWVmZb73X67WaNm1qrVq1yrIsy5owYYIVHR1teb3eSuveuHGjJck6duyYX00rVqzwbePxeCyn02m98sor5bZx+rG++uqrvmVff/21JcnasWOHZVmWtWjRIsvtdvvWJyYmWuPHj6+0tkDqPP37Qv0yYcIEa9iwYZZlWdaVV15p3XHHHZZlWdby5cut06f9cePGWQMHDvTb73//93+tbt26+ebbtGlj3Xrrrb75srIyKyoqylqwYEGFxz7999y0adNzXpcNGjTwO3ecee5Zu3at5XK5rOPHj/u1d/HFF1svv/yyZVmWNWPGDKtRo0bWwYMHK338FZ1PTp9LT4uNjbWmT59eYTuSrEcffdQ3X1JSYkmyVq5caVmWPec9nIsemSCWn5+vL774QmPHjpUkhYSEaMyYMVq4cKHfdgkJCb6fW7VqJUm+ywglJSWaNm2aunbtqubNmyssLEw7duyosEdG+rVXZtGiRZJ+/abxlStX+vXyBOL0fyYV2blzp8aOHav27dvL5XKpbdu2klRhXd27d1dYWJjCwsLOGbS7du1abdmyxW+q7Gvft27dql27dik8PNzXZkREhI4fP+7XzduzZ081btzYb9+8vDwNHTpU8fHxCg8P13XXXVdu3X369PH9vGPHDnm93kqfD6ny3+PZqnp+A60T9d/s2bP1+uuva8eOHX7Ld+zYoauvvtpv2dVXX62dO3f6ehAk/79Lh8OhmJgY39/l4MGDfa+h7t27+7W1dOnSc16XZ74uzrZ161aVlJQoMjLS12ZYWJj27Nnj97ps06aNWrZs6bdvoOeTM49/8OBBHThwoFqvy2bNmsnlctX4dVnd8x4CE/TftfRbtnDhQv3yyy9+b8qWZcnpdOqFF17wLWvUqJHv59ODzk53VU6bNk0fffSR/vKXv6hDhw5q2rSpRo0aVekgudtuu02PPPKIcnNz9dlnn6ldu3a69tprq1V706ZNK10/dOhQtWnTRq+88opiY2NVVlamHj16VFjXv//9b9/gvLPbbteu3TnjR0JCKv7TLikpUe/evX3XyM905gmyWbNmfutKS0uVnJys5ORkvfnmm2rZsqX27dun5OTkc+o+c9+qnovTKvs9nq2yNqtTJ+q/vn37Kjk5Wenp6TW6vHjm36X069/m6b/LV199VT///HO528XFxZ1zmaayv9uSkhK1atVKq1evPmfdma/vs1+XUuDnk/N9XUr+j/9stX3eQ2AIMkHql19+0RtvvKG5c+dq0KBBfuuGDx+ut956S126dKmynfXr12vixIm+gaAlJSV+g1rLExkZqeHDh2vRokXKzc0955vGGzdu7PcfW3kSEhKUnZ2tmTNnnrPu8OHDys/P1yuvvOILSOvWrau0vTZt2lS6vjp69eqlpUuXKioqSi6XK+D9vvnmGx0+fFizZs3yjQvatGlTlft17NhRTZs2VXZ2tu68884a132m089ved8CX9M6UX/NmjVLl156qW/QuiR17dpV69ev99tu/fr16tSpkxo2bBhQu7/73e9qrcZevXqpsLBQISEhvp6KQNTkfCJJ4eHhatu2rbKzs9W/f/+alu2nts97CAyXloLUBx98oB9//FGTJk1Sjx49/KaUlJRzLi9VpGPHjr5BcVu3btW4ceMCGlh25513+rqjJ0yY4Leubdu2+vzzz7V3714dOnSo3PbS09O1ceNG3Xfffdq2bZu++eYbLViwQIcOHdJFF12kyMhI/e1vf9OuXbv0ySefKC0tLbAnphaMHz9eLVq00LBhw7R27Vrt2bNHq1ev1h/+8IdyB0WeFh8fr8aNG+v555/Xd999p/fee09PPfVUlcdr0qSJHn74YT300EN64403tHv3bm3YsCHg32F5ZsyYobfeekszZszQjh07tH37ds2ePfu86kT91bNnT40fP17PPfecb9mDDz6o7OxsPfXUU/r222/1+uuv64UXXtC0adNsqTEpKUmJiYkaPny4PvzwQ+3du1efffaZpk+fXmkQP5/zyRNPPKG5c+fqueee086dO/Xll1/q+eefr/FjCObzXn1GkAlSCxcuVFJSUrkftJSSkqJNmzZp27ZtVbYzb948XXTRRbrqqqs0dOhQJScnq1evXlXul5SUpFatWik5Ofmc8SbTpk1Tw4YN1a1bN99li7N16tRJH374obZu3arLL79ciYmJevfddxUSEqIGDRpoyZIlysvLU48ePTR16lT9+c9/rrKm2hIaGqo1a9YoPj5eI0eOVNeuXTVp0iQdP3680h6ali1bavHixVq2bJm6deumWbNm6S9/+UtAx3zsscf04IMP6vHHH1fXrl01ZsyY87odul+/flq2bJnee+89XXrppbr++uv1xRdfnHedqL+efPJJv386evXqpX/84x9asmSJevTooccff1xPPvmkbXe3ORwO/fvf/1bfvn11++23q1OnTrrlllv03//+95w7/M50PueTCRMmaP78+XrppZfUvXt33XTTTdq5c2eNH0Mwn/fqM4dlnXUvL6BfL0H97ne/06JFizRy5Ei7ywEAoFyMkYGfsrIyHTp0SHPnzlXz5s31+9//3u6SAACoEEEGfvbt26d27dqpdevWWrx4caV3/wAAYDcuLQEAAGMx2BcAABiLIAMAAIxFkAEAAMYiyAAAAGMRZAAAgLEIMgAAwFgEGQAAYCyCDAAAMBZBBgAAGOv/AatgglpB7vIZAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAGdCAYAAAAIbpn/AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAAAmPUlEQVR4nO3dfXRU9Z3H8c9AZJJAMkCEhNSEpArKs0W0C/gANZpGiDyoIKAGfNpVKmJEJYcCRtQALWzkYWlFBO2K0B4lZbEEbQqCiArhQdqNEBQkWx5SBDImyojM3T88mcOQByYhyb0/fL/OmXOYuXPvfBMylzd37mRclmVZAgAAMFAzuwcAAACoL0IGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLHC7B6gsfn9fh06dEhRUVFyuVx2jwMAAEJgWZa+/vprxcfHq1mzmo+7XPQhc+jQISUkJNg9BgAAqIeSkhJddtllNS6/6EMmKipK0g/fiOjoaJunAQAAofB6vUpISAj8O16Tiz5kKl9Oio6OJmQAADDM+U4L4WRfAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxbQ2bjxo1KT09XfHy8XC6X8vLyarzvf/zHf8jlcik3N7fJ5gMAAM5ma8hUVFSoV69eWrhwYa33W7VqlT766CPFx8c30WQAAMAEtn7WUlpamtLS0mq9zz//+U899thjWrdunQYNGtREkwEAABM4+hwZv9+ve++9V0899ZS6detm9zgAAMBhHP3p17NmzVJYWJgmTJgQ8jo+n08+ny9w3ev1NsZoAADAARwbMoWFhXrppZe0ffv2836E99lycnKUnZ3diJMB+NFZHvo+CPjRGW3Z+vCOfWlp06ZNKi0tVWJiosLCwhQWFqYvv/xSTz75pJKSkmpcLysrS2VlZYFLSUlJ0w0NAACalGOPyNx7771KSUkJui01NVX33nuvxo0bV+N6brdbbre7sccDAAAOYGvIlJeXa9++fYHr+/fv186dO9W2bVslJiYqJiYm6P6XXHKJ4uLidOWVVzb1qAAAwIFsDZlt27Zp4MCBgeuZmZmSpIyMDC1btsymqQAAgClsDZkBAwbIskI/SejAgQONNwwAADCOY0/2BQAAOB9CBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsWwNmY0bNyo9PV3x8fFyuVzKy8sLLDt9+rSeeeYZ9ejRQy1btlR8fLzuu+8+HTp0yL6BAQCAo9gaMhUVFerVq5cWLlxYZdk333yj7du3a+rUqdq+fbvefvtt7dmzR7fffrsNkwIAACcKs/PB09LSlJaWVu0yj8ej9957L+i2BQsW6LrrrtPBgweVmJjYFCMCAAAHszVk6qqsrEwul0utW7eu8T4+n08+ny9w3ev1NsFkAADADsac7Hvq1Ck988wzGjVqlKKjo2u8X05OjjweT+CSkJDQhFMCAICmZETInD59WiNGjJBlWVq0aFGt983KylJZWVngUlJS0kRTAgCApub4l5YqI+bLL7/U3/72t1qPxkiS2+2W2+1uoukAAICdHB0ylRFTXFys9evXKyYmxu6RAACAg9gaMuXl5dq3b1/g+v79+7Vz5061bdtWHTp00J133qnt27drzZo1OnPmjI4cOSJJatu2rVq0aGHX2AAAwCFclmVZdj34hg0bNHDgwCq3Z2Rk6Nlnn1VycnK1661fv14DBgwI6TG8Xq88Ho/KysrO+7IUAFRrucvuCQDnGt04GRHqv9+2HpEZMGCAausoGxsLAAAYwIh3LQEAAFSHkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLFsDZmNGzcqPT1d8fHxcrlcysvLC1puWZamTZumDh06KCIiQikpKSouLrZnWAAA4Di2hkxFRYV69eqlhQsXVrt89uzZmjdvnn73u9/p448/VsuWLZWamqpTp0418aQAAMCJwux88LS0NKWlpVW7zLIs5ebm6te//rWGDBkiSXr99dcVGxurvLw83X333U05KgAAcCDHniOzf/9+HTlyRCkpKYHbPB6Pfv7zn2vLli01rufz+eT1eoMuAADg4uTYkDly5IgkKTY2Nuj22NjYwLLq5OTkyOPxBC4JCQmNOicAALCPY0OmvrKyslRWVha4lJSU2D0SAABoJI4Nmbi4OEnS0aNHg24/evRoYFl13G63oqOjgy4AAODi5NiQSU5OVlxcnAoKCgK3eb1effzxx+rbt6+NkwEAAKew9V1L5eXl2rdvX+D6/v37tXPnTrVt21aJiYmaOHGinn/+eXXq1EnJycmaOnWq4uPjNXToUPuGBgAAjmFryGzbtk0DBw4MXM/MzJQkZWRkaNmyZXr66adVUVGhhx9+WCdPntT111+v/Px8hYeH2zUyAABwEJdlWZbdQzQmr9crj8ejsrIyzpcBUD/LXXZPADjX6MbJiFD//XbsOTIAAADnQ8gAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAY4WFcqfVq1fXecO33HKLIiIi6rweAABAqEIKmaFDh9Zpoy6XS8XFxfrpT39an5kAAABCEvJLS0eOHJHf7w/pEhkZ2ZgzAwAASAoxZDIyMur0MtE999yj6Ojoeg8FAAAQCpdlWZbdQzQmr9crj8ejsrIy4gpA/Sx32T0B4FyjGycjQv33+4LfteT1epWXl6eioqIL3RQAAECd1DlkRowYoQULFkiSvv32W/Xp00cjRoxQz5499dZbbzXocGfOnNHUqVOVnJysiIgIXX755ZoxY4Yu8oNIAAAgRHUOmY0bN+qGG26QJK1atUqWZenkyZOaN2+enn/++QYdbtasWVq0aJEWLFigoqIizZo1S7Nnz9b8+fMb9HEAAICZ6hwyZWVlatu2rSQpPz9fd9xxhyIjIzVo0CAVFxc36HAffvihhgwZokGDBikpKUl33nmnbr31Vn3yyScN+jgAAMBMdQ6ZhIQEbdmyRRUVFcrPz9ett94qSTpx4oTCw8MbdLh+/fqpoKBAe/fulSTt2rVLH3zwgdLS0mpcx+fzyev1Bl0AAMDFKaRfiHe2iRMnasyYMWrVqpU6duyoAQMGSPrhJacePXo06HCTJ0+W1+vVVVddpebNm+vMmTN64YUXNGbMmBrXycnJUXZ2doPOAQAAnKleb78uLCzUwYMHdcstt6hVq1aSpHfeeUetW7dW//79G2y4FStW6KmnntJvfvMbdevWTTt37tTEiRM1d+5cZWRkVLuOz+eTz+cLXPd6vUpISODt1wDqj7dfAzWz+e3Xjv49MgkJCZo8ebLGjx8fuO3555/Xf//3f+uzzz4LaRv8HhkAF4yQAWpmwu+RyczMVEVFRcgPnpWVpePHj4d8/5p88803atYseMTmzZvL7/df8LYBAID5QgqZl156Sd98803IG124cKFOnjxZ35kC0tPT9cILL+idd97RgQMHtGrVKs2dO1fDhg274G0DAADzhXSyr2VZ6ty5s1yu0A6v1uXoTW3mz5+vqVOn6tFHH1Vpaani4+P17//+75o2bVqDbB8AAJgtpJBZunRpnTccGxtb53XOFRUVpdzcXOXm5l7wtgAAwMUnpJCp6R1CAAAAdrrgD40EAACwCyEDAACMRcgAAABjETIAAMBY9Q6Zffv2ad26dfr2228l/fAWbQAAgKZU55D56quvlJKSos6dO+u2227T4cOHJUkPPPCAnnzyyQYfEAAAoCZ1DpknnnhCYWFhOnjwoCIjIwO3jxw5Uvn5+Q06HAAAQG1C+j0yZ3v33Xe1bt06XXbZZUG3d+rUSV9++WWDDQYAAHA+dT4iU1FREXQkptLx48fldrsbZCgAAIBQ1DlkbrjhBr3++uuB6y6XS36/X7Nnz9bAgQMbdDgAAIDa1PmlpdmzZ+vmm2/Wtm3b9N133+npp5/WP/7xDx0/flybN29ujBkBAACqVecjMt27d9fevXt1/fXXa8iQIaqoqNDw4cO1Y8cOXX755Y0xIwAAQLXqfERGkjwej6ZMmdLQswAAANRJvULm1KlT+vTTT1VaWiq/3x+07Pbbb2+QwQAAAM6nziGTn5+v++67T8eOHauyzOVy6cyZMw0yGAAAwPnU+RyZxx57THfddZcOHz4sv98fdCFiAABAU6pzyBw9elSZmZmKjY1tjHkAAABCVueQufPOO7Vhw4ZGGAUAAKBu6nyOzIIFC3TXXXdp06ZN6tGjhy655JKg5RMmTGiw4QAAAGpT55B588039e677yo8PFwbNmyQy+UKLHO5XIQMAABoMnUOmSlTpig7O1uTJ09Ws2Z1fmUKAACgwdS5RL777juNHDmSiAEAALarc41kZGRo5cqVjTELAABAndT5paUzZ85o9uzZWrdunXr27FnlZN+5c+c22HAAAAC1qXPI7N69Wz/72c8kSX//+9+Dlp194i8AAEBjq3PIrF+/vjHmAAAAqDPO2AUAAMYK6YjM8OHDtWzZMkVHR2v48OG13vftt99ukMEAAADOJ6SQ8Xg8gfNfPB5Pow4EAAAQKpdlWVYod3zuuec0adIkRUZGNvZMDcrr9crj8aisrEzR0dF2jwPARMt5IwNQo9EhZUSdhfrvd8jnyGRnZ6u8vLxBhgMAAGgIIYdMiAduAAAAmkyd3rXE74kBAABOUqffI9O5c+fzxszx48cvaCAAAIBQ1SlksrOzedcSAABwjDqFzN1336327ds31iwAAAB1EvI5MpwfAwAAnIZ3LQEAAGOFHDJ+v9+Wl5X++c9/6p577lFMTIwiIiLUo0cPbdu2rcnnAAAAzlPnT79uSidOnFD//v01cOBArV27Vu3atVNxcbHatGlj92gAAMABHB0ys2bNUkJCgpYuXRq4LTk52caJAACAk9TpF+I1tdWrV6tPnz6666671L59e/3sZz/T4sWLa13H5/PJ6/UGXQAAwMXJ0SHzxRdfaNGiRerUqZPWrVunRx55RBMmTNBrr71W4zo5OTnyeDyBS0JCQhNODAAAmlLIn35thxYtWqhPnz768MMPA7dNmDBBW7du1ZYtW6pdx+fzyefzBa57vV4lJCTw6dcA6o9PvwZqZsqnX9uhQ4cO6tq1a9BtXbp00cGDB2tcx+12Kzo6OugCAAAuTo4Omf79+2vPnj1Bt+3du1cdO3a0aSIAAOAkjg6ZJ554Qh999JFefPFF7du3T8uXL9fLL7+s8ePH2z0aAABwAEeHzLXXXqtVq1bpzTffVPfu3TVjxgzl5uZqzJgxdo8GAAAcwNG/R0aSBg8erMGDB9s9BgAAcCBHH5EBAACoDSEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWGF2D2CybFe23SMAjjbdmm73CAAuchyRAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsYwKmZkzZ8rlcmnixIl2jwIAABzAmJDZunWrfv/736tnz552jwIAABzCiJApLy/XmDFjtHjxYrVp08bucQAAgEMYETLjx4/XoEGDlJKSYvcoAADAQcLsHuB8VqxYoe3bt2vr1q0h3d/n88nn8wWue73exhoNAADYzNFHZEpKSvT444/rjTfeUHh4eEjr5OTkyOPxBC4JCQmNPCUAALCLo0OmsLBQpaWl6t27t8LCwhQWFqb3339f8+bNU1hYmM6cOVNlnaysLJWVlQUuJSUlNkwOAACagqNfWrr55pu1e/fuoNvGjRunq666Ss8884yaN29eZR232y23291UIwIAABs5OmSioqLUvXv3oNtatmypmJiYKrcDAIAfH0e/tAQAAFAbRx+Rqc6GDRvsHgEAADgER2QAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMYiZAAAgLEIGQAAYCxCBgAAGIuQAQAAxiJkAACAsQgZAABgLEIGAAAYi5ABAADGImQAAICxCBkAAGAsQgYAABiLkAEAAMZydMjk5OTo2muvVVRUlNq3b6+hQ4dqz549do8FAAAcwtEh8/7772v8+PH66KOP9N577+n06dO69dZbVVFRYfdoAADAAcLsHqA2+fn5QdeXLVum9u3bq7CwUDfeeKNNUwEAAKdwdMicq6ysTJLUtm3bGu/j8/nk8/kC171eb6PPBQAA7OHol5bO5vf7NXHiRPXv31/du3ev8X45OTnyeDyBS0JCQhNOCQAAmpIxITN+/Hj9/e9/14oVK2q9X1ZWlsrKygKXkpKSJpoQAAA0NSNeWvrVr36lNWvWaOPGjbrssstqva/b7Zbb7W6iyQAAgJ0cHTKWZemxxx7TqlWrtGHDBiUnJ9s9EgAAcBBHh8z48eO1fPly/fnPf1ZUVJSOHDkiSfJ4PIqIiLB5OgAAYDdHnyOzaNEilZWVacCAAerQoUPgsnLlSrtHAwAADuDoIzKWZdk9AgAAcDBHH5EBAACoDSEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGMRMgAAwFiEDAAAMBYhAwAAjEXIAAAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjGREyCxcuVFJSksLDw/Xzn/9cn3zyid0jAQAAB3B8yKxcuVKZmZmaPn26tm/frl69eik1NVWlpaV2jwYAAGzm+JCZO3euHnroIY0bN05du3bV7373O0VGRurVV1+1ezQAAGCzMLsHqM13332nwsJCZWVlBW5r1qyZUlJStGXLlmrX8fl88vl8getlZWWSJK/X2+DzndKpBt8mcDFpjOedLb6xewDAwRrpeV65/7Asq9b7OTpkjh07pjNnzig2Njbo9tjYWH322WfVrpOTk6Ps7OwqtyckJDTKjABqNtMz0+4RADS2hzyNuvmvv/5aHk/Nj+HokKmPrKwsZWZmBq77/X4dP35cMTExcrlcNk6Gxub1epWQkKCSkhJFR0fbPQ6ARsDz/MfDsix9/fXXio+Pr/V+jg6ZSy+9VM2bN9fRo0eDbj969Kji4uKqXcftdsvtdgfd1rp168YaEQ4UHR3NDg64yPE8/3Go7UhMJUef7NuiRQtdc801KigoCNzm9/tVUFCgvn372jgZAABwAkcfkZGkzMxMZWRkqE+fPrruuuuUm5uriooKjRs3zu7RAACAzRwfMiNHjtS//vUvTZs2TUeOHNHVV1+t/Pz8KicAA263W9OnT6/y0iKAiwfPc5zLZZ3vfU0AAAAO5ehzZAAAAGpDyAAAAGMRMgAAwFiEDJSUlKTc3NwL2saGDRvkcrl08uTJBpnpwIEDcrlc2rlzZ4Nsz+VyKS8vr0G21dBC+VqXLVvWoL8PqaH/voD6aIh9T2M6337D6fu9HwtCxgBbtmxR8+bNNWjQILtHkSQNGDBAEydODLqtX79+Onz4cEi/vKih1LYTOXcHefjwYaWlpTXZbA1t5MiR2rt3r91jwBBjx46Vy+XSzJnBHxGRl5fX6L/hvLZ/jM/dd2zdulUPP/xwo87TmOzY76EqQsYAS5Ys0WOPPaaNGzfq0KFDdo9TrRYtWiguLs6xHwMRFxd3QW/X/O677+q1nmVZ+v777+v9uJUiIiLUvn37C94OfjzCw8M1a9YsnThxwu5RatSuXTtFRkbWe/36Pi8l6fTp0/Vet5LT93s/FoSMw5WXl2vlypV65JFHNGjQIC1btiywrPKIREFBgfr06aPIyEj169dPe/bsCdzn888/15AhQxQbG6tWrVrp2muv1V//+tcaH+/+++/X4MGDg247ffq02rdvryVLlmjs2LF6//339dJLL8nlcsnlcunAgQPVHh3ZvHmzBgwYoMjISLVp00apqamBnWp+fr6uv/56tW7dWjExMRo8eLA+//zzhvmmVePcQ8QlJSUaMWKEWrdurbZt22rIkCE6cOBAYPnYsWM1dOhQvfDCC4qPj9eVV14pSfrDH/6gPn36KCoqSnFxcRo9erRKS0sD61V+H9auXatrrrlGbrdbH3zwgfx+v2bPnq0rrrhCbrdbiYmJeuGFF4Jm/OKLLzRw4EBFRkaqV69eQZ/wXt1LS//zP/+ja6+9VuHh4br00ks1bNiwwLLzzYmLX0pKiuLi4pSTk1Pjfd566y1169ZNbrdbSUlJmjNnTtDypKQkvfjii7r//vsVFRWlxMREvfzyyw0247lHTk+ePKkHH3xQ7dq1U3R0tH7xi19o165dgeXPPvusrr76ar3yyitKTk5WeHi4pPPvTyqPEq1cuVI33XSTwsPD9cYbb0iSXn311cD3oEOHDvrVr34VNOOxY8c0bNgwRUZGqlOnTlq9enVgmdP3ez8WhIzD/fGPf9RVV12lK6+8Uvfcc49effXVKh9pPmXKFM2ZM0fbtm1TWFiY7r///sCy8vJy3XbbbSooKNCOHTv0y1/+Uunp6Tp48GC1j/fggw8qPz9fhw8fDty2Zs0affPNNxo5cqReeukl9e3bVw899JAOHz6sw4cPV/vJ4jt37tTNN9+srl27asuWLfrggw+Unp6uM2fOSJIqKiqUmZmpbdu2qaCgQM2aNdOwYcPk9/sb4ttWq9OnTys1NVVRUVHatGmTNm/erFatWumXv/xl0P/wCgoKtGfPHr333ntas2ZNYN0ZM2Zo165dysvL04EDBzR27NgqjzF58mTNnDlTRUVF6tmzp7KysjRz5kxNnTpV//u//6vly5dX+aWOU6ZM0aRJk7Rz50517txZo0aNqvFozjvvvKNhw4bptttu044dO1RQUKDrrrsu6GsMZU5cvJo3b64XX3xR8+fP1//93/9VWV5YWKgRI0bo7rvv1u7du/Xss89q6tSpQf9ZkqQ5c+aoT58+2rFjhx599FE98sgjQf9Zakh33XWXSktLtXbtWhUWFqp37966+eabdfz48cB99u3bp7feektvv/124OWrUPcnkydP1uOPP66ioiKlpqZq0aJFGj9+vB5++GHt3r1bq1ev1hVXXBG0TnZ2tkaMGKFPP/1Ut912m8aMGRM0z9mcvN+7qFlwtH79+lm5ubmWZVnW6dOnrUsvvdRav369ZVmWtX79ekuS9de//jVw/3feeceSZH377bc1brNbt27W/PnzA9c7duxo/ed//mfgeteuXa1Zs2YFrqenp1tjx44NXL/pppusxx9/PGiblbOcOHHCsizLGjVqlNW/f/+Qv85//etfliRr9+7dlmVZ1v79+y1J1o4dO2pcp/IxW7ZsWeXicrmCviZJ1qpVqyzLsqw//OEP1pVXXmn5/f7Acp/PZ0VERFjr1q2zLMuyMjIyrNjYWMvn89U699atWy1J1tdffx00U15eXuA+Xq/Xcrvd1uLFi6vdRuXX+sorrwRu+8c//mFJsoqKiizLsqylS5daHo8nsLxv377WmDFjap0tlDkr/75wccnIyLCGDBliWZZl/du//Zt1//33W5ZlWatWrbIqd/ujR4+2brnllqD1nnrqKatr166B6x07drTuueeewHW/32+1b9/eWrRoUY2PXfnzHBERUeV52axZs6B9x9n7nk2bNlnR0dHWqVOngrZ3+eWXW7///e8ty7Ks6dOnW5dccolVWlpa69df0/6kcl9aKT4+3poyZUqN25Fk/frXvw5cLy8vtyRZa9eutSzLnv0equKIjIPt2bNHn3zyiUaNGiVJCgsL08iRI7VkyZKg+/Xs2TPw5w4dOkhS4GWE8vJyTZo0SV26dFHr1q3VqlUrFRUV1XhERvrhqMzSpUsl/fBJ42vXrg06yhOKyv+Z1KS4uFijRo3ST3/6U0VHRyspKUmSapyrW7duatWqlVq1alXlpN1NmzZp586dQZfaPvZ9165d2rdvn6KiogLbbNu2rU6dOhV0mLdHjx5q0aJF0LqFhYVKT09XYmKioqKidNNNN1U7d58+fQJ/Lioqks/nq/X7IdX+93iu831/Q50TF79Zs2bptddeU1FRUdDtRUVF6t+/f9Bt/fv3V3FxceAIghT8c+lyuRQXFxf4uUxLSws8h7p16xa0rZUrV1Z5Xp79vDjXrl27VF5erpiYmMA2W7Vqpf379wc9Lzt27Kh27doFrRvq/uTsxy8tLdWhQ4fq9Lxs2bKloqOj6/28rOt+D6Fx/Gct/ZgtWbJE33//fdA/ypZlye12a8GCBYHbLrnkksCfK086qzxUOWnSJL333nv67W9/qyuuuEIRERG68847az1J7r777tPkyZO1ZcsWffjhh0pOTtYNN9xQp9kjIiJqXZ6enq6OHTtq8eLFio+Pl9/vV/fu3Wuc6y9/+Uvg5Lxzt52cnFzl/JGwsJp/tMvLy3XNNdcEXiM/29k7yJYtWwYtq6ioUGpqqlJTU/XGG2+oXbt2OnjwoFJTU6vMffa65/teVKrt7/FctW2zLnPi4nfjjTcqNTVVWVlZ9Xp58eyfS+mHn83Kn8tXXnlF3377bbX3S0hIqPIyTW0/t+Xl5erQoYM2bNhQZdnZz+9zn5dS6PuTC31eSsFf/7kaer+H0BAyDvX999/r9ddf15w5c3TrrbcGLRs6dKjefPNNXXXVVefdzubNmzV27NjAiaDl5eVBJ7VWJyYmRkOHDtXSpUu1ZcuWKp803qJFi6D/sVWnZ8+eKigoUHZ2dpVlX331lfbs2aPFixcHAumDDz6odXsdO3asdXld9O7dWytXrlT79u0VHR0d8nqfffaZvvrqK82cOTNwXtC2bdvOu16nTp0UERGhgoICPfjgg/We+2yV39/qPgW+vnPi4jVz5kxdffXVgZPWJalLly7avHlz0P02b96szp07q3nz5iFt9yc/+UmDzdi7d28dOXJEYWFhgSMVoajP/kSSoqKilJSUpIKCAg0cOLC+Ywdp6P0eQsNLSw61Zs0anThxQg888IC6d+8edLnjjjuqvLxUk06dOgVOitu1a5dGjx4d0ollDz74YOBwdEZGRtCypKQkffzxxzpw4ICOHTtW7faysrK0detWPfroo/r000/12WefadGiRTp27JjatGmjmJgYvfzyy9q3b5/+9re/KTMzM7RvTAMYM2aMLr30Ug0ZMkSbNm3S/v37tWHDBk2YMKHakyIrJSYmqkWLFpo/f76++OILrV69WjNmzDjv44WHh+uZZ57R008/rddff12ff/65Pvroo5D/Dqszffp0vfnmm5o+fbqKioq0e/duzZo164LmxMWrR48eGjNmjObNmxe47cknn1RBQYFmzJihvXv36rXXXtOCBQs0adIkW2ZMSUlR3759NXToUL377rs6cOCAPvzwQ02ZMqXWEL+Q/cmzzz6rOXPmaN68eSouLtb27ds1f/78en8NTt7vXcwIGYdasmSJUlJSqv1FS3fccYe2bdumTz/99LzbmTt3rtq0aaN+/fopPT1dqamp6t2793nXS0lJUYcOHZSamlrlfJNJkyapefPm6tq1a+Bli3N17txZ7777rnbt2qXrrrtOffv21Z///GeFhYWpWbNmWrFihQoLC9W9e3c98cQT+s1vfnPemRpKZGSkNm7cqMTERA0fPlxdunTRAw88oFOnTtV6hKZdu3ZatmyZ/vSnP6lr166aOXOmfvvb34b0mFOnTtWTTz6padOmqUuXLho5cuQFvR16wIAB+tOf/qTVq1fr6quv1i9+8Qt98sknFzwnLl7PPfdc0H86evfurT/+8Y9asWKFunfvrmnTpum5556z7d1tLpdLf/nLX3TjjTdq3Lhx6ty5s+6++259+eWXVd7hd7YL2Z9kZGQoNzdX//Vf/6Vu3bpp8ODBKi4urvfX4OT93sXMZVnnvJcX0A8vQf3kJz/R0qVLNXz4cLvHAQCgWpwjgyB+v1/Hjh3TnDlz1Lp1a91+++12jwQAQI0IGQQ5ePCgkpOTddlll2nZsmW1vvsHAAC78dISAAAwFif7AgAAYxEyAADAWIQMAAAwFiEDAACMRcgAAABjETIAAMBYhAwAADAWIQMAAIxFyAAAAGP9P8voplt2CU+kAAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -751,8 +784,7 @@
"ax = plt.gca()\n",
"ax.set_xticks([0, 1])\n",
"ax.set_xticklabels(['Analytical-Hierarchical', 'Non-Hierarchical'])\n",
- "ax.set_ylabel('Time [s]')\n",
- "plt.savefig(\"ana_ord_time.png\")"
+ "ax.set_ylabel('Computation time [s]')"
]
},
{
@@ -764,26 +796,32 @@
},
{
"cell_type": "code",
- "execution_count": 13,
+ "execution_count": 16,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
- "Performing parallel task execution on 3 processes.\n",
- "100%|████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████████| 3/3 [00:00<00:00, 1088.58it/s]\n",
- "2022-11-14 23:23:35 fides(WARNING) Stopping as trust region radius 6.31E-17 is smaller than machine precision.\n",
- "2022-11-14 23:23:36 fides(WARNING) Stopping as trust region radius 1.13E-16 is smaller than machine precision.\n",
- "2022-11-14 23:23:36 fides(WARNING) Stopping as trust region radius 1.11E-16 is smaller than machine precision.\n"
+ " 0%| | 0/3 [00:00, ?it/s]2023-12-07 17:23:23 fides(WARNING) Stopping as gradient norm satisfies absolute convergence criteria: 4.08E-16 < 1.00E-06\n",
+ "2023-12-07 17:23:24 fides(WARNING) Stopping as function difference 6.71E-08 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
+ "2023-12-07 17:23:24 fides(WARNING) Stopping as function difference 6.54E-07 was smaller than specified tolerances (atol=1.00E-08, rtol=1.00E-08)\n",
+ "100%|██████████| 3/3 [00:04<00:00, 1.36s/it]"
]
},
{
"name": "stdout",
"output_type": "stream",
"text": [
- "result_ana_fw.optimize_result.get_for_key('fval')=[153.00718997189804, 328.58447663068495, 357.4085861446033]\n",
- "time_ana_fw=1.4595205783843994\n"
+ "result_ana_fw.optimize_result.get_for_key('fval')=[132.12474325658255, 161.1920945612816, 206.99296273527222]\n",
+ "time_ana_fw=4.1591479778289795\n"
+ ]
+ },
+ {
+ "name": "stderr",
+ "output_type": "stream",
+ "text": [
+ "\n"
]
}
],
@@ -802,12 +840,12 @@
},
{
"cell_type": "code",
- "execution_count": 14,
+ "execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAABNUAAAIjCAYAAAAkzS0sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACpHElEQVR4nOzdeXhU5d3/8c9kT8hCICQkhJCErIOACLGKWlCx4IIo7sujaKutpYpa3B53rdZarUuNtrUq6k+ty4NW6y4VRETZEZ3sJIRAIARCQjYmM+f8/qCZEkjCTDLJZHm/risXyTln7vnOJEDmM9/7vi2maZoCAAAAAAAA4DY/XxcAAAAAAAAA9DeEagAAAAAAAICHCNUAAAAAAAAADxGqAQAAAAAAAB4iVAMAAAAAAAA8RKgGAAAAAAAAeIhQDQAAAAAAAPAQoRoAAAAAAADgIUI1AAAAAAAAwEOEagAAAIPQzp07df7552v48OGyWCx68skn3b5tWVmZLBaLFi1a5Dp23333yWKxeK2+9u4DAACgLyFUAwAAcNNbb70li8Wid99997BzEydOlMVi0ZdffnnYuaSkJE2dOtWj+3r22Wd7NFC66aab9Omnn+qOO+7Qq6++qlmzZvXYffW2b775Rvfdd5/27t3r61IAAMAARqgGAADgphNPPFGS9PXXX7c5XldXpx9++EEBAQFasWJFm3Nbt27V1q1bXbd1V0+Hav/+9781Z84cLVy4UJdffrmysrJ67L562zfffKP777+fUA0AAPQoQjUAAAA3JSQkKCUl5bBQbeXKlTJNUxdccMFh51q/9jRU6wkOh0N2u12SVFVVpaFDh/q2IAAAgH6MUA0AAMADJ554otavX6+mpibXsRUrVmjcuHE6/fTT9e2338owjDbnLBaLTjjhBEnSSy+9pFNOOUWxsbEKDg6W1WrVc8891+Y+kpOT9eOPP2rZsmWyWCyyWCyaPn266/zevXt14403avTo0QoODlZaWpr+8Ic/tLnf1jXJHnvsMT355JMaO3asgoOD9eyzz8piscg0TeXm5rrGl6Q9e/Zo4cKFGj9+vMLDwxUZGanTTz9dGzdu9NrzN336dB111FFau3atpk6dqtDQUKWkpOgvf/mLW7f/97//rZNOOklDhgzR0KFDNWfOHOXl5bnO33fffbrlllskSSkpKa7HV1ZW5rXHAAAAIEkBvi4AAACgPznxxBP16quv6rvvvnMFXStWrNDUqVM1depU1dbW6ocfftCECRNc57KysjR8+HBJ0nPPPadx48bp7LPPVkBAgD744AP9+te/lmEYmj9/viTpySef1PXXX6/w8HDdeeedkqS4uDhJUmNjo6ZNm6Zt27bpl7/8pZKSkvTNN9/ojjvuUGVl5WEbDrz00ktqbm7Wtddeq+DgYB1zzDF69dVX9T//8z867bTTdMUVV7iu3bx5s9577z1dcMEFSklJ0c6dO/XXv/5V06ZNk81mU0JCgleew5qaGp1xxhm68MILdckll+itt97Sddddp6CgIF199dUd3u6LL77Q6aefrtTUVN13331qamrSn//8Z51wwglat26dkpOTNXfuXBUWFuqNN97QE088oZiYGEnSiBEjvFI7AACAiwkAAAC3/fjjj6Yk88EHHzRN0zRbWlrMIUOGmC+//LJpmqYZFxdn5ubmmqZpmnV1daa/v795zTXXuG7f2Nh42JgzZ840U1NT2xwbN26cOW3atMOuffDBB80hQ4aYhYWFbY7ffvvtpr+/v1leXm6apmmWlpaakszIyEizqqrqsHEkmfPnz29zrLm52XQ6nW2OlZaWmsHBweYDDzzQ5pgk86WXXnIdu/fee013frWcNm2aKcl8/PHHXcf2799vHn300WZsbKxpt9s7vI/Wa3bv3u06tnHjRtPPz8+84oorXMf++Mc/mpLM0tLSI9YDAADQVUz/BAAA8EB2draGDx/uWitt48aNamhocO3uOXXqVNdmBStXrpTT6WyznlpoaKjr89raWlVXV2vatGnavHmzamtrj3j/b7/9tk466SRFR0erurra9TFjxgw5nU599dVXba4/77zz3O7SCg4Olp/fgV8PnU6ndu/erfDwcGVmZmrdunVujeGOgIAA/fKXv3R9HRQUpF/+8peqqqrS2rVr271NZWWlNmzYoHnz5mnYsGGu4xMmTNBpp52mjz76yGv1AQAAuINQDQAAwAMWi0VTp051rZ22YsUKxcbGKi0tTVLbUK31z4NDtRUrVmjGjBmuNcFGjBih//3f/5Ukt0K1oqIiffLJJxoxYkSbjxkzZkg6sAHBwVJSUtx+bIZh6IknnlB6erqCg4MVExOjESNG6Pvvv3erNnclJCRoyJAhbY5lZGRIUodrn23ZskWSlJmZedi57OxsVVdXq6GhwWs1AgAAHAlrqgEAAHjoxBNP1AcffKBNmza51lNrNXXqVN1yyy3atm2bvv76ayUkJCg1NVWSVFJSolNPPVVZWVn605/+pNGjRysoKEgfffSRnnjiiTYbDXTEMAyddtppuvXWW9s93xpOtTq4M+5IHn74Yd199926+uqr9eCDD2rYsGHy8/PTjTfe6FZtAAAAgwmhGgAAgIdaO8++/vprrVixQjfeeKPr3OTJkxUcHKylS5fqu+++0xlnnOE698EHH2j//v16//33lZSU5Dr+5ZdfHnYfrTtyHmrs2LGqr693daZ50zvvvKOTTz5ZL7zwQpvje/fudS347w3bt29XQ0NDm261wsJCSQd2Pm3PmDFjJEkFBQWHncvPz1dMTIxrvI6eOwAAAG9i+icAAICHpkyZopCQEL322mvatm1bm0611h02c3Nz1dDQ0Gbqp7+/vyTJNE3XsdraWr300kuH3ceQIUO0d+/ew45feOGFWrlypT799NPDzu3du1cOh6PLj8vf379NbdKBNdy2bdvW5THb43A49Ne//tX1td1u11//+leNGDFCkydPbvc28fHxOvroo/Xyyy+3eV5++OEHffbZZ23Cy9Zwrb3nDwAAwFvoVAMAAPBQUFCQcnJytHz5cgUHBx8WBE2dOlWPP/64pLbrqf3sZz9TUFCQZs+erV/+8peqr6/X888/r9jYWFVWVrYZY/LkyXruuef0u9/9TmlpaYqNjdUpp5yiW265Re+//77OOusszZs3T5MnT1ZDQ4M2bdqkd955R2VlZV3uKjvrrLP0wAMP6KqrrtLUqVO1adMmvfbaa67pq96SkJCgP/zhDyorK1NGRobefPNNbdiwQX/7298UGBjY4e3++Mc/6vTTT9fxxx+vn//852pqatKf//xnRUVF6b777nNd1/r9uPPOO3XxxRcrMDBQs2fPPmwdNwAAgO6gUw0AAKALWsOy1umeBzvhhBMkSREREZo4caLreGZmpt555x1ZLBYtXLhQf/nLX3TttddqwYIFh41/zz336IwzztCjjz6qSy65RA888IAkKSwsTMuWLdMtt9yipUuXasGCBXrkkUdUVFSk+++/X1FRUV1+TP/7v/+r3/72t/r000+1YMECrVu3Th9++KFGjx7d5THbEx0drY8++khr1qzRLbfcoq1bt+qZZ57RNddc0+ntZsyYoU8++UTDhw/XPffco8cee0zHHXecVqxY0WZDhpycHD344IPauHGj5s2bp0suuUS7du3y6mMAAACwmIf2+AMAAAA9ZPr06aqurtYPP/zg61IAAAC6hU41AAAAAAAAwEOEagAAAAAAAICHCNUAAAAAAAAAD7GmGgAAAAAAAOAhOtUAAAAAAAAADxGqAQAAAAAAAB4K8HUBvmYYhrZv366IiAhZLBZflwMAAAAAAAAfMU1T+/btU0JCgvz8Ou9FG/Sh2vbt2zV69GhflwEAAAAAAIA+YuvWrUpMTOz0mkEfqkVEREg68GRFRkb6uBoAAAAAAAD4Sl1dnUaPHu3Kizoz6EO11imfkZGRhGoAAAAAAABwa4kwNioAAAAAAAAAPESoBgAAAAAAAHiIUA0AAAAAAADwEKEaAAAAAAAA4CFCNQAAAAAAAMBDgzZUy83NldVqVU5Ojq9LAQAAAAAAQD9jMU3T9HURvlRXV6eoqCjV1tYqMjLS1+UAAAAAAADARzzJiQZtpxoAAAAAAADQVYRqAAAAAAAAgIcI1QAAAAAAAAAPEaoBAAAAAAAAHiJUAwAAAAAAADxEqAYAAAAAAAB4KMDXBQAAAAAAAKCfMZzSruVSU6UUGi+NOEny8/d1Vb2KUA0AAAAAAADu27pYWrtAaqz477GwRGnyU9Loub6rq5cx/RMAAGCwM5zSzqVS2RsH/jScvq4IAAD0VVsXS8vPbxuoSVLjtgPHty72TV0+QKcaAADAYMY7zQCAAcQ0TbePd3RtV8Y60ng9PVZXxvF0rAMnnQpffb0sMmU5/KQki7T2RmnUnEExFZRQDQAAYLBqfadZh/zy3PpO80nvEKzBY7ygdX8cT8fq6n319PHOzvt6LF//3Hlagy8fy0D6uUPPGVK/WpHN2zu5wpQatx5Yay1uem+V5TOEagAAAN3Q+sv8oX929Zwnt+nWOKZTw1b9Rn4dvNNsyiJj1fXaFfATyeJ/2BjtPQfunuMFLS9oAWAgsVgO/5/UnfPtHe9sLG+N4+lYBx8f0lTX6bguTZXuXdfPEaoBANBP9Nvwppvj9bVx2rtNfzSkfrVG7O/4F16LTPnv366G0k/UEJ7Ti5UBnvPWi9CujNWVcXpjrN443tl5HsvACFK6cl998bH01s/doBAxSSpx47rQ+B4vpS8YtKFabm6ucnNz5XQOoIV42c4WgBcM9GClNx+ftx8D+reDfwFv/dzdP7t6rrNrh7Q0uVV3dGizQmNi3HpcnR3r7HhXbtdXX5h784VpV+7Ll+FSV8fq6DwvZgGgDxpx0oG1Vxu3SYcuHyFJshw4P+Kk3q7MJyzmIP9Nva6uTlFRUaqtrVVkZKSvy+k6FhlGPzSQwpP+PM5A6brBf/W18KYvjNPZbbw1jrvn+oydS6UlJx/5ulO/HBRrogAAADe51mSV2gZr//l9p5+vyepJTjRoO9UGFBYZPiLCm74xDuHNwNPfghVvjdObdXU1HAKOiHeaAQBAV4yeeyBnaLex58lBlT8QqvV3hvPAD3K7vwwfWGTYXH2D9oadJFn8+3xw5K1xCG8Glr4eevhiHLpuAHSbn/+Bjvbl5+vAO8vtvNM8+UmWkgAAAIcbPVcaNWfQL0FFqNbf7VreNhk+hEWmLM3bVFPwPosMu4HwhvAGAAYV3mkGAABd5ec/6JeIIFTr79zcpjYisF7+/5kL3FcDmr4SQAEAMKjwTjMAAECXEKr1d25uUxubNFGKS+7ZWgAAQP/EO80AAAAe8/N1Aeim1kWG1VGXlUUKG80iwwAAAAAAAF5EqNbftS4yLOnwYI1FhgEAAAAAAHoCodpA0LrIcNiotsfDEg8cZ5FhAAAAAAAAr2JNtYGCRYYBAAAAAAB6DaHaQMIiwwAAAAAAAL2C6Z8AAAAAAACAhwjVAAAAAAAAAA8RqgEAAAAAAAAeIlQDAAAAAAAAPESoBgAAAAAAAHiIUA0AAAAAAADwEKEaAAAAAAAA4CFCNQAAAAAAAMBDgzZUy83NldVqVU5Ojq9LAQAAAAAAQD9jMU3T9HURvlRXV6eoqCjV1tYqMjLS1+UAAAAAAADARzzJiQZtpxoAAAAAAADQVYRqAAAAAAAAgIcI1QAAAAAAAAAPEaoBAAAAAAAAHiJUAwAAAAAAADxEqAYAAAAAAAB4iFANAAAAAAAA8BChGgAAAAAAAOAhQjUAAAAAAADAQ4RqAAAAAAAAgIcI1QAAAAAAAAAPEaoBAAAAAAAAHiJUAwAAAAAAADxEqAYAAAAAAAB4iFANAAAAAAAA8BChGgAAAAAAAOAhQjUAAAAAAADAQ4RqAAAAAAAAgIcI1QAAAAAAAAAPBfi6AAAAAAAAAPQvhtNQ+fJy7avcp4j4CCWdlCQ//8HVu0WoBgAAAAAAALflLc7TRzd8qk3bhqpeEQrXPo0ftVdnPD1T2XOzfV1eryFUAwAAAAAAgFvyFufpvvO+1ye6SnWKch2P3FarVed9ovv+T4MmWBtcfXkAAAAAAADoEsNp6NFri/WWLlSdItucq1Ok3tKFevTaYhlOw0cV9i461QAAAAAAAHzINE3XhyQZhuH63DRNGYbR7vGe+mi9n9Y/Wz/fsXqXFu+Z9p+qLYc8CoskU4t3/1R3LS3X2FOTe/6J8zFCNQAAAAAA0O/1RtjU1TCqs2skuUKzQx/Hocc6+tyTa90ZoyOrC0NUZ0Z2coVFdYrSsqW7NfbUIw7X7xGqAQAAAAAAl54MnSQdFjK1Fz51Fk51FFL1dBjlzrU9wWKxtPnTk2N+fn4dXufpmBaLRc3OULdqrleEW9f1d4RqAAAAAAB4maehUuvxzm57pK6ojv50t3PKk2CqP4RRB2svMGr9ur1jrWFUZ7f3JNhqvZ/WsTv6ur3PD67TnQ93ru/qmDV7DOmPR36+j5o+/MgXDQCDNlTLzc1Vbm6unE6nr0sBAAAAALSjq2FTV8KornRGtdbW3npX7U3n8/TzvhBGHcqTcOnQwMrTYOrQ8MndEOrgzz0Jpty5pqvh1UAxbbqf4oa3aOfuAB2+ppokmRo53KFp0wN7uzSfsJi+/NvYB9TV1SkqKkq1tbWKjOxsXjAAAAAA9E89EUZ11h0lqc017nRLdXTdwY/h0M+7GlD5Wne6ntw51lkI5WkY1VGw1RvBFPqmxYul888zdeBv1MHfJ1MWSe/8n0Vz5/qkNK/wJCcatJ1qA5HTcGp5+XJV7qtUfES8Tko6Sf5+/r4uCwAAABgQPA2gJB3WwdQaNLk7bc+TKXudBVUHP4aD/3Tn874URh3sSB1Oh17b3nWHjtPZhztT9o70Z090QBFGobfNnXsgOFuwwFRFxX+Pj06UnnyqfwdqniJUGyAW5y3Wgk8WqKLuvz/RiZGJemrWU5qbPYh+ogEAgMda7Ib+79kqbSmxa8zYIJ3361gFBvkd+YZAF3g6ne/QAMrdTqnOAqnOwqjW2toLpdzpnDr4874aRh2qo3CqoyCqo+u6G0gdKYzy8/M7YjjlSU3tXQ/APXPnSnPmWLR8uVRZKcXHSyedZJH/IOvrYfrnAJj+uThvsc5/63y1Nl+2svynDfOdC98hWAMAAO16+tYK3fOnKNU6/7tLV5T/Pj1wc61ueDTRh5WhM4eGPO5O0etuINVR8HRoQNZZt9Shnx/6mA79vL/orGuqs66ogz8/UkdTR0GUJ91SR+qcOrQewigAgw3TPwcRp+HUgk8WHBaoSZIpUxZZdOMnN2pO5hymggIAgDaevrVCC/446rDjtc5wLfhjuKSKAR+sHSmMOtIi5k6ns8156cjrSHk6ba+zqYWtj6G9z/uj1nDm4Kl73emO8qRL6kjdUp0d606HFACg/6JTrZ93qi0tW6qTXz75iNf9Y9Y/dMKoE+Tv7y8/P7/D/mzvGP/JAwAwcLXYDY0Ia1CtM1wd7d411H+fqhrDjzgVtL2upoPDpo5Cqq52SXU1hHI3mBoI3Ami2jvmzk57nXVMudsp1Rqa+fv7tznfWlPrecIoAEBvo1NtEKncV+nWdWXVZcoOzfZo7I7CtvaOdXYNAR0AAH3P/z1bpVrnyE6usGivM1JPP7xWU2faOw2lBlog1epI0/Q87Y5yN4ySDoRNktr8LnWkzw8NpjoKpAAAgHcQqvVz8RHxbl2XOSpTcXFxcjqdrnePW98tPvTYwetkGIYhh8PR7TrdDeCOdA2/EAIA4B1bSuxuXbdjp0X79+/v0n10JYjqyhS+7kzbOziQ6iyYAgAAOBShWj93UtJJSoxM1La6be2uq2aRRYmRiZo9Ybbba6odPD3D6XR2GsAd6ZpDx+yu1l9+3QnkjnTu0G22AQAYTEYlu/f/YGZSpLKzR7nVJdVeuAUAADBQEar1c/5+/npq1lM6/63zZZGlTbDWuvvnk7Oe9GiTAm8FTgcv4OtuENdecNf6Z+uYrbftLovF4nEQ19E5XjQAAPqTHTt2KPGYUkWHR6umPkydral25W9Tj7imGgAAwGBEqDYAzM2eq3cufEcLPlmgiroK1/HEyEQ9OetJzc2e65O6Dn6nursOXuC4o9DN3Y66g9d/8cbUVqlr6891dIyADgDQU+x2u/Lz87Vnzx7JIv36qgI99OdJkky1DdYO/F95/811Cgzqfxs5AQAA9AZ2/+znu38ezGk4tbx8uSr3VSo+Il4nJZ3kUYfaYHHwrmRdmdJ68LGe+OvTnSmtBx9jDRgAwMGqqqpUVFSklpYWSdKIESOUmZmpZ/93h+75U5RqnRGua4f61+n+m+t0w6OJvioXAADAJzzJiQjVBlCoht7nzvpz7nbXefuv4sHr3Hi6W6u/vz/rzwHAAOFwOFRQUKBdu3ZJkgIDA5Wenq7Y2FjXNS12Q//3bJW2lNg1ZmyQzvt1LFM+AQDAoORJTsT0T6Abemv9OXenuXa0/lxrV0JXHbz+XGehHOvPAUDfsnv3bhUUFMhuP7DT57Bhw5SVlaWgoKA21wUG+eniG0f6okQAAIB+i1AN6AN6a/25rqxF1zqmt9afaw3ouhvSEdABQMccDodKSkpUWVkpSfL391daWpri4+N9XBkAAMDAQagGDDAHh1aBgYHdGsvd9efcOXfoBhHeCOm6M6WV9ecADFS1tbXKy8tTc3OzJCkqKkrZ2dkKCQnxcWUAAGAgYV13QjUAnTg4oOuuQ9ef605I1xrQHdxN111d7ZZj/TkAfYVhGCouLtb27dslHXjjISUlRaNHj/ZxZQAAYKBZnLdYCz5ZoIq6CtexxMhEPTXrKc3NnuvDynoXGxWwUQHQrxy6/py7G0F0tv6cN7VO4/Vk59aOQjq65wC4a9++fbLZbGpqapIkhYeHa9y4cQoNDfVxZQAAYKBZnLdY5791vky1jZMsOvD65Z0L3+nXwRobFQAYsHp6/bmuhnTtbRDRXZ2tP+fprq4EdMDAZBiGSktLVVFRIdM0ZbFYNGbMGCUlJdE5CwAAuqW1oaH1dZNpmnI4Hbrh4xsOC9QkyZQpiyy68ZMbNSdzzqCYCkqoBmDQ6o3157rSQddb6895ukkEG0QAfUtDQ4NsNpsaGhokSWFhYbJarQoPD/dxZQAAwFMHL3HTXph16Odd+fpI17R3/aFW71qtbfu2dfw4ZGpr3VYtL1+u6cnTe+rp6jMI1QDAC1h/7sjdcof+yQYRQNcYhqGKigqVlZXJMAxZLBYlJiYqJSWF7jQAANzkSdjkTvjkSfjV0fV9ncVi0W77breurdxX2cPV9A2EagDQx3hrw4OD/5Puzrpzh64/1zq9taWlpVv1dWX9uY7OEc5hsGhubtaPP/6offv2SZJCQ0OVnZ3NurAAgD7PG91W3u7E6sta34A+ePmbIx3r7OvuXHvwx+6I3dKqI9cfHxHf809SH0CoBgAD1MH/KQYEdO+f+4PXn+tuSNeX1p/rqIMO6Iu2bdumzZs3u/7OJCQkKC0tje40AMBhDg2aujuV0BvTDPtLiOVJ+NTTYVZfdFLSSUqMTNS2um3trqtmkUWJkYk6KekkH1TX+wjVAABH5M3prf1h/TlPN4Jo7xwBHbzFbrfLZrNp7969kqTg4GBlZWUpOjrat4UBAFy6Ezj1VLjV17nTHeVJONWdMKsvh1h9jb+fv56a9ZTOf+t8WWRpE6y17v755KwnB8UmBRKhGgCgl3k7oOvOlNbO1p/zRkDX1d1aWX8OrXbs2KHi4mLXz2NcXJzS09O73X0KAP1dd9e88vY0xL4eYnkzrPJGGNZaE/qnudlz9c6F72jBJwtUUVfhOp4YmagnZz2pudlzfVhd77KYff1vfw+rq6tTVFSUamtrWY8EAAYpd9af8ySk87ZD15/rajjH+nP9h91uV35+vvbs2SNJCgoKUkZGhmJiYnxcGYDBqDvhlLfDrf60oLu317zq7u0Bb3MaTi0vX67KfZWKj4jXSUknDYgONU9yIt7mBAAMer2x/lzr552FdO1d0zqmt9ef88YmEfyC3jOqqqpUVFTk2gwkJiZGWVlZdKcBg4i31rXyZrjV13V36p83wy1CLAwW/n7+mp483ddl+BS/nQEA4EU9uf6cp1NaDw7pDl1/zhu62zXH+nNtORwOFRQUaNeuXZKkgIAAZWRkKDY21seVAQPboUGTt8OsQ48NpAXduxteeWMNLP4PAeBLhGoAAPRRPb3+XFd3cu2J9ee8sTlE6/TW/vjiavfu3SooKJDdbpckDRs2TFlZWQoKCvJxZYD3eXMqYXd3JOyvUwm70jnlzTWx+uO/swDQEwjVAAAYBCwWi9emDx5p+qon014PHbO7vLX+XOtHTzMMQ0VFRaqsrJR0YHOLsWPHKiEhocfv+2ADdU0UHOCNqX/eXOC9r4dYRwqrvDnN0J3wihALAPouQjUAAOCR1sDJF+vPddZV1zpmT64/19WOuvZeENfW1iovL0/Nzc2SpKioKGVnZyskJKTbtXticd7idnfvemrWU4Nq9y5v8TS46skwq792YXlrXavuhFkAALiD3T/Z/RMAgH7Pk/XnjtRR1xO/Gh06RbWmpkZ1dXWuc7GxsYqLiztiSOfttYMW5y3W+W+dL1NtH7NFB+7jnQvf6fPBmrfCKG+GW32dtzutvLEuFgAAfYUnOZFHoZphGFq2bJmWL1+uLVu2qLGxUSNGjNCkSZM0Y8YMjR49utvF9zZCNQAAcLBDA7qurDvX+vmhv2a1tLSopqbGtQ5dYGCgoqOjPer688bmEP7+/jJMQylPp7TpUDuYRRYlRiaqdEGpayrowevpuRs+eRpOeRpu9fUQq7emDbo7fmtNAACgfZ7kRG79BtfU1KTHH39czz33nPbs2aOjjz5aCQkJCg0NVXFxsd577z1dc801+tnPfqZ77rlHxx13nFceCAAAQG9rnfbpjQ0iDt7MYcuWLdq9e7csFouCgoIUFxenmJiYNtNgOwvuDg60vLH+3JrqNR0GapJkytTWuq169atXlTMiZ0BPJfQkrOrKAvEAAGBgcitUy8jI0PHHH6/nn39ep512mgIDAw+7ZsuWLXr99dd18cUX684779Q111zj9WIBAAD6Ez8/PzU1Nclms6mhoUEWi0URERGyWq0KDw93e5zWjixPNoI40vpzu5p2uXXfOxt2yjms4zXqvNl91d1OLEIsAADQm9wK1T777DNlZ2d3es2YMWN0xx13aOHChSovL/dKcQAAAP2VYRiqqKhQWVmZDMOQxWJRYmKiUlJSPN5Z9NDpe93R2hlXFVYlrTny9UenHa3M5MwOwy0AAIDByq1Q7UiB2sECAwM1duzYLhcEAADQ3zU3N+vHH3/Uvn37JEmhoaHKyspSVFSUjyv77/TWk1NPVmJkorbVbTtsowLpv2uqzUif4VpTDQAAAP/l8dudHa3hYRgGHWoAAGDQ27Ztm1avXu0K1OLj45WTk9MnArWD+fv566lZT0n6726frVq/fnLWkwRqAAAAHXA7VKurq9OFF16oIUOGKC4uTvfcc4+czv+ur7Fr1y6lpKT0SJEAAAB9nd1u14YNG1RUVCSn06ng4GBNnDhRmZmZXpm22RPmZs/VOxe+o1GRo9ocT4xM1DsXvqO52XN9VBkAAEDf5/b+7Xfffbc2btyoV199VXv37tXvfvc7rVu3TosXL1ZQUJAk9YsdoQAAALxtx44dKi4ulsPhkCTFxcUpPT1dAQFu/6rlM3Oz52pO5hwtL1+uyn2Vio+I10lJJ9GhBgAAcAQW080kbMyYMXr55Zc1ffp0SVJ1dbXOPPNMDR06VO+//7727t2rhISENt1r/UFdXZ2ioqJUW1uryMhIX5cDAAD6Ebvdrvz8fO3Zs0eSFBQUpIyMDMXExPi4MgAAAHSFJzmR23MRdu3apTFjxri+jomJ0RdffKF9+/bpjDPOUGNjY9cr7oatW7dq+vTpslqtmjBhgt5++22f1AEAAAaXqqoqrV692hWoxcTEKCcnh0ANAABgkHA7VEtKSlJeXl6bYxEREfrss8/U1NSkc8891+vFuSMgIEBPPvmkbDabPvvsM914441qaGjwSS0AAGDgczgcstlsstlsamlpUUBAgLKzs3XUUUcpMDDQ1+UBAACgl7gdqv3sZz/TSy+9dNjx8PBwffrppwoJCfFqYe6Kj4/X0UcfLUkaOXKkYmJiXO8YAwAAeNPu3bu1atUqVVVVSZKio6N17LHHKi4uzseVAQAAoLe5Hardf//9uu+++9o9FxERoc8//1z//ve/PS7gq6++0uzZs5WQkCCLxaL33nvvsGtyc3OVnJyskJAQ/eQnP9GqVavaHWvt2rVyOp0aPXq0x3UAAAB0xDAMFRQUaNOmTbLb7fL391dGRoYmTpzo2rAJAAAAg4vboVp0dLTGjRvX4fmIiAhNmzbN4wIaGho0ceJE5ebmtnv+zTff1M0336x7771X69at08SJEzVz5kzXO8St9uzZoyuuuEJ/+9vfPK4BAACgI7W1tVq1apUqKyslSVFRUcrJyVFCQoKPKwMAAIAvub37p3Rgx88XX3xRK1eu1I4dOyQdmHI5depUzZs3TyNGjOheMRaL3n33XZ1zzjmuYz/5yU+Uk5OjZ555RtKBd4pHjx6t66+/Xrfffrskaf/+/TrttNN0zTXX6H/+5386vY/9+/dr//79rq/r6uo0evRodv8EAABtGIahkpISbdu2TZLk5+enlJQUJSYmymKx+Lg6AAAA9IQe2f1z9erVysjI0NNPP62oqCj99Kc/1U9/+lNFRUXp6aefVlZWltasWdPt4g9mt9u1du1azZgx478F+/lpxowZWrlypSTJNE3NmzdPp5xyyhEDNUn6/e9/r6ioKNcHU0UBAMCh9u3bpzVr1rgCtfDwcE2ZMkWjR48mUAMAAIAkKcDdC6+//npdcMEF+stf/nLYL5OmaepXv/qVrr/+elfY5Q3V1dVyOp2HLf4bFxen/Px8SdKKFSv05ptvasKECa712F599VWNHz++3THvuOMO3Xzzza6vWzvVAAAADMPQli1bVF5eLtM0ZbFYNGbMGCUlJcnPz+33IgEAADAIuB2qbdy4UYsWLWr33VmLxaKbbrpJkyZN8mpx7jjxxBNlGIbb1wcHBys4OLgHKwIAAP1RQ0ODbDabGhoaJElhYWGyWq0KDw/3cWUAAADoi9wO1UaOHKlVq1YpKyur3fOrVq3y+nbyMTEx8vf3186dO9sc37lzp0aOHOnV+wIAAIOTYRiqqKhQWVmZDMOQxWJRYmKiUlJS6E4DAABAh9wO1RYuXKhrr71Wa9eu1amnnuoK0Hbu3KklS5bo+eef12OPPebV4oKCgjR58mQtWbLEtXmBYRhasmSJfvOb33j1vgAAwODT3Nwsm82muro6SVJoaKiysrIUFRXl48oAAADQ17kdqs2fP18xMTF64okn9Oyzz8rpdEqS/P39NXnyZC1atEgXXnihxwXU19eruLjY9XVpaak2bNigYcOGKSkpSTfffLOuvPJKTZkyRccee6yefPJJNTQ06KqrrvL4vgAAAFpt27ZNmzdvdv1OEx8fr/T0dLrTAAAA4BaLaZqmpzdqaWlRdXW1pANTNAMDA7tcwNKlS3XyyScfdvzKK6/UokWLJEnPPPOM/vjHP2rHjh06+uij9fTTT+snP/lJl+/zYJ5slQoAAPo/u92uvLw81dTUSDqw3mpWVpaio6N9XBkAAAB8zZOcqEuh2kCQm5ur3NxcOZ1OFRYWEqoBADAI7NixQ8XFxXI4HJIO7Cienp6ugAC3m/cBAAAwgPVaqPbII4/oV7/6lYYOHdrVIXyOTjUAAAY+u92ugoIC7d69W9KBdVszMjIUExPj48oAAADQl3iSE3Vr0ZCHH35Ye/bs6c4QAAAAPWrXrl1avXq1K1CLiYnRlClTCNQAAADQLd2a6zBIZ44CAIB+wOFwqLCwUFVVVZKkgIAApaenu3YwBwAAALqj2wuIWCwWb9QBAADgNTU1NcrPz9f+/fslSdHR0crOzlZQUJCPKwMAAMBA4VGodvLJJ7cJ0ZqamnTppZcqNDTUdezf//6396oDAADwgGEYKioqUmVlpSTJ399fY8eOVUJCgo8rAwAAwEDjUag2b9481+emaWrlypWaO3euYmNjvV0XAACAR2pra5WXl6fm5mZJUmRkpKxWq0JCQnxcGQAAAAaibu3+GRERoY0bNyo1NdWbNfUqdv8EAKB/MwxDmzdvVkVFhSTJz89PKSkpGjVqlPz8urUnEwAAAAYZT3Kibq2pxnpqAADAl+rr62Wz2dTY2ChJCg8Pl9VqVVhYmI8rAwAAwEA3aHf/zM3NVW5urpxOp69LAQAAHjIMQ1u2bFF5eblM05TFYlFSUpLGjBlDdxoAAAB6Rbemf27dulUJCQny9/f3Zk29iumfAAD0L42NjbLZbKqvr5ckhYWFyWq1Kjw83MeVAQAAoL/rtemfo0eP7s7NAQAA3GYYhioqKlRWVibDMGSxWDRq1CilpqbSnQYAAIBe16XfQEtKSnTXXXfpkksuUVVVlSTp448/1o8//ujV4gAAACSpublZGzZs0ObNm2UYhkJDQ3X00UcrLS2NQA0AAAA+4fFvocuWLdP48eP13XffafHixa6pFxs3btS9997r9QIBAMDgtm3bNq1evVp1dXWSpPj4eOXk5CgqKsrHlQEAAGAw8zhUu/322/W73/1On3/+uYKCglzHTznlFH377bdeLQ4AAAxedrtdGzduVFFRkZxOp4KDgzVx4kRlZmbSnQYAAACf83hNtU2bNun1118/7HhsbKyqq6u9UhQAABjcduzYoeLiYjkcDkkHfs/IyMhQQEC3loMFAAAAvMbj30yHDh2qyspKpaSktDm+fv16jRo1ymuFAQCAwcdut6ugoEC7d++WJAUFBSkjI0MxMTE+rgwAAABoy+O5ExdffLFuu+027dixQxaLRYZhaMWKFVq4cKGuuOKKnqgRAAAMAtXV1Vq9erUrUIuJidGUKVMI1AAAANAnedyp9vDDD2v+/PkaPXq0nE6nrFarnE6nLr30Ut111109UWOPyM3NVW5urpxOp69LAQBgUHM4HCosLHTtKB4QEKC0tDSNHDnSx5UBAAAAHbOYpml25Ybl5eX64YcfVF9fr0mTJik9Pd3btfWKuro6RUVFqba2VpGRkb4uBwCAQaWmpkb5+fnav3+/JCk6OlrZ2dltNkMCAAAAeosnOVGXV/tNSkpSUlJSV28OAAAGMcMwVFRUpMrKSkmSv7+/xo4dq4SEBB9XBgAAALjHo1DNZrPpmWee0cqVK7Vjxw5J0siRI3X88cfrN7/5jaxWa48UCQAABo7a2lrl5eWpublZkhQZGSmr1aqQkBAfVwYAAAC4z+1Q7eOPP9Y555yjY445RnPmzFFcXJwkaefOnfr88891zDHH6J///KdmzpzZY8UCAID+yzAMbd68WRUVFZIkPz8/JScnKzExUX5+Hu+dBAAAAPiU22uqTZw4UXPmzNEDDzzQ7vn77rtPixcv1vfff+/VAnsaa6oBANDz6uvrZbPZ1NjYKEkKDw+X1WpVWFiYjysDAAAA/suTnMjtUC00NFQbNmxQZmZmu+cLCgp09NFHq6mpyfOKfYhQDQCAnmMYhrZs2aLy8nKZpimLxaKkpCSNGTOG7jQAAAD0OT2yUUFycrI+/PDDDkO1Dz/8UGPGjPGsUgAAMGA1NjbKZrOpvr5ekhQWFiar1arw8HAfVwYAAAB0n9uh2gMPPKBLL71US5cu1YwZM9qsqbZkyRJ98sknev3113usUAAA0D8YhqGKigqVlZXJMAxJUmJiolJTU+lOAwAAwIDhdqh2wQUXaNSoUXr66af1+OOPH7b759KlS3X88cf3WKEAAKDva25uls1mU11dnSQpJCRE2dnZioqK8nFlAAAAgHe5HapJ0tSpUzV16tSeqgUAAPRj27dvV0lJiZxOpyQpPj5e6enpdKcBAABgQPIoVBtIcnNzlZub6/rFHwAAdI3dbldeXp5qamokScHBwcrKylJ0dLSPKwMAAAB6jtu7f0rSRx99pMWLF2vYsGG66qqrlJ2d7TpXU1Oj8847T//+9797pNCewu6fAAB03Y4dO1RcXCyHwyFJio2NVUZGhgICBu37dgAAAOjHPMmJ3J6P8frrr+vss8/Wjh07tHLlSh1zzDF67bXXXOftdruWLVvW9aoBAEC/YbfbtWnTJuXn58vhcCgwMFBHHXWUrFYrgRoAAAAGBbd/6/3jH/+oP/3pT7rhhhskSW+99ZauvvpqNTc36+c//3mPFQgAAPqW6upqFRYWym63S5KGDx+uzMxMBQUF+bgyAAAAoPe4HaoVFRVp9uzZrq8vvPBCjRgxQmeffbZaWlp07rnn9kiBAACgb3A4HCosLFRVVZUkKSAgQGlpaRo5cqSPKwMAAAB6n9uhWmRkpHbu3KmUlBTXsZNPPln/+te/dNZZZ6mioqJHCgQAAL5XU1Oj/Px87d+/X5IUHR2t7OxsutMAAAAwaLkdqh177LH6+OOPddxxx7U5Pm3aNH3wwQc666yzvF4cAADwLcMwVFRUpMrKSkmSv7+/UlNTNWrUKB9XBgAAAPiW26HaTTfdpG+++abdc9OnT9cHH3ygV155xWuFAQAA36qtrVV+fr6ampokHehat1qtCgkJ8XFlAAAAgO9ZTNM0fV2EL3myVSoAAIOBYRjavHmztm3bJtM05efnp+TkZCUmJsrPz+2NwwEAAIB+x5OcqFt73re0tKisrEyxsbGKiorqzlAAAKAPqK+vl81mU2NjoyQpPDxcVqtVYWFhPq4MAAAA6Fvcfrv50UcfdU3/cDqdWrhwocLDw5WVlaWYmBhdffXVamlp6bFCAQBAzzEMQ6WlpVq7dq0aGxtlsVg0ZswYHXPMMQRqAAAAQDvcDtXuuOMO7du3T5L0xBNP6MUXX9Rf/vIXbdq0SYsWLdKHH36oJ554oscKBQAAPaOxsVHr1q3Tli1bZJqmwsLCNHnyZKWkpDDdEwAAAOiA29M/D1567fXXX9cjjzyiq666SpJktVolSb///e916623ernEnpGbm6vc3Fw5nU5flwIAgE8YhqGKigqVlZXJMAxJUmJiolJTUwnTAAAAgCNwe6MCPz8/7dy5UyNGjFBMTIyWLl2qo446ynW+tLRURx11lBoaGnqs2J7ARgUAgMGoublZNptNdXV1kqSQkBBlZ2ezRioAAAAGtR7bqOD5559XeHi4goKCtGfPnjbn9u3bp+DgYM+rBQAAvWr79u0qKSlxdWvHx8crPT2d7jQAAADAA26HaklJSXr++eclScHBwVq3bp1++tOfus5/+eWXyszM9H6FAADAK+x2u/Ly8lRTUyNJCgoKUlZWloYNG+bjygAAAID+x+1QraysrNPzP/nJT9qEbAAAoO/YuXOnioqK5HA4JEmxsbHKyMhQQIBHTesAAAAA/sNrv0kfd9xx3hoKAAB4id1uV0FBgXbv3i1JCgwMVGZmpmJiYnxcGQAAANC/eS1Uq6ysVEtLi5KSkrw1JAAA6Ibq6moVFhbKbrdLkoYPH67MzEwFBQX5uDIAAACg//NaqHbKKaeosLDQtegxAADwDYfDocLCQlVVVUmSAgIClJaWppEjR/q4MgAAAGDg8Fqo9sorr6ixsdFbwwEAgC6oqalRfn6+9u/fL0mKjo5WdnY23WkAAACAl3ktVMvJyfHWUAAAwEOGYaioqEiVlZWSJH9/f6WmpmrUqFE+rgwAAAAYmNjyCwCAfq62tlb5+flqamqSJEVGRspqtSokJMTHlQEAAAADl9dCtY0bN+qYY45hTTUAAHqJYRgqLS1VRUWFTNOUn5+fkpOTlZiYKD8/P1+XBwAAAAxoXu1UM03Tm8MBAIAO1NfXy2azudYzHTJkiKxWq4YMGeLjygAAAIDBwe1Qbe7cuZ2er62tlcVi6XZBAACgY4ZhaMuWLSovL5dpmrJYLEpKStKYMWPoTgMAAAB6kduh2gcffKDTTjtNcXFx7Z5n2icAAD2rsbFRNptN9fX1kqSwsDBlZ2crIiLCx5UBAAAAg4/boVp2drbOO+88/fznP2/3/IYNG/Svf/3La4UBAIADDMPQtm3bVFpaKsMwJEmJiYlKTU2lOw0AAADwEbd/E588ebLWrVvX4fng4GAlJSV5pajekJubK6vVqpycHF+XAgBAh5qbm7Vx40aVlJTIMAyFhIRo0qRJSktLI1ADAAAAfMhiurm7wP79++V0OhUWFtbTNfWquro6RUVFqba2VpGRkb4uBwAAl+3bt6ukpMS1xEJ8fLzS09MJ0wAAAIAe4klO5Pb0z+Dg4G4XBgAAjsxutysvL081NTWSpKCgIGVmZmr48OE+rgwAAABAq2691X3mmWeqsrLSW7UAADDo7dy5U6tWrXIFarGxsTr22GMJ1AAAAIA+xu1OtfZ89dVXampq8lYtAAAMWg6HQ/n5+aqurpYkBQYGKj09XbGxsT6uDAAAAEB7uhWqAQCA7quurlZhYaHsdrskafjw4crMzFRQUJCPKwMAAADQkW6FamPGjFFgYKC3agEAYFBxOBwqLCxUVVWVJCkgIEBpaWkaOXKkjysDAAAAcCTdCtV++OEHb9UBAMCgUlNTo/z8fO3fv1+SFB0drezsbLrTAAAAgH6C6Z8AAPQiwzBUVFTk2ujH399fqampGjVqlI8rAwAAAOCJLu3+GRkZqc2bNx/2OQAA6Fhtba1Wr17tCtQiIyOVk5NDoAYAAAD0Q13qVDNNs93PAQDA4QzDUGlpqSoqKmSapvz8/JScnKzExET5+XXp/S0AAAAAPsb0TwAAelB9fb1sNpsaGxslSUOGDJHVatWQIUN8XBkAAACA7iBUAwCgBxiGofLycm3ZskWmacpisSgpKUljxoyhOw0AAAAYAAjVAADwssbGRtlsNtXX10uSQkNDZbVaFRER4ePKAAAAAHgLoRoAAF60detWlZaWyjAMSdKoUaM0duxYutMAAACAAYZQDQAAL2hublZeXp5qa2slSSEhIcrOzlZUVJSPKwMAAADQEwjVAADopu3bt6ukpEROp1OSFB8fr/T0dLrTAAAAgAGsS6Ha5ZdfrsjIyMM+BwBgMLHb7crLy1NNTY0kKSgoSJmZmRo+fLiPKwMAAADQ0yymaZq+LsKX6urqFBUVpdraWsJBAIDbdu7cqaKiIjkcDknSiBEjlJmZqYAAmsABAACA/sqTnMjjeSkPPPCAGhsbDzve1NSkBx54wNPhAADoVxwOh3744Qfl5eXJ4XAoMDBQVqtV48aNI1ADAAAABhGPO9X8/f1VWVmp2NjYNsd3796t2NhY13oyfV1ubq5yc3PldDpVWFhIpxoA4Iiqq6tVWFgou90uSRo2bJiysrIUFBTk48oAAAAAeIMnnWoev6VumqYsFsthxzdu3Khhw4Z5OpzPzJ8/X/Pnz3c9WQAAdMThcKioqEg7d+6UJAUEBCgtLU0jR470cWUAAAAAfMXtUC06OloWi0UWi0UZGRltgjWn06n6+nr96le/6pEiAQDwlZqaGuXn52v//v2SpKFDh8pqtdKdBgAAAAxybodqTz75pEzT1NVXX63777+/TXdXUFCQkpOTdfzxx/dIkQAA9DbDMFRcXKzt27dLOrD8QWpqqkaNGuXjygAAAAD0BW6HaldeeaUkKSUlRSeccAKLMQMABqy6ujrl5eWpqalJkhQRESGr1arQ0FAfVwYAAACgr/B4989p06Zpy5Ytuuuuu3TJJZeoqqpKkvTxxx/rxx9/9HqBAAD0FsMwVFJSovXr16upqUl+fn5KTU3VpEmTCNQAAAAAtOFxqLZs2TKNHz9e3333nRYvXqz6+npJBzYquPfee71eIAAAvaG+vl5r167V1q1bZZqmhgwZosmTJyspKUl+fh7/dwkAAABggPP4VcLtt9+u3/3ud/r888/bLNJ8yimn6Ntvv/VqcQAA9DTDMFRWVqa1a9eqoaFBFotFSUlJmjx5soYMGeLr8gAAAAD0UR4vjLZp0ya9/vrrhx2PjY1VdXW1V4oCAKA3NDY2ymazubquQ0NDZbVaFRER4ePKAAAAAPR1HodqQ4cOVWVlpVJSUtocX79+PTuiAQD6ja1bt6q0tFSGYUiSRo0apbFjxzLVEwAAAIBbPA7VLr74Yt122216++23ZbFYZBiGVqxYoYULF+qKK67oiRoBAPCa5uZm5eXlqba2VpIUEhKi7OxsRUVF+bgyAAAAAP2Jx6Haww8/rPnz52v06NFyOp2yWq1yOp269NJLddddd/VEjQAAeEVlZaWKi4vldDolSfHx8UpPT6c7DQAAAIDHLKZpml254datW7Vp0ybV19dr0qRJSk9P93ZtvaKurk5RUVGqra1VZGSkr8sBAPQAu92u/Px87dmzR5IUFBSkzMxMDR8+3MeVAQAAAOhLPMmJPO5UazV69GhXt9qmTZtUU1Oj6Ojorg4HAECPqKqqUmFhoRwOhyRpxIgRyszMVEBAl/8LBAAAAAB5PN/lxhtv1AsvvCBJcjqdmjZtmo455hiNHj1aS5cu9XZ9AAB0icPh0I8//iibzSaHw6HAwEBZrVaNGzeOQA0AAABAt3kcqr3zzjuaOHGiJOmDDz7Q5s2blZ+fr5tuukl33nmn1wsEAMBT1dXVWrVqlXbt2iVJGjZsmHJychQbG+vjygAAAAAMFB6HatXV1Ro5cqQk6aOPPtKFF16ojIwMXX311dq0aZPXCwQAwF0Oh0N5eXn64YcfZLfbFRAQoKysLE2YMEFBQUG+Lg8AAADAAOLx/Je4uDjZbDbFx8frk08+0XPPPSdJamxslL+/v9cLBADAHTU1NcrPz9f+/fslSUOHDpXVaiVMAwAAANAjPA7VrrrqKl144YWKj4+XxWLRjBkzJEnfffedsrKyvF4gAACdMQxDxcXF2r59uyTJ399fqampGjVqlI8rAwAAADCQeRyq3XfffRo/frzKy8t1wQUXKDg4WNKBFzG333671wsEAKAjdXV1ysvLU1NTkyQpIiJCVqtVoaGhPq4MAAAAwEDnVqg2bNgwFRYWKiYmRldffbWeeuopRUREtLnmyiuv7JECAQA4lGEYKi0tVUVFhUzTlMViUUpKihITE+Xn5/FyoQAAAADgMbdeedjtdtXV1UmSXn75ZTU3N/doUQAAdKS+vl5r167V1q1bZZqmhgwZoilTpigpKYlADQAAAECvcatT7fjjj9c555yjyZMnyzRN3XDDDR1OrXnxxRe9WiAAANKB7rTy8nJt2bLF1Z2WmJiolJQUwjQAAAAAvc6tUO3//b//pyeeeEIlJSWSpNraWrrVAAC9pqmpSTabTfv27ZMkhYaGymq1HrYUAQAAAAD0FotpmqYnN0hJSdGaNWs0fPjwnqqpV9XV1SkqKkq1tbWKjIz0dTkAgENs3bpVpaWlMgxDkpSQkKC0tDS60wAAAAB4nSc5kccbFZx88skKCgrySqEAAHSkublZeXl5qq2tlSSFhIQoKytLQ4cO9W1hAAAAACA2KgAA9EGVlZVavXq1K1AbOXKkpkyZQqAGAAAAoM9gowIAQJ9ht9uVn5+vPXv2SJKCgoKUmZk5YJYcAAAAADBweLxRgcViGRAbFeTm5io3N1dOp9PXpQAAJFVVVamoqEgtLS2SpBEjRigzM1MBAW79VwUAAAAAvYqNCtioAAB8yuFwqKCgQLt27ZIkBQYGKj09XbGxsT6uDAAAAMBg4/WNCg5WWlra5cIAADjY7t27VVBQILvdLunAxjhZWVlsiAMAAACgz3Nro4JDLVu2TLNnz1ZaWprS0tJ09tlna/ny5d6uDQAwQDkcDuXl5WnTpk2y2+3y9/dXZmamJkyYQKAGAAAAoF/wOFT7f//v/2nGjBkKCwvTDTfc4Nq04NRTT9Xrr7/eEzUCAAaQmpoarV69Wjt37pQkDR06VDk5OYqPj/dxZQAAAADgPo/XVMvOzta1116rm266qc3xP/3pT3r++eeVl5fn1QJ7GmuqAUDvMAxDxcXF2r59uyTJz89PY8eO1ahRo3xcGQAAAAAc4ElO5HGn2ubNmzV79uzDjp999tmstwYAaNe+ffu0evVqV6AWERGhnJwcAjUAAAAA/ZbHGxWMHj1aS5YsUVpaWpvjX3zxhUaPHu21wgAA/Z9hGCotLVVFRYVM05TFYlFycrJGjx4tP78uLesJAAAAAH2Cx6Hab3/7W91www3asGGDpk6dKklasWKFFi1apKeeesrrBQIA+qeGhgbZbDY1NDRIkoYMGSKr1aohQ4b4uDIAAAAA6D6PQ7XrrrtOI0eO1OOPP6633npL0oF11t58803NmTPH6wUCAPoXwzBUXl6uLVu2uLrTEhMTlZKSQncaAAAAgAHD440KBho2KgAA72lqapLNZtO+ffskSaGhobJarYqIiPBxZQAAAABwZJ7kRG51qrV2GgAA0JGKigpt3rxZhmFIkhISEpSWlkZ3GgAAAIABya1XOuPGjdM//vEP2e32Tq8rKirSddddp0ceecQrxQEA+r7m5matX79excXFMgxDISEhmjhxojIyMgjUAAAAAAxYbnWq/fnPf9Ztt92mX//61zrttNM0ZcoUJSQkKCQkRDU1NbLZbPr666/1448/6je/+Y2uu+66nq4bANAHVFZWqri4WE6nU5I0cuRIpaWlKSDA4yU7AQAAAKBf8WhNta+//lpvvvmmli9fri1btqipqUkxMTGaNGmSZs6cqcsuu0zR0dE9Wa/XsaYaAHjObrcrPz9fe/bskSQFBQUpMzNTw4cP93FlAAAAANB1nuREbFRAqAYAHqmqqlJRUZFaWlokSSNGjFBmZibdaQAAAAD6Pa9vVAAAgMPhUEFBgXbt2iVJCgwMVHp6umJjY31cGQAAAAD0PkI1AMAR7d69WwUFBa4Na4YNG6asrCwFBQX5uDIAAAAA8A1CNQBAhxwOh4qKirRz505Jkr+/v9LS0hQfH+/jygAAAADAtwjVAADtqqmpUUFBgZqbmyVJUVFRys7OVkhIiI8rAwAAAADfI1QDALRhGIaKi4u1fft2SZKfn59SU1OVmJjo48oAAAAAoO/w68qNSkpKdNddd+mSSy5RVVWVJOnjjz/Wjz/+6NXiAAC9a9++fVq9erUrUIuIiFBOTg6BGgAAAAAcwuNQbdmyZRo/fry+++47LV68WPX19ZKkjRs36t577/V6gQCAnmcYhkpKSrRu3To1NTXJYrEoOTlZkyZNUmhoqK/LAwAAAIA+x+NQ7fbbb9fvfvc7ff755212fTvllFP07bfferU4AEDPa2ho0Nq1a7V161aZpqkhQ4ZoypQpSk5Olp9flxqaAQAAAGDA83hNtU2bNun1118/7HhsbKyqq6u9UhQAoOcZhqHy8nJt2bJFpmnKYrEoMTFRKSkphGkAAAAAcAQeh2pDhw5VZWWlUlJS2hxfv369Ro0a5bXCAAA9p6mpSTabTfv27ZMkhYaGKjs7W5GRkT6uDAAAAAD6B49bES6++GLddttt2rFjhywWiwzD0IoVK7Rw4UJdccUVPVEjAMCLtm3bptWrV7sCtYSEBOXk5BCoAQAAAIAHPO5Ue/jhhzV//nyNHj1aTqdTVqtVTqdTl156qe66666eqBEA4AXNzc3Kz8/X3r17JUnBwcHKyspSdHS0bwsDAAAAgH7IYpqm2ZUblpeX64cfflB9fb0mTZqk9PR0b9fWK+rq6hQVFaXa2lq6NAAMWJWVlSouLpbT6ZQkxcXFKT09XQEBHr+3AgAAAAADlic5UZdfTSUlJSkpKamrNwcA9AK73a78/Hzt2bNHkhQUFKTMzEwNHz7cx5UBAAAAQP/mcah29dVXd3r+xRdf7HIxAADvqaqqUlFRkVpaWiRJI0aMUGZmJt1pAAAAAOAFHr+yqqmpafN1S0uLfvjhB+3du1ennHKK1woDAHSNw+FQQUGBdu3aJUkKDAxUenq6YmNjfVwZAAAAAAwcHodq77777mHHDMPQddddp7Fjx3qlKABA1+zevVsFBQWy2+2SpGHDhikrK0tBQUE+rgwAAAAABpYub1RwqIKCAk2fPl2VlZXeGK7XsFEBgIHA4XCouLhYO3bskCT5+/srLS1N8fHxPq4MAAAAAPqPXtmo4FAlJSVyOBzeGg4A4Ka9e/cqPz9fzc3NkqSoqChlZ2crJCTEx5UBAAAAwMDlcah28803t/naNE1VVlbqww8/1JVXXum1wgAAnTMMQ8XFxdq+fbskyc/PT6mpqUpMTPRxZQAAAAAw8Hkcqq1fv77N135+fhoxYoQef/zxI+4MCgDwjn379slms6mpqUmSFBERIavVqtDQUB9XBgAAAACDg8eh2pdfftkTdQAA3GAYhkpLS1VRUSHTNGWxWDRmzBglJSXJz8/P1+UBAAAAwKDhtTXVAAA9q6GhQTabTQ0NDZKkIUOGKDs7W+Hh4T6uDAAAAAAGH7dCtUmTJslisbg14Lp167pVEACgLcMwtHXrVpWVlbm60xITE5WSkkJ3GgAAAAD4iFuh2jnnnNPDZQAA2tPU1CSbzaZ9+/ZJkkJDQ5WdnX3ErZ0BAAAAAD3LYpqm6esifKmurk5RUVGqra3lRSqAPmXbtm3avHmznE6nJCkhIUFpaWl0pwEAAABAD/EkJ2JNNQDoY+x2u2w2m/bu3StJCg4OVlZWlqKjo31bGAAAAADAxeN2B6fTqccee0zHHnusRo4cqWHDhrX58IVzzz1X0dHROv/8831y/wDgLZWVlVq1apUrUIuLi1NOTg6BGgAAAAD0MR6Havfff7/+9Kc/6aKLLlJtba1uvvlmzZ07V35+frrvvvt6oMQjW7BggV555RWf3DcAeIPdbtf333+vgoICORwOBQUFafz48crOzlZAAE3FAAAAANDXeByqvfbaa3r++ef129/+VgEBAbrkkkv097//Xffcc4++/fbbnqjxiKZPn66IiAif3DcAdFdVVZVWr16tPXv2SJJGjBihY489VsOHD/dxZQAAAACAjngcqu3YsUPjx4+XJIWHh6u2tlaSdNZZZ+nDDz/0uICvvvpKs2fPVkJCgiwWi957773DrsnNzVVycrJCQkL0k5/8RKtWrfL4fgCgr3E4HPrxxx9ls9nU0tKiwMBAWa1WjRs3ju40AAAAAOjjPA7VEhMTVVlZKUkaO3asPvvsM0nS6tWrFRwc7HEBDQ0NmjhxonJzc9s9/+abb+rmm2/Wvffeq3Xr1mnixImaOXOmqqqqPL4vSdq/f7/q6urafABAb9u9e7dWrVqlXbt2SZKGDRumnJwcxcbG+rgyAAAAAIA7PA7Vzj33XC1ZskSSdP311+vuu+9Wenq6rrjiCl199dUeF3D66afrd7/7nc4999x2z//pT3/SNddco6uuukpWq1V/+ctfFBYWphdffNHj+5Kk3//+94qKinJ9jB49ukvjAEBXOJ1O5efna9OmTbLb7fL391dmZqYmTJigoKAgX5cHAAAAAHCTx/OLHnnkEdfnF110kcaMGaNvvvlG6enpmj17tleLs9vtWrt2re644w7XMT8/P82YMUMrV67s0ph33HGHbr75ZtfXdXV1BGsAekVtba3y8vLU3NwsSYqKilJ2drZCQkJ8XBkAAAAAwFMeh2rNzc1tXgAed9xxOu6447xaVKvq6mo5nU7FxcW1OR4XF6f8/HzX1zNmzNDGjRvV0NCgxMREvf322zr++OPbHTM4OLhL01QBoKsMw1BxcbG2b98u6cCbAykpKQT6AAAAANCPeRyqxcbG6txzz9Xll1+uU089VX5+Hs8g9bovvvjC1yUAQLv27dsnm82mpqYmSQc2eLFarQoLC/NxZQAAAACA7vA4EXv55ZfV2NioOXPmaNSoUbrxxhu1Zs2anqhNMTEx8vf3186dO9sc37lzp0aOHNkj9wkA3mAYhjZv3qx169apqalJFotFycnJOuaYYwjUAAAAAGAA6NJGBW+//bZ27typhx9+WDabTccdd5wyMjL0wAMPeLW4oKAgTZ482bUxgnTgheqSJUs6nN4JAL7W0NCgtWvXqry8XKZpKiwsTJMnT1ZycnKf6O4FAAAAAHRfl1/dRURE6KqrrtJnn32m77//XkOGDNH999/v8Tj19fXasGGDNmzYIEkqLS3Vhg0bVF5eLkm6+eab9fzzz+vll19WXl6errvuOjU0NOiqq67qaukA0CMMw1B5ebnWrl2rhoYGWSwWjR49WlOmTFF4eLivywMAAAAAeJHHa6q1am5u1vvvv6/XX39dn3zyieLi4nTLLbd4PM6aNWt08sknu75u3Znzyiuv1KJFi3TRRRdp165duueee7Rjxw4dffTRrvsDgL6iqalJNptN+/btkySFhoYqOztbkZGRPq4MAAAAANATLKZpmp7c4NNPP9Xrr7+u9957TwEBATr//PN12WWX6ac//WlP1dgjcnNzlZubK6fTqcLCQtXW1vLiF0CXbNu2TZs3b5bT6ZQkJSQkKC0tjameAAAAANDP1NXVKSoqyq2cyONQLSwsTGeddZYuu+wynXHGGQoMDOxWsb7myZMFAAez2+2y2Wzau3evJCk4OFhZWVmKjo72bWEAAAAAgC7xJCfyePrnzp07FRER0eXiAGAg2LFjh4qLi+VwOCRJcXFxSk9PV0BAl2fVAwAAAAD6EY9f/RGoARjM7Ha78vPztWfPHkkHdinOyMhQTEyMjysDAAAAAPQmWioAwE1VVVUqKipSS0uLJCkmJkZZWVl0pwEAAADAIMQrQQA4AofDoYKCAu3atUuSFBAQoPT0dHYhBgAAAIBBjFANADqxe/duFRQUyG63S5KGDRumrKwsBQUF+bgyAAAAAIAvdTlUKy4uVklJiX76058qNDRUpmnKYrF4szYA8BnDMFRUVKTKykpJkr+/v8aOHauEhAQfVwYAAAAA6As8DtV2796tiy66SP/+979lsVhUVFSk1NRU/fznP1d0dLQef/zxnqjT63Jzc5Wbmyun0+nrUgD0MbW1tcrLy1Nzc7MkKSoqStnZ2QoJCfFxZQAAAACAvsLP0xvcdNNNCggIUHl5ucLCwlzHL7roIn3yySdeLa4nzZ8/XzabTatXr/Z1KQD6iNbutPXr16u5uVl+fn4aO3asJk2aRKAGAAAAAGjD4061zz77TJ9++qkSExPbHE9PT9eWLVu8VhgA9KZ9+/bJZrOpqalJkhQeHi6r1drmzQMAAAAAAFp5HKo1NDS0+yJzz549Cg4O9kpRANBbDMNQWVmZtm7d6lobcsyYMUpKSpKfn8fNvAAAAACAQcLjV4wnnXSSXnnlFdfXFotFhmHo0Ucf1cknn+zV4gCgJzU0NGjt2rUqLy+XaZoKCwvT5MmTlZycTKAGAAAAAOiUx51qjz76qE499VStWbNGdrtdt956q3788Uft2bNHK1as6IkaAcCrDMNQRUWFysrKZBiGLBaLEhMTlZKSQpgGAAAAAHCLx6HaUUcdpcLCQj3zzDOKiIhQfX295s6dq/nz5ys+Pr4nagQAr2lubpbNZlNdXZ0kKTQ0VFlZWYqKivJxZQAAAACA/sRimqbp6yJ8qa6uTlFRUaqtrVVkZKSvywHQg7Zt26bNmzfL6XRKkuLj45Wenk53GgAAAABAkmc5kcedamlpabr88st12WWXKT09vctFAkBvsdvtstls2rt3ryQpODhYWVlZio6O9m1hAAAAAIB+y+P2jPnz5+vDDz9UZmamcnJy9NRTT2nHjh09UVuPys3NldVqVU5Ojq9LAdCDduzYoVWrVrkCtbi4OOXk5BCoAQAAAAC6pcvTPwsLC/Xaa6/pjTfeUGlpqU4++WRdfvnluuKKK7xdY49i+icwMNntduXn52vPnj2SpKCgIGVkZCgmJsbHlQEAAAAA+ipPciKvrKn27bff6rrrrtP333/vWquovyBUAwaeqqoqFRUVqaWlRZIUExOjzMxMBQYG+rgyAAAAAEBf1qNrqh1s1apVev311/Xmm2+qrq5OF1xwQXeGA4BucTgcKigo0K5duyRJAQEBSk9PV1xcnI8rAwAAAAAMNB6HaodO+zzllFP0hz/8QXPnzlV4eHhP1AgAR7R7924VFBTIbrdLkqKjo5Wdna2goCAfVwYAAAAAGIg8DtWysrKUk5Oj+fPn6+KLL6YDBIBPGYahoqIiVVZWSpL8/f01duxYJSQk+LgyAAAAAMBA5nGoVlBQoPT09J6oBQA8Ultbq7y8PDU3N0uSoqKilJ2drZCQEB9XBgAAAAAY6DwO1QjUAPiaYRgqKSnRtm3bJEl+fn5KSUlRYmKiLBaLj6sDAAAAAAwGboVqw4YNU2FhoWJiYhQdHd3pi9Y9e/Z4rTgAONS+ffuUl5enxsZGSVJ4eLisVqvCwsJ8XBkAAAAAYDBxK1R74oknFBER4fqcThAAvc0wDG3ZskXl5eUyTVMWi0VjxoxRUlKS/Pz8fF0eAAAAAGCQsZimafq6CF+qq6tTVFSUamtrFRkZ6etyALSjoaFBNptNDQ0NkqSwsDBZrVZ2HAYAAAAAeJUnOZHH7R3+/v6qqqo67Pju3bvl7+/v6XA+k5ubK6vVqpycHF+XAqADhmGovLxca9euVUNDgywWi0aPHq0pU6YQqAEAAAAAfMrjTjU/Pz/t2LFDsbGxbY5v375dY8eOVVNTk1cL7Gl0qgF9U3Nzs2w2m+rq6iRJoaGhysrKUlRUlI8rAwAAAAAMVJ7kRG7v/vn0009LkiwWi/7+97+36RJxOp366quvlJWV1cWSAeC/tm3bps2bN8vpdEqS4uPjlZ6eztppAAAAAIA+w+1Q7YknnpAkmaapv/zlL22megYFBSk5OVl/+ctfvF8hgEHDbrcrLy9PNTU1kqTg4GBlZWUpOjrax5UBAAAAANCW26FaaWmpJOnkk0/W4sWLeZELwKt27Nih4uJiORwOSVJsbKwyMjIUEOD2P1MAAAAAAPQaj1+tfvnllz1RB4BBym63q6CgQLt375Z0oPM1IyNDMTExPq4MAAAAAICOebxA0Xnnnac//OEPhx1/9NFHdcEFF3ilKACDw65du7R69WpXoBYTE6MpU6YQqAEAAAAA+jyPQ7WvvvpKZ5xxxmHHTz/9dH311VdeKQrAwOZwOGSz2fTjjz+qpaVFAQEBys7O1lFHHaWgoCBflwcAAAAAwBF5PP2zvr6+3Re9gYGBqqur80pRAAauPXv2KD8/X3a7XZIUHR2t7OxswjQAAAAAQL/icafa+PHj9eabbx52/B//+IesVqtXigIw8BiGoYKCAn3//fey2+3y9/dXRkaGJk6cSKAGAAAAAOh3PO5Uu/vuuzV37lyVlJTolFNOkSQtWbJEb7zxht5++22vFwig/6utrVVeXp6am5slSZGRkbJarQoJCfFxZQAAAAAAdI3Hodrs2bP13nvv6eGHH9Y777yj0NBQTZgwQV988YWmTZvWEzUC6KcMw9DmzZtVUVEhSfLz81NKSopGjRolPz+PG2UBAAAAAOgzLKZpmr4uwpfq6uoUFRWl2tpaRUZG+rocYMCor6+XzWZTY2OjJCk8PFxWq1VhYWE+rgwAAAAAgPZ5khN53KkmSXv37tU777yjzZs3a+HChRo2bJjWrVunuLg4jRo1qktF97bc3Fzl5ubK6XT6uhRgQDEMQ1u2bFF5eblM05TFYlFSUpLGjBlDdxoAAAAAYMDwuFPt+++/14wZMxQVFaWysjIVFBQoNTVVd911l8rLy/XKK6/0VK09gk41wHsaGxtls9lUX18vSQoLC5PValV4eLiPKwMAAAAA4Mg8yYk8bhu5+eabNW/ePBUVFbVZZPyMM87QV1995Xm1APo9wzBUXl6uNWvWuAK1xMRETZkyhUANAAAAADAgeTz9c/Xq1frrX/962PFRo0Zpx44dXikKQP/R3Nwsm82muro6SVJoaKiysrIUFRXl48oAAAAAAOg5HodqwcHBrhfPByssLNSIESO8UhSA/mHbtm3avHmza23C+Ph4paens3YaAAAAAGDA8/iV79lnn60HHnhALS0tkiSLxaLy8nLddtttOu+887xeIIC+x263a+PGjSoqKpLT6VRwcLAmTpyozMxMAjUAAAAAwKDg8avfxx9/XPX19YqNjVVTU5OmTZumtLQ0RURE6KGHHuqJGgH0ITt27NCqVatUU1MjSYqNjVVOTo6io6N9XBkAAAAAAL3H4+mfUVFR+vzzz/X111/r+++/V319vY455hjNmDGjJ+oD0EfY7XYVFBRo9+7dkqSgoCBlZGQoJibGx5UBAAAAAND7LKZpmr4uwpc82SoVGKyqq6tVUFDgmvY9fPhwZWZmKigoyMeVAQAAAADgPZ7kRG51qj399NO69tprFRISoqeffrrTa8PDwzVu3Dj95Cc/cb9iAH2Sw+FQYWGhqqqqJEkBAQFKS0vTyJEjfVwZAAAAAAC+5VanWkpKitasWaPhw4crJSWl02v379+vqqoq3XTTTfrjH//otUJ7Cp1qQPtqamqUn5+v/fv3S5Kio6OVnZ1NdxoAAAAAYMDyJCfqkemfn3/+uS699FLt2rXL20N7HaEa0JZhGCoqKlJlZaUkyd/fX2PHjlVCQoKPKwMAAAAAoGd5ffqnp0488UTdddddPTE0gB5UW1urvLw8NTc3S5IiIyNltVoVEhLi48oAAAAAAOhb/LpyoyVLluiss87S2LFjNXbsWJ111ln64osvXOdDQ0O1YMECrxUJoGcZhqHi4mKtX79ezc3N8vPzU2pqqo4++mgCNQAAAAAA2uFxqPbss89q1qxZioiI0IIFC7RgwQJFRkbqjDPOUG5ubk/UCKAH1dfXa82aNaqoqJB0YLORKVOmKCkpSX5+XcrdAQAAAAAY8DxeUy0xMVG33367fvOb37Q5npubq4cffljbtm3zaoE9JTc3V7m5uXI6nSosLGRNNQw6hmFoy5YtKi8vl2maslgsSkpK0pgxYwjTAAAAAACDUo9uVBAeHq4NGzYoLS2tzfGioiJNmjRJ9fX1nlfsQ2xUgMGosbFRNpvN9fc1LCxMVqtV4eHhPq4MAAAAAADf8SQn8rgd5eyzz9a777572PF//vOfOuusszwdDkAvMgxD5eXlWrNmjStQS0xM1JQpUwjUAAAAAADwgFu7fz799NOuz61Wqx566CEtXbpUxx9/vCTp22+/1YoVK/Tb3/62Z6oE0G3Nzc2y2Wyqq6uTJIWEhCg7O1tRUVE+rgwAAAAAgP7HremfKSkp7g1msWjz5s3dLqo3Mf0Tg8H27dtVUlIip9MpSYqPj1d6ejprpwEAAAAAcBBPciK3OtVKS0u9UhiA3mW325WXl6eamhpJUnBwsLKyshQdHe3jygAAAAAA6N/cCtXaU11dLUmKiYnxWjEAvGfnzp0qKiqSw+GQJMXGxiojI0MBAV3+aw8AAAAAAP7Do7lfe/fu1fz58xUTE6O4uDjFxcUpJiZGv/nNb7R3794eKhGAJ+x2uzZt2qS8vDw5HA4FBgbqqKOOktVqJVADAAAAAMBL3H6FvWfPHh1//PHatm2bLrvsMmVnZ0uSbDabFi1apCVLluibb75hWhngQ9XV1SosLJTdbpckDR8+XJmZmQoKCvJxZQAAAAAADCxuh2oPPPCAgoKCVFJSori4uMPO/exnP9MDDzygJ554wutFAuicw+FQYWGhqqqqJEkBAQFKS0vTyJEjfVwZAAAAAAADk9vTP9977z099thjhwVqkjRy5Eg9+uijevfdd71aHIAjq6mp0erVq12BWnR0tI499lgCNQAAAAAAepDbnWqVlZUaN25ch+ePOuoo7dixwytFATgywzBUVFSkyspKSZK/v79SU1M1atQoH1cGAAAAAMDA53aoFhMTo7KyMiUmJrZ7vrS0VMOGDfNaYQA6Vltbq/z8fDU1NUmSIiMjZbVaFRIS4uPKAAAAAAAYHNye/jlz5kzdeeedrgXQD7Z//37dfffdmjVrlleLA9CWYRgqLi7Whg0b1NTUJD8/P6Wmpuroo48mUAMAAAAAoBdZTNM03bmwoqJCU6ZMUXBwsObPn6+srCyZpqm8vDw9++yz2r9/v9asWaPRo0f3dM1eVVdXp6ioKNXW1ioyMtLX5QAdqq+vl81mU2NjoyQpPDxcVqtVYWFhPq4MAAAAAICBwZOcyO3pn4mJiVq5cqV+/etf64477lBrFmexWHTaaafpmWee6XeBGtAfGIahLVu2qLy8XKZpymKxKCkpSWPGjJGfn9vNpgAAAAAAwIvcDtUkKSUlRR9//LFqampUVFQkSUpLS2MtNaCHNDY2ymazqb6+XpIUFhYmq9Wq8PBwH1cGAAAAAMDg5lGo1io6OlrHHnust2sB8B+GYaiiokJlZWUyDEPSgW7R1NRUutMAAAAAAOgDuhSqAeg5zc3NstlsqqurkySFhIQoOztbUVFRPq4MAAAAAAC0IlQD+pDt27erpKRETqdTkhQfH6/09HS60wAAAAAA6GMGbaiWm5ur3NxcV3gB+JLdbldeXp5qamokSUFBQcrMzNTw4cN9XBkAAAAAAGiPxWzdxnOQ8mSrVKAn7Ny5U0VFRXI4HJKk2NhYZWRkKCBg0GbeAAAAAAD4hCc5Ea/aAR9paWlRQUGBqqurJUmBgYHKyMjQiBEjfFwZAAAA0Pc5nU61tLT4ugwA/UxgYKD8/f29MhahGuAD1dXVKiwslN1ulyQNHz5cmZmZCgoK8nFlAAAAQN9mmqZ27NihvXv3+roUAP3U0KFDNXLkSFkslm6NQ6gG9CKHw6HCwkJVVVVJkgICApSWlqaRI0f6uDIAAACgf2gN1GJjYxUWFtbtF8UABg/TNNXY2Oh6TR4fH9+t8QjVgF5SU1Oj/Px87d+/X5IUHR2t7OxsutMAAAAANzmdTlegxqZeALoiNDRUklRVVaXY2NhuTQUlVAN6mGEYKioqUmVlpSTJ399fqampGjVqlI8rAwAAAPqX1jXUwsLCfFwJgP6s9d+QlpYWQjWgr6qtrVV+fr6ampokSZGRkbJarQoJCfFxZQAAAED/xZRPAN3hrX9DCNWAHmAYhjZv3qxt27bJNE35+fkpOTlZiYmJ8vPz83V5AAAAAACgm3h1D3hZfX291qxZo4qKCpmmqSFDhmjy5MlKSkoiUAMAAADQo5KTk/Xkk092a4ylS5fKYrF4bYfVsrIyWSwWbdiwwSvjWSwWvffee14Zy9vceayLFi3S0KFDvXaf7n6/lixZouzsbDmdzm7d36E/Y57+zN133306+uiju1WDJH3yySc6+uijZRhGt8fqKl7hA15iGIZKS0u1du1aNTY2ymKxaMyYMZo8ebKGDBni6/IAAAAA/IfhNFS2tEyb3tiksqVlMpy986J85cqV8vf315lnntkr9+eO6dOn68Ybb2xzbOrUqaqsrFRUVFSv1dFZMHRoaFNZWanTTz+912rztosuukiFhYW9fr+33nqr7rrrrm6tIdae1atX69prr3X7+oULF2rJkiUe3Ud7wd2sWbMUGBio1157zaOxvInpn4AXNDY2ymazqb6+XtKBRQ+zs7MVERHh48oAAAAAHCxvcZ4+WfCJ6irqXMciEyM166lZyp6b3aP3/cILL+j666/XCy+8oO3btyshIaFH76+rgoKCNHLkSF+X0aHu1ma32xUUFOTx7UzTlNPpVEBA96KU0NBQ1w6UveXrr79WSUmJzjvvPK+PPWLECI+uDw8PV3h4uFfue968eXr66af1P//zP14Zz1N0qgHdYJqmtm7dqjVr1rgCtcTERE2ZMoVADQAAAOhj8hbn6a3z32oTqElS3bY6vXX+W8pbnNdj911fX68333xT1113nc4880wtWrSozfnWTq0lS5ZoypQpCgsL09SpU1VQUOC6pqSkRHPmzFFcXJzCw8OVk5OjL774osP7vPrqq3XWWWe1OdbS0qLY2Fi98MILmjdvnpYtW6annnpKFotFFotFZWVl7XaNrVixQtOnT1dYWJiio6M1c+ZM1dTUSDowDe/EE0/U0KFDNXz4cJ111lkqKSnp/pPWgUOnf27dulUXXnihhg4dqmHDhmnOnDkqKytznZ83b57OOeccPfTQQ0pISFBmZqYk6dVXX3W9dhs5cqQuvfRSVVVVuW7X+jx8/PHHmjx5soKDg/X111/LMAw9+uijSktLU3BwsJKSkvTQQw+1qXHz5s06+eSTFRYWpokTJ2rlypWuc+1N//zggw+Uk5OjkJAQxcTE6Nxzz3WdO1Kd7vjHP/6h0047rc2mee78PFVVVWn27NkKDQ1VSkpKu11hh3aRlZeXa86cOQoPD1dkZKQuvPBC7dy503X+0Omfrd+fxx57TPHx8Ro+fLjmz5/v2u13+vTp2rJli2666SbXz2mr2bNna82aNT3689YZQjWgi5qbm7VhwwaVlJTIMAyFhIRo0qRJSktLY+00AAAAoBeYpil7g92tj+a6Zn18w8eS2d5AB/74eMHHaq5rdms802xvoI699dZbysrKUmZmpi6//HK9+OKL7Y5x55136vHHH9eaNWsUEBCgq6++2nWuvr5eZ5xxhpYsWaL169dr1qxZmj17tsrLy9u9z1/84hf65JNPVFlZ6Tr2r3/9S42Njbrooov01FNP6fjjj9c111yjyspKVVZWavTo0YeNs2HDBp166qmyWq1auXKlvv76a82ePdu1NldDQ4NuvvlmrVmzRkuWLJGfn5/OPffcXlnrqqWlRTNnzlRERISWL1+uFStWKDw8XLNmzZLdbnddt2TJEhUUFOjzzz/Xv/71L9dtH3zwQW3cuFHvvfeeysrKNG/evMPu4/bbb9cjjzyivLw8TZgwQXfccYceeeQR3X333bLZbHr99dcVFxfX5jZ33nmnFi5cqA0bNigjI0OXXHKJHA5Hu4/hww8/1LnnnqszzjhD69ev15IlS3Tssce2eYzu1NmZ5cuXa8qUKW2OufPzNG/ePG3dulVffvml3nnnHT377LOdBnqGYWjOnDnas2ePli1bps8//1ybN2/WRRdd1Gl9X375pUpKSvTll1/q5Zdf1qJFi1zB8+LFi5WYmKgHHnjA9XPaKikpSXFxcVq+fLlHz4e3MP0T6ILt27erpKTE9Z9IfHy80tPTCdMAAACAXtTS2KLfh//eO4OZ0r6KffpD1B/cuvyO+jsUNMT9KYQvvPCCLr/8ckkH1oKqra3VsmXLNH369DbXPfTQQ5o2bZqkA2HOmWeeqebmZoWEhGjixImaOHGi69oHH3xQ7777rt5//3395je/Oew+p06dqszMTL366qu69dZbJUkvvfSSLrjgAtf0u6CgIIWFhXU6pfLRRx/VlClT9Oyzz7qOjRs3zvX5oVMKX3zxRY0YMUI2m01HHXWUO0+PS2Ji4mHHGhsbO7z+zTfflGEY+vvf/+7qYHrppZc0dOhQLV26VD/72c8kSUOGDNHf//73NtM+Dw4sU1NT9fTTTysnJ0f19fVtpic+8MADOu200yRJ+/bt01NPPaVnnnlGV155pSRp7NixOvHEE9vUtXDhQtfaeffff7/GjRun4uJiZWVlHfYYHnroIV188cW6//77XccO/j67W2dntmzZcth04yP9PBUWFurjjz/WqlWrlJOTI+nAz3F2dsfTpJcsWaJNmzaptLTUFdC+8sorGjdunFavXu0a51DR0dF65pln5O/vr6ysLJ155plasmSJrrnmGg0bNkz+/v6uTr1DJSQkaMuWLW49D95GAgB4wG63a+PGjSosLJTT6VRQUJDGjx+vzMxMAjUAAAAA7SooKNCqVat0ySWXSJICAgJ00UUX6YUXXjjs2gkTJrg+j4+PlyRXZ1B9fb0WLlyo7OxsDR06VOHh4crLy+uwU0060K320ksvSZJ27typjz/+uE1I447WTrWOFBUV6ZJLLlFqaqoiIyOVnJwsSR3WNW7cONe6WoduOLB8+XJt2LChzUdna89t3LhRxcXFioiIcI05bNgwNTc3t5kSOH78+MPWUVu7dq1mz56tpKQkRUREuMLMQ+s+uMMrLy9P+/fv7/T5kDr/Ph7qSM+vu3V2pqmpqc3UT+nIP095eXkKCAjQ5MmTXbfJysrqdOfSvLw8jR49uk3Ho9Vq1dChQ5WX1/H06nHjxrXZQCE+Pt7tKa6hoaGdBq89iU41wE07d+5UUVGRq2U3NjZWGRkZ3V6kEgAAAEDXBIYF6o76O9y6dstXW/T6Ga8f8bpLP7pUY346xq37dtcLL7wgh8PRJhwyTVPBwcF65pln2uyyGRj433FbO69ap1EuXLhQn3/+uR577DGlpaUpNDRU559/fptpjoe64oordPvtt2vlypX65ptvlJKSopNOOsnt2iUdcVH92bNna8yYMXr++eeVkJAgwzB01FFHdVjXRx995Fov69CxU1JSDgttOnvNVV9fr8mTJ7e71tfBC+gPGTKkzbmGhgbNnDlTM2fO1GuvvaYRI0aovLxcM2fOPKzug2/r7gYDnX0fD9XZmJ7U2ZmYmBjXGnituvLz1FMOfr6kA8+Zu9OH9+zZ4/FmCd5CGgAcgcPhUH5+vqqrqyUd+Muenp6u2NhYH1cGAAAADG4Wi8XtKZhjfzZWkYmRqttW1/66apYDu4CO/dlY+fl7bxaKw+HQK6+8oscff9w1FbHVOeecozfeeEO/+tWv3BprxYoVmjdvnmsR+/r6+jYL8rdn+PDhOuecc/TSSy9p5cqVuuqqq9qcDwoKci1r05EJEyZoyZIlbaYnttq9e7cKCgr0/PPPu8K6r7/+utPxxow5cmjprmOOOUZvvvmmYmNjFRkZ6fbt8vPztXv3bj3yyCOurqo1a9Yc8Xbp6ekKDQ3VkiVL9Itf/KLLdR+s9fk99HvTnToPNWnSJNlstjbHjvTzlJWVJYfDobVr17qmbRYUFLTZwOJQ2dnZ2rp1q7Zu3eqq12azae/evbJarR7X3aqjn9PWjsRJkyZ1eezuYL4a0Inq6mqtWrXKFagNGzZMOTk5BGoAAABAP+Pn76dZT8068IXlkJP/+XrWk7O8GqhJBzYGqKmp0c9//nMdddRRbT7OO++8dqeAdiQ9PV2LFy/Whg0btHHjRl166aVudfP84he/0Msvv6y8vDzXOmCtkpOT9d1336msrEzV1dXtjnfHHXdo9erV+vWvf63vv/9e+fn5eu6551RdXa3o6GgNHz5cf/vb31RcXKx///vfuvnmm91+TN112WWXKSYmRnPmzNHy5ctVWlqqpUuX6oYbblBFRUWHt0tKSlJQUJD+/Oc/a/PmzXr//ff14IMPHvH+QkJCdNttt+nWW2/VK6+8opKSEn377bcefR8Pde+99+qNN97Qvffeq7y8PG3atEl/+MMfulXnoWbOnHlY2Hmkn6fMzEzNmjVLv/zlL/Xdd99p7dq1+sUvftFpZ92MGTM0fvx4XXbZZVq3bp1WrVqlK664QtOmTTtsowRPJCcn66uvvtK2bdtcr88l6dtvv1VwcLCOP/74Lo/dHYRqQDscDofy8vL0ww8/yG63KyAgQFlZWZowYcJh8/ABAAAA9A/Zc7N14TsXKnJU246myMRIXfjOhcqe2/EC7F31wgsvaMaMGW2meLY677zztGbNGn3//fdujfWnP/1J0dHRmjp1qmbPnq2ZM2fqmGOOOeLtZsyYofj4eM2cOfOw9ckWLlwof39/Wa1W19TCQ2VkZOizzz7Txo0bdeyxx+r444/XP//5TwUEBMjPz0//+Mc/tHbtWh111FG66aab9Mc//tGtx+MNYWFh+uqrr5SUlKS5c+cqOztbP//5z9Xc3Nxp59qIESO0aNEivf3227JarXrkkUf02GOPuXWfd999t37729/qnnvuUXZ2ti666CK31/9qz/Tp0/X222/r/fff19FHH61TTjlFq1at6nadB7vsssv0448/qqCgwHXMnZ+nl156SQkJCZo2bZrmzp2ra6+9ttMmE4vFon/+85+Kjo7WT3/6U82YMUOpqal68803Pa75YA888IDKyso0duzYNlM933jjDV122WUKCwvr1vhdZTE93Qd4gKmrq1NUVJRqa2s9ahXFwFVTU6P8/Hzt379f0oFdSLKzswnTAAAAAB9rbm5WaWmpUlJSDlt03ROG01D58nLtq9yniPgIJZ2U5PUOtb6kvr5eo0aN0ksvvaS5c+f6uhz4yC233KK6ujr99a9/9eq48fHxevDBB702HdZd1dXVyszM1Jo1a5SSkuLRbTv7t8STnIg11YD/MAxDRUVFqqyslCT5+/srNTVVo0aN8nFlAAAAALzJz99PydOTfV1GjzMMQ9XV1Xr88cc1dOhQnX322b4uCT5055136tlnn5VhGPLz636I3NjYqBUrVmjnzp0aN26cFyr0TFlZmZ599lmPAzVvIlQDJNXW1io/P19NTU2SpIiICI0bN65b734BAAAAgC+Vl5crJSVFiYmJWrRoUae7aGLgGzp0qP73f//Xa+P97W9/04MPPqgbb7zRJ2uaTZkypVvrtHkDf6MwqBmGodLSUlVUVMg0Tfn5+Sk5OVmJiYleSe4BAAAAwFeSk5M1yFd8Qg+68cYbdeONN/q6DJ8iVMOgVV9fL5vNpsbGRknSkCFDZLVaNWTIEB9XBgAAAAAA+jpCNQw6hmGovLxcW7ZskWmaslgsSkpK0pgxY+hOAwAAAAAAbiFUw6DS2Ngom82m+vp6SVJoaKisVqsiIiJ8XBkAAAAAAOhPCNUwaGzdulWlpaUyDEOSNGrUKI0dO5buNAAAAAAA4LFBG6rl5uYqNzdXTqfT16WghzU3NysvL0+1tbWSpJCQEGVnZysqKsrHlQEAAAAAgP5q0IZq8+fP1/z581VXV0e4MoBt375dJSUlrvA0Pj5e6enpdKcBAAAAAIBuIVnAgGS327Vx40YVFhbK6XQqKChI48ePV2ZmJoEaAAAAMMg5ndLSpdIbbxz4cyBNYEpOTtaTTz7ZrTGWLl0qi8WivXv3eqWmsrIyWSwWbdiwwSvjWSwWvffee14Zy9vceayLFi3S0KFDvXaf7n6/lixZouzs7DYz9v72t79p9OjR8vPz6/bPja9Mnz5dN954o+vr4447Tv/3f//XK/dNuoABp6qqSqtWrVJNTY0kacSIETr22GM1fPhwH1cGAAAAwNcWL5aSk6WTT5YuvfTAn8nJB473tJUrV8rf319nnnlmz9+Zmw4NJCRp6tSpqqys7NVZXZ0FQ4cGhZWVlTr99NN7rTZvu+iii1RYWNjr93vrrbfqrrvukr+/vySprq5Ov/nNb3Tbbbdp27Ztuvbaa3u9pp5w11136fbbb3etp96TCNUwYDgcDv3www+y2WxyOBwKDAyU1WrVuHHjFBAwaGc6AwAAAPiPxYul88+XKiraHt+27cDxng7WXnjhBV1//fX66quvtH379p69s24ICgrSyJEjZbFYfF1Ku0aOHKng4OAu395ut3fpdqZpyuFwdPl+W4WGhio2Nrbb43ji66+/VklJic477zzXsfLycrW0tOjMM89UfHy8wsLCujR2S0uLt8rskCfP/emnn659+/bp448/7uGqCNUwQFRXV2vVqlWqrq6WJA0bNkw5OTm9/g8VAAAAgN5jmlJDg3sfdXXSDTccuE1740jSggUHrnNnvPbG6Ux9fb3efPNNXXfddTrzzDO1aNGiNudbO7WWLFmiKVOmKCwsTFOnTlVBQYHrmpKSEs2ZM0dxcXEKDw9XTk6Ovvjiiw7v8+qrr9ZZZ53V5lhLS4tiY2P1wgsvaN68eVq2bJmeeuopWSwWWSwWlZWVtds1tmLFCk2fPl1hYWGKjo7WzJkzXbODPvnkE5144okaOnSohg8frrPOOkslJSWePUEeOHT659atW3XhhRdq6NChGjZsmObMmaOysjLX+Xnz5umcc87RQw89pISEBGVmZkqSXn31VU2ZMkUREREaOXKkLr30UlVVVblu1/o8fPzxx5o8ebKCg4P19ddfyzAMPfroo0pLS1NwcLCSkpL00EMPtalx8+bNOvnkkxUWFqaJEydq5cqVrnPtTf/84IMPlJOTo5CQEMXExOjcc891nTtSne74xz/+odNOO00hISGuGsaPHy9JSk1NdX3vJem5557T2LFjFRQUpMzMTL366quHPf/PPfeczj77bA0ZMkQPPfSQpkyZoscee8x1zTnnnKPAwEDV19dLkioqKmSxWFRcXNyt576hoUFXXHGFwsPDFR8fr8cff/ywx+rv768zzjhD//jHPzx6jrqCUA39msPhUF5enn744QfZ7XYFBAQoKytLEyZMUFBQkK/LAwAAANCDGhul8HD3PqKiDnSkdcQ0D3SwRUW5N15jo2e1vvXWW8rKylJmZqYuv/xyvfjiizLbSebuvPNOPf7441qzZo0CAgJ09dVXu87V19frjDPO0JIlS7R+/XrNmjVLs2fPVnl5ebv3+Ytf/EKffPKJKisrXcf+9a9/qbGxURdddJGeeuopHX/88brmmmtUWVmpyspKjR49+rBxNmzYoFNPPVVWq1UrV67U119/rdmzZ7vW5mpoaNDNN9+sNWvWaMmSJfLz89O5557bK9PvWlpaNHPmTEVERGj58uVasWKFwsPDNWvWrDYdaUuWLFFBQYE+//xz/etf/3Ld9sEHH9TGjRv13nvvqaysTPPmzTvsPm6//XY98sgjysvL04QJE3THHXfokUce0d133y2bzabXX39dcXFxbW5z5513auHChdqwYYMyMjJ0ySWXdNhp9eGHH+rcc8/VGWecofXr12vJkiU69thj2zxGd+rszPLlyzVlyhTX1xdddJErkF21apXre//uu+9qwYIF+u1vf6sffvhBv/zlL3XVVVfpyy+/bDPefffdp3PPPVebNm3S1VdfrWnTpmnp0qWSDnSVLV++XEOHDtXXX38tSVq2bJlGjRqltLS0bj33t9xyi5YtW6Z//vOf+uyzz7R06VKtW7fusNsde+yxWr58uUfPUZeYg1xtba0pyaytrfV1KfDQnj17zG+++cb88ssvzS+//NJcv369uX//fl+XBQAAAKCHNDU1mTabzWxqajJN0zTr603zQBzW+x/19Z7VPnXqVPPJJ580TdM0W1pazJiYGPPLL790nf/yyy9NSeYXX3zhOvbhhx+aklyPtz3jxo0z//znP7u+HjNmjPnEE0+4vrZareYf/vAH19ezZ882582b5/p62rRp5oIFC9qM2VpLTU2NaZqmeckll5gnnHCC2491165dpiRz06ZNpmmaZmlpqSnJXL9+fYe3ab3PIUOGHPZhsVjaPCZJ5rvvvmuapmm++uqrZmZmpmkYhuv8/v37zdDQUPPTTz81TdM0r7zySjMuLu6IrxdXr15tSjL37dvXpqb33nvPdU1dXZ0ZHBxsPv/88+2O0fpY//73v7uO/fjjj6YkMy8vzzRN03zppZfMqKgo1/njjz/evOyyyzqtzZ06W79f7YmKijJfeeWVNsfWr19vSjJLS0tdx6ZOnWpec801ba674IILzDPOOMP1tSTzxhtvbHPN+++/b0ZFRZkOh8PcsGGDOXLkSHPBggXmbbfdZpqmaf7iF78wL730Uo8f08HP/b59+8ygoCDzrbfech3bvXu3GRoaetjP8D//+U/Tz8/PdDqd7d7fof+WHMyTnIhONfQ7hmGooKBAGzdu1P79++Xv76/09HQdffTRdKcBAAAAg0hYmFRf797HRx+5N+ZHH7k3nifLTxUUFGjVqlW65JJLJEkBAQG66KKL9MILLxx27YQJE1yfx8fHS5JrWlx9fb0WLlyo7OxsDR06VOHh4crLy+uwU0060K320ksvSZJ27typjz/+uE33mztaO9U6UlRUpEsuuUSpqamKjIxUcnKyJHVY17hx4xQeHq7w8PDDNhxYvny5NmzY0OYjISGhw/veuHGjiouLFRER4Rpz2LBham5ubjMFdfz48Ye9Xly7dq1mz56tpKQkRUREaNq0ae3WfXCHV15envbv39/p8yF1/n081JGeX3fr7ExTU5Nr6mdn8vLydMIJJ7Q5dsIJJygvL6/NsYOfE0k66aSTtG/fPq1fv17Lli3TtGnTNH36dFf32rJlyzR9+nSPH9PB91NSUiK73a6f/OQnrmPDhg1zTec9WGhoqAzD0P79+4/4mLuD1dvRr9TV1SkvL09NTU2SpIiICFmtVoWGhvq4MgAAAAC9zWKRhgxx79qf/UxKTDwwBbS99dAslgPnf/Yz6T+bI3rNCy+8IIfD0SYcMk1TwcHBeuaZZ9rsshkYGHhQTQc2CmidRrlw4UJ9/vnneuyxx5SWlqbQ0FCdf/75nS68f8UVV+j222/XypUr9c033yglJUUnnXSSR/Uf6fXW7NmzNWbMGD3//PNKSEiQYRg66qijOqzro48+ci1uf+jYKSkph6031tnGc/X19Zo8ebJee+21w86NGDHC9fmQQ35QGhoaNHPmTM2cOVOvvfaaRowYofLycs2cOfOwug++rbuvPTv7Ph6qszE9qbMzMTExrjXwvOHQ53Po0KGaOHGili5dqv/f3r3H5Xz//wN/vDvpoLPO6UAHRUolY5MQjdunqWw2fDaZfWzDMMLMmcmZNDlsNvGdWfvMYb58nBZ9ojVyKLOSaplQEiappK7374++vX+uzleqK3ncb7du9X69X4fn+7rS6rnXITExEUOGDIGvr6900mlGRoaUOGvqa6+I+/fvQ0dHp8VzBZypRi8EmUyGrKwsXLp0CSUlJVBRUUGXLl3Qq1cvJtSIiIiIiKhBqqrAxo2VX1c/1LLqOiKi+RNq5eXl2LVrF9atWyc3+yolJQWWlpbYs2dPo/tKSEhAaGgogoOD4ebmBnNzc7kN+WtjbGyMoKAg7NixA9HR0Rg/frzcfQ0NDWlvtLr07NkTsbGxtd67d+8e0tPTMX/+fAwePBguLi4NJm9sbW3h4OAABwcHWFlZ1Vu3IZ6ensjIyICpqanUZ9XHs8nK6q5evYp79+5h5cqV6N+/P7p169aozf8dHR2hpaVV5+vRFPW9vk2Ns7pevXohNTW1wXouLi5ISEiQK0tISICrq2uDbQcMGIBTp04hPj4efn5+MDIygouLC5YvXw4LCws4OTk91zN17doV6urqOHv2rFT24MEDXLt2rUbdK1euoFevXg32+byYVKM2r6ioCOfPn0dOTg5EUYSOjg68vLxgY2MDFRV+CxMRERERUeOEhAA//QRUz+NYW1eWh4Q0/5iHDh3CgwcPMGHCBPTo0UPuY+TIkbUuAa2Lo6Mj9u3bJyXlxowZ06jDAD744APs3LkTaWlpGDdunNw9Ozs7nD17FtevX0dBQUGt/c2dOxdJSUmYNGkSLl++jKtXr2LLli0oKCiAoaEhjI2N8dVXXyEzMxMnT57EjBkzGv1Mz2vs2LHo1KkTRowYgdOnTyM7OxtxcXGYOnUqbt68WWc7GxsbaGho4Msvv8Sff/6JgwcPYtmyZQ2Op6mpiTlz5mD27NnYtWsXsrKy8Ntvvyn0Pla3aNEi7NmzB4sWLUJaWhp+//13rFq16rnirC4gIEA6NKA+s2bNQnR0NLZs2YKMjAysX78e+/btQ1hYWINt/fz8cOzYMekAwaqy3bt3S7PUnueZOnbsiAkTJmDWrFk4efIkrly5gtDQ0FrzAqdPn8bQoUMb7PN5MSNBbZZMJsP169dx4cIFFBcXQxAE2NjYwMvLq8lTQImIiIiI6OUWEgJcvw6cOgV8/33l5+zslkmoAZVLP/39/WudNTVy5EicP38ely9fblRf69evh6GhIfr164fAwEAEBATA09OzwXb+/v6wsLBAQEBAjf3JwsLCoKqqCldXV2kZXnVOTk44fvw4UlJS4OPjg759++Lnn3+GmpoaVFRU8MMPP+DChQvo0aMHPv30U6xZs6ZRz9MctLW1ER8fDxsbG4SEhMDFxQUTJkxAaWkp9PT06mxnYmKC6Oho/Pvf/4arqytWrlyJtWvXNmrMBQsWYObMmVi4cCFcXFzw9ttvN2n2WBU/Pz/8+9//xsGDB+Hh4YFBgwbh3Llzzx3ns8aOHYs//vgD6enp9dYLCgrCxo0bsXbtWnTv3h3btm3Djh075PZDq0v//v0hk8nkEmh+fn6oqKiQa/88z7RmzRr0798fgYGB8Pf3x2uvvQYvLy+5Ordu3cKvv/5aY1ZmSxBEsbbV5C+PwsJC6Ovr4+HDh/X+g6PWVVxcjNTUVBQVFQGoXGPu6uoKXV1dJUdGRERERETKUlpaiuzsbNjb2zdq03WqVFRUBCsrK+zYsQMhLZU9pDZv1qxZKCwsxLZt25QdSouaM2cOHjx4gK+++qrOOvX9LFEkT8SDCqjNycnJQXZ2tjTt2MrKCl27duVSTyIiIiIiIgXIZDIUFBRg3bp1MDAwwBtvvKHskEiJ5s2bh82bN0Mmk7Xrv69NTU1bbQkyk2rUZpSWliItLQ0PHz4EULlW3cXFpd7NJYmIiIiIiKh2N27cgL29PaytrREdHV3vKZrU/hkYGODzzz9XdhgtbubMma02Fv9FUZuQm5uLzMxM6dQZCwsLODo6tuvsORERERERUUuys7PDS77jE1GLYlKNlKqsrAxXr17F/fv3AVQe5+zs7AxjY2MlR0ZEREREREREVDcm1Uhp8vPzce3aNZSXlwOoPAHE2dmZU5KJiIiIiIiIqM1j9oJaXXl5OdLT03H37l0AgLq6OhwdHWFqaqrkyIiIiIiIiIiIGodJNWpVBQUFuHbtGsrKygAARkZG6NatGzQ0NJQcGRERERERERFR4zGpRq2ivLwcGRkZuHPnDgBATU0NDg4OMDc3V3JkRERERERERESKY1KNWtyDBw9w9epVPHnyBEDlMb6urq6cnUZERERERERELywVZQdA7ZdMJsO1a9eQkpKCJ0+eQFVVFY6OjvDw8GBCjYiIiIiIlKZCVoG463HY8/sexF2PQ4WsQtkhtVl2dnaIiIhotv78/Pwwffr0ZukrNDQUQUFBzdJXS2jMswqCgAMHDjTbmM39flH9mFSjFlFYWIikpCTcvn0bAKCrqwtvb29YWVkpOTIiIiIiInqZ7UvbB7uNdhi4cyDG7BuDgTsHwm6jHfal7WvRcUNDQyEIAlauXClXfuDAAQiC0KJjP4+kpCRMnDixVcesKzG0ePFieHh4SNcbN25EdHR0q8XVEnJzczFs2DBlh0FNxKQaNSuZTIasrCxcunQJJSUlEAQB9vb26NWrF7S0tJQdHhERERERvcT2pe3Dmz++iZuFN+XKbxXewps/vtniiTVNTU2sWrUKDx48aNFxmkPV4XImJibQ1tZWcjS109fXh4GBQZPbi6KI8vLyJrWten2el7m5OTp06NAsfVHrY1KNmk1RUREuXLiAnJwciKIIHR0deHt7w9bWFioq/FYjIiIiIqLmJYoiHpc9btRHYWkhph6ZChFizX7+r2zakWkoLC1sVH+iWLOfhvj7+8Pc3BwrVqyo9X71mVgAEBERATs7O+m6asljeHg4zMzMYGBggKVLl6K8vByzZs2CkZERrK2tsWPHDrl+cnJyMGrUKBgYGMDIyAgjRozA9evXa/S7fPlyWFpawtnZGUDNWWN///03PvzwQ5iZmUFTUxM9evTAoUOHAAD37t3D6NGjYWVlBW1tbbi5uWHPnj0Kv06NVX35p0wmw4oVK2Bvbw8tLS24u7vjp59+ku7HxcVBEAQcOXIEXl5e6NChA86cOYOsrCyMGDECZmZm6NixI3r37o1ffvlFbiw7OzssW7YM7733HvT09KTZewkJCfDz84O2tjYMDQ0REBAglzSVyWSYPXs2jIyMYG5ujsWLF8v1W335582bNzF69GgYGRlJf1OfPXsWABoVJ7UuHlRAz00mk+HGjRv466+/IIoiBEGAtbU17O3tmUwjIiIiIqIWU/y0GB1XdGyWvkSIuPnoJvRX6TeqftHcIuho6Cg0hqqqKsLDwzFmzBhMnToV1tbWTQkVJ0+ehLW1NeLj45GQkIAJEybg119/ha+vL86ePYuYmBh8+OGHGDJkCKytrfH06VMEBASgb9++OH36NNTU1PDFF1/g9ddfx+XLl6U9r2NjY6Gnp4cTJ07UOq5MJsOwYcPw6NEjfPfdd+jatStSU1OhqqoKACgtLYWXlxfmzJkDPT09HD58GO+++y66du0KHx+fJj2rIlasWIHvvvsOW7duhaOjI+Lj4/HPf/4TJiYmGDBggFTvs88+w9q1a9GlSxcYGhoiJycHw4cPx/Lly9GhQwfs2rULgYGBSE9Ph42NjdRu7dq1WLhwIRYtWgQASE5OxuDBg/H+++9j48aNUFNTw6lTp1BR8f/36Nu5cydmzJiBs2fPIjExEaGhoXj11VcxZMiQGvEXFRVhwIABsLKywsGDB2Fubo6LFy9CJpNJ9xsTJ7UeJtXouZSUlCA1NRWPHj0CAGhpacHV1RW6urpKjoyIiIiIiKjtCQ4OhoeHBxYtWoRvvvmmSX0YGRkhMjISKioqcHZ2xurVq1FcXIzPP/8cADB37lysXLkSZ86cwTvvvIOYmBjIZDJs375d2r9tx44dMDAwQFxcHIYOHQoA0NHRwfbt2+s8WO6XX37BuXPnkJaWBicnJwBAly5dpPtWVlYICwuTrj/55BMcO3YMP/74o8JJtTlz5mD+/PlyZWVlZXB1da21/pMnTxAeHo5ffvkFffv2lWI7c+YMtm3bJpdUW7p0qVxSy8jICO7u7tL1smXLsH//fhw8eBBTpkyRygcNGoSZM2dK12PGjIG3tzc2b94slXXv3l0urp49e0pJOEdHR2zatAmxsbG1JtW+//573L17F0lJSTAyMgIAODg4SPfd3d0bFSe1HibVqMlycnKQnZ0tZc0tLS3h4ODA2WlERERERNQqtNW1UTS3qFF14/+Kx/DvhzdY7z9j/gNfW99Gjd1Uq1atwqBBg+QSUIro3r273N9dZmZm6NGjh3StqqoKY2Nj5OfnAwBSUlKQmZlZY/JDaWkpsrKypGs3N7c6E2pA5cwsa2trKaFWXUVFBcLDw/Hjjz/i1q1bKCsrw5MnT+rcky08PBzh4eHSdWpqqjTjatasWQgNDZWrHxkZifj4+Fr7yszMRHFxcY1kVVlZGXr16iVX5u3tLXddVFSExYsX4/Dhw8jNzUV5eTlKSkpw48aNetslJyfjrbfeqjWeKj179pS7trCwkN6X6pKTk9GrVy8poVZdY+Ok1sOkGimstLQUaWlpePjwIYDKzTadnZ1haGio5MiIiIiIiOhlIghCo5dgDu06FNZ61rhVeKvWfdUECLDWs8bQrkOhqqLa3KHK8fX1RUBAAObOnSuXOFJRUamxV9vTp09rtFdXV5e7FgSh1rJnlw16eXlh9+7dNfoyMTGRvtbRqf+1bOjwuTVr1mDjxo2IiIiAm5sbdHR0MH369Do39f/oo48watQo6drS0lL6ulOnTnKztADUmWwCKp8RAA4fPgwrKyu5e9UPAqj+nGFhYThx4gTWrl0LBwcHaGlp4c0336wRd/V2jTmMr773pbqG+mtsnNR6mFQjheTm5iIzM1NaI25ubg4HBweoqfFbiYiIiIiI2i5VFVVsfH0j3vzxTQgQ5BJrAiqXREa8HtHiCbUqK1euhIeHh3QgAFCZ4MrLy5P2qgYqZy89L09PT8TExMDU1BR6enpN7qdnz564efMmrl27VutstYSEBIwYMQL//Oc/AVTuwXbt2rU6l2waGRnVmyhThKurKzp06IAbN27ILfVsjISEBISGhiI4OBhAZYLu2UMc6tKzZ0/ExsZiyZIlTQm51v62b9+O+/fv1/q6NDVOajlcp0eNUlZWhsuXLyM9PR0VFRXQ0NCAm5sbunXrxoQaERERERG9EEJcQvDTqJ9gpSc/k8lazxo/jfoJIS4hrRaLm5sbxo4di8jISKnMz88Pd+/exerVq5GVlYWoqCgcOXLkuccaO3YsOnXqhBEjRuD06dPIzs5GXFwcpk6dips3bza6nwEDBsDX1xcjR47EiRMnkJ2djSNHjuDo0aMAKvcMO3HiBH799VekpaXhww8/xJ07d547/sbQ1dVFWFgYPv30U+zcuRNZWVm4ePEivvzyS+zcubPeto6Ojti3bx+Sk5ORkpKCMWPG1Dmb7Flz585FUlISJk2ahMuXL+Pq1avYsmULCgoKmvQMo0ePhrm5OYKCgpCQkIA///wTe/fuRWJi4nPFSS2HSTVqUH5+PpKSknD//n0Alf/3xMfHB8bGxkqOjIiIiIiISDEhLiG4Pu06To07he9DvsepcaeQPS27VRNqVZYuXSqXFHFxccHmzZsRFRUFd3d3nDt3rsn7rj1LW1sb8fHxsLGxQUhICFxcXDBhwgSUlpYqPHNt79696N27N0aPHg1XV1fMnj1bWsk0f/58eHp6IiAgAH5+flKCqLUsW7YMCxYswIoVK+Di4oLXX38dhw8fhr29fb3t1q9fD0NDQ/Tr1w+BgYEICAiAp6dng+M5OTnh+PHjSElJgY+PD/r27Yuff/65yRNPNDQ0cPz4cZiammL48OFwc3PDypUrpdNVmxontRxBrL5g+yVTWFgIfX19PHz48LmmwbZH5eXlSE9Px927dwFUrgV3dHSEqampkiMjIiIiIqKXUWlpKbKzs2Fvbw9NTU1lh0NEL6j6fpYokifiuj2q1b1795Ceni5teGhkZIRu3brVexIMEREREREREdHLgkk1klNeXo6MjAxp3buqqiocHBxgYWGh5MiIiIiIiIiIiNoOJtVI8uDBA1y9ehVPnjwBABgYGKBbt26cVk1EREREREREVA2TagSZTIbMzEzcvn0bAKCiooKuXbvCysqqgZZERERERERERC8nJtVeco8ePUJqaipKSkoAVB5D7OrqCi0tLSVHRkRERERERETUdjGp9pKSyWTIzs7GzZs3IYoiBEGAnZ0dOnfuDBUVFWWHR0RERERERETUpjGp9hJ6/PgxUlNT8fjxYwCAjo4OXF1doaOjo+TIiIiIiIiIiIheDEyqvURkMhlu3LiBv/76S5qdZm1tDXt7e85OIyIiIiIiIiJSQLvIpBw6dAjOzs5wdHTE9u3blR1Om1RSUoJLly7h+vXrEEURWlpa8PT0RNeuXZlQIyIiIiIiIiJS0AufTSkvL8eMGTNw8uRJXLp0CWvWrMG9e/eUHZZSPC2T4YeIPKz65AZ+iMjD0zIZAODmzZtISkrCo0ePAACWlpbo3bs3dHV1lRkuERERERGRcsgqgDtxwPU9lZ9lFcqOqM2ws7NDRESEssOokyAIOHDgQJ334+LiIAgC/v7772YZ7/r16xAEAcnJyc3SH7UvL3xS7dy5c+jevTusrKzQsWNHDBs2DMePH1d2WK0ucvZNmGg/xuhPzfHZJhuM/tQcJtqPsWhqCjIzMyGTyaCpqQl3d3c4OTlxdhoREREREb2ccvYBB+2A2IHAr2MqPx+0qyxvQaGhoRAEAStXrpQrP3DgAARBaNGx60sM+fn5Yfr06dJ1UlISJk6c2KLxtKR+/fohNzcX+vr6yg6FXgJKz6zEx8cjMDAQlpaWdWaco6KiYGdnB01NTfTp0wfnzp2T7t2+fRtWVlbStZWVFW7dutUaobcZkbNvYtoaKzys6ChX/rCiI5Z+2RMn9uvCzMwM3t7eMDQ0VFKURERERERESpazDzj9JlB8U768+FZleQsn1jQ1NbFq1So8ePCgRcd5HiYmJtDW1m5y+7Kysia3ffr0aZPbVtHQ0IC5uXmLJyqJgDaQVHv8+DHc3d0RFRVV6/2YmBjMmDEDixYtwsWLF+Hu7o6AgADk5+e3cqRt09MyGRaur8rAV/+hUXm9eYsTHLo6Q02N51IQEREREVE7IopA+ePGfZQVAuenAhBr66jy0/lplfUa059YWz/18/f3h7m5OVasWFFnnb1796J79+7o0KED7OzssG7dOrn7dnZ2CA8Px/vvvw9dXV3Y2Njgq6++UjiWulRf/vn333/jgw8+gImJCfT09DBo0CCkpKRI9xcvXgwPDw9s374d9vb20NTUBAAcPXoUr732GgwMDGBsbIx//OMfyMrKktpVzZ6LiYnBgAEDoKmpid27dwMAvv32W+k1sLCwwJQpU+RiLCgoQHBwMLS1teHo6IiDBw9K92pb/pmQkAA/Pz9oa2vD0NAQAQEBUmKzoTiJ6qP0pNqwYcPwxRdfIDg4uNb769evx7/+9S+MHz8erq6u2Lp1K7S1tfHtt98CqNwf7NmZabdu3YKlpWWd4z158gSFhYVyHy+yvZvz8bBCFzUTalUE/P1UF3s3MwlJRERERETtTEUx8GPHxn38pA+U1LeqSQRKblbWa0x/FcUKh6uqqorw8HB8+eWXuHnzZo37Fy5cwKhRo/DOO+/g999/x+LFi7FgwQJER0fL1Vu3bh28vb1x6dIlTJo0CR9//DHS09MVjqcx3nrrLeTn5+PIkSO4cOECPD09MXjwYNy/f1+qk5mZib1792Lfvn3SEtPHjx9jxowZOH/+PGJjY6GiooLg4GDIZDK5/j/77DNMmzYNaWlpCAgIwJYtWzB58mRMnDgRv//+Ow4ePAgHBwe5NkuWLMGoUaNw+fJlDB8+HGPHjpWL51nJyckYPHgwXF1dkZiYiDNnziAwMBAVFRUKxUlUmzY9damsrAwXLlzA3LlzpTIVFRX4+/sjMTERAODj44MrV67g1q1b0NfXx5EjR7BgwYI6+1yxYgWWLFnS4rG3lr+yGje1trH1iIiIiIiIqOUEBwfDw8MDixYtwjfffCN3b/369Rg8eLD0N62TkxNSU1OxZs0ahIaGSvWGDx+OSZMmAQDmzJmDDRs24NSpU3B2dq537H79+tXYX7ukpAQeHh611j9z5gzOnTuH/Px8dOjQAQCwdu1aHDhwAD/99JO091pZWRl27doFExMTqe3IkSPl+vr2229hYmKC1NRU9OjRQyqfPn06QkJCpOsvvvgCM2fOxLRp06Sy3r17y/UVGhqK0aNHAwDCw8MRGRmJc+fO4fXXX6/xDKtXr4a3tzc2b94slXXv3l3hOIlq06aTagUFBaioqICZmZlcuZmZGa5evQoAUFNTw7p16zBw4EDIZDLMnj0bxsbGdfY5d+5czJgxQ7ouLCxE586dW+YBWoFtV41mrUdERERERPTCUNUGRhU1rm5+PBA3vOF6fv8BTH0bN3YTrVq1CoMGDUJYWJhceVpaGkaMGCFX9uqrryIiIgIVFRVQVVUFAPTs2VO6LwgCzM3NpS2Shg0bhtOnTwMAbG1t8ccff0h1Y2Ji4OLiItf/2LFj64wzJSUFRUVFNf7GLikpkVsiaWtrK5dQA4CMjAwsXLgQZ8+eRUFBgTTz68aNG3LJKm9vb+nr/Px83L59G4MHD64zpurPr6OjAz09vTq3iEpOTsZbb71VZ1+NjZOoNm06qdZYb7zxBt54441G1e3QoYOUYW8PRk4yhX7Yo/87pKC2JaAiDFQfYeQk09YOjYiIiIiIqGUJAqCm07i65kMBbevKQwlq3VdNqLxvPhRQUW3OKGvw9fVFQEAA5s6dKzcDrbHU1dXlrgVBkJJB27dvR0lJSa31OnfuXGMppZaWVp3jFBUVwcLCAnFxcTXuGRgYSF/r6NR8DwIDA2Fra4uvv/4alpaWkMlk6NGjR42DDJ5tW18sz6rv+atrqM/GxklUmzadVOvUqRNUVVVx584dufI7d+7A3NxcSVG1LeoaKlg64yGmremIyv8wPJtYq/wPxZIZhVDX0FNGeERERERERG2DiirgtbHylE8IkE+s/d/fUV4RLZ5Qq7Jy5Up4eHjILdl0cXFBQkKCXL2EhAQ4OTlJs9QaYmVl1Wwxenp6Ii8vD2pqarCzs2t0u3v37iE9PR1ff/01+vfvD6ByKWlDdHV1YWdnh9jYWAwcOLCpYcvp2bMnYmNja90GqqlxElVR+kEF9dHQ0ICXlxdiY2OlMplMhtjYWPTt21eJkbUtU1dbY+OsW9BXlZ/2bKD6CBtn3cLU1dZKioyIiIiIiKgN6RwC9P8J0K6WeNK2rizvHFJ7uxbg5uaGsWPHIjIyUiqbOXMmYmNjsWzZMly7dg07d+7Epk2baiwTbS3+/v7o27cvgoKCcPz4cVy/fh2//vor5s2bh/Pnz9fZztDQEMbGxvjqq6+QmZmJkydPym3DVJ/Fixdj3bp1iIyMREZGBi5evIgvv/yyyc8wd+5cJCUlYdKkSbh8+TKuXr2KLVu2oKCg4LniJALawEy1oqIiZGZmStfZ2dlITk6GkZERbGxsMGPGDIwbNw7e3t7w8fFBREQEHj9+jPHjxysx6rZn6mprfPyFDHs35+GvrDLYdtXAyEmmnKFGRERERET0rM4hgNUI4O5poCQX0LIATPq32gy1Zy1duhQxMTHStaenJ3788UcsXLgQy5Ytg4WFBZYuXdqkJaLNQRAE/Oc//8G8efMwfvx43L17F+bm5vD19a2x9/mzVFRU8MMPP2Dq1Kno0aMHnJ2dERkZCT8/vwbHHDduHEpLS7FhwwaEhYWhU6dOePPNN5v8DE5OTjh+/Dg+//xz+Pj4QEtLC3369MHo0aOfK04iABBEUaxtMXmriYuLq3Va57hx46Rjgzdt2oQ1a9YgLy8PHh4eiIyMRJ8+fZpl/MLCQujr6+Phw4fQ02MCioiIiIiIqK0qLS1FdnY27O3toampqexwiOgFVd/PEkXyREqfqebn54eG8npTpkzBlClTmnXcqKgoREVFoaKioln7JSIiIiIiIiKi9q9N76nWkiZPnozU1FQkJSUpOxQiIiIiIiIiInrBvLRJNSIiIiIiIiIioqZiUo2IiIiIiIiIiEhBTKoRERERERHRC0XJ5+0R0QuuuX6GMKlGRERERERELwR1dXUAQHFxsZIjIaIXWdXPkKqfKU2l9NM/iYiIiIiIiBpDVVUVBgYGyM/PBwBoa2tDEAQlR0VELwpRFFFcXIz8/HwYGBhAVVX1ufpjUo2IiIiIiIheGObm5gAgJdaIiBRlYGAg/Sx5Hi9tUi0qKgpRUVGoqKhQdihERERERETUSIIgwMLCAqampnj69KmywyGiF4y6uvpzz1CrIogv+Q6PhYWF0NfXx8OHD6Gnp6fscIiIiIiIiIiISEkUyRPxoAIiIiIiIiIiIiIFMalGRERERERERESkICbViIiIiIiIiIiIFPTSHlRQpWpLucLCQiVHQkREREREREREylSVH2rMEQQvfVLt0aNHAIDOnTsrORIiIiIiIiIiImoLHj16BH19/XrrvPSnf8pkMty+fRu6uroQBEHZ4Ty3wsJCdO7cGTk5OTzNlIiIiBqNv0MQERGRotrj7w+iKOLRo0ewtLSEikr9u6a99DPVVFRUYG1trewwmp2enl67+YYmIiKi1sPfIYiIiEhR7e33h4ZmqFXhQQVEREREREREREQKYlKNiIiIiIiIiIhIQUyqtTMdOnTAokWL0KFDB2WHQkRERC8Q/g5BREREinrZf3946Q8qICIiIiIiIiIiUhRnqhERERERERERESmISTUiIiIiIiIiIiIFMalGRERERERERESkICbViIiIiIiIiIiIFMSkWjsTFRUFOzs7aGpqok+fPjh37pyyQyIiIqI2LD4+HoGBgbC0tIQgCDhw4ICyQyIiIqI2bsWKFejduzd0dXVhamqKoKAgpKenKzusVsekWjsSExODGTNmYNGiRbh48SLc3d0REBCA/Px8ZYdGREREbdTjx4/h7u6OqKgoZYdCREREL4j//ve/mDx5Mn777TecOHECT58+xdChQ/H48WNlh9aqBFEURWUHQc2jT58+6N27NzZt2gQAkMlk6Ny5Mz755BN89tlnSo6OiIiI2jpBELB//34EBQUpOxQiIiJ6gdy9exempqb473//C19fX2WH02o4U62dKCsrw4ULF+Dv7y+VqaiowN/fH4mJiUqMjIiIiIiIiIjas4cPHwIAjIyMlBxJ62JSrZ0oKChARUUFzMzM5MrNzMyQl5enpKiIiIiIiIiIqD2TyWSYPn06Xn31VfTo0UPZ4bQqNWUHQEREREREREREL6bJkyfjypUrOHPmjLJDaXVMqrUTnTp1gqqqKu7cuSNXfufOHZibmyspKiIiIiIiIiJqr6ZMmYJDhw4hPj4e1tbWyg6n1XH5ZzuhoaEBLy8vxMbGSmUymQyxsbHo27evEiMjIiIiIiIiovZEFEVMmTIF+/fvx8mTJ2Fvb6/skJSCM9XakRkzZmDcuHHw9vaGj48PIiIi8PjxY4wfP17ZoREREVEbVVRUhMzMTOk6OzsbycnJMDIygo2NjRIjIyIiorZq8uTJ+P777/Hzzz9DV1dX2stdX18fWlpaSo6u9QiiKIrKDoKaz6ZNm7BmzRrk5eXBw8MDkZGR6NOnj7LDIiIiojYqLi4OAwcOrFE+btw4REdHt35ARERE1OYJglBr+Y4dOxAaGtq6wSgRk2pEREREREREREQK4p5qRERERERERERECmJSjYiIiIiIiIiISEFMqhERERERERERESmISTUiIiIiIiIiIiIFMalGRERERERERESkICbViIiIiIiIiIiIFMSkGhERERERERERkYKYVCMiIiIiIiIiIlIQk2pERERECoiOjoaBgYHSxhcEAQcOHFDK2HZ2doiIiHiuPhYvXgwPD49miYeIiIhImZhUIyIionYtJycH77//PiwtLaGhoQFbW1tMmzYN9+7dU3ZobVZdicOkpCRMnDjxufoOCwtDbGzsc/VBRERE1BYwqUZERETt1p9//glvb29kZGRgz549yMzMxNatWxEbG4u+ffvi/v37dbYtKytrsbiePn3aYn23JBMTE2hraz9XHx07doSxsXEzRVRTY9+3lnx/iYiI6OXApBoRERG1W5MnT4aGhgaOHz+OAQMGwMbGBsOGDcMvv/yCW7duYd68eVJdOzs7LFu2DO+99x709PSkGVnR0dGwsbGBtrY2goODa53h9vPPP8PT0xOampro0qULlixZgvLycum+IAjYsmUL3njjDejo6GD58uWNapeRkQFfX19oamrC1dUVJ06caPCZnzx5gqlTp8LU1BSampp47bXXkJSUJN2Pi4uDIAg4fPgwevbsCU1NTbzyyiu4cuWKdH/8+PF4+PAhBEGAIAhYvHix9Bo9u/xTEARs27YN//jHP6CtrQ0XFxckJiYiMzMTfn5+0NHRQb9+/ZCVlSW1qb78s2qMZz/s7Oyk+1euXMGwYcPQsWNHmJmZ4d1330VBQYF038/PD1OmTMH06dPRqVMnBAQE1Pq6hIaGIigoCMuXL4elpSWcnZ2l8asvpzUwMEB0dDQA4Pr16xAEAfv27cPAgQOhra0Nd3d3JCYmNvheEBERUfvGpBoRERG1S/fv38exY8cwadIkaGlpyd0zNzfH2LFjERMTA1EUpfK1a9fC3d0dly5dwoIFC3D27FlMmDABU6ZMQXJyMgYOHIgvvvhCrq/Tp0/jvffew7Rp05Camopt27YhOjpaSpxVWbx4MYKDg/H777/j/fffb7CdTCZDSEgINDQ0cPbsWWzduhVz5sxp8Llnz56NvXv3YufOnbh48SIcHBwQEBBQY1berFmzsG7dOiQlJcHExASBgYF4+vQp+vXrh4iICOjp6SE3Nxe5ubkICwurc7yqRGRycjK6deuGMWPG4MMPP8TcuXNx/vx5iKKIKVOm1Nm+aozc3FxkZmbCwcEBvr6+AIC///4bgwYNQq9evXD+/HkcPXoUd+7cwahRo+T62LlzJzQ0NJCQkICtW7fWOVZsbCzS09Nx4sQJHDp0qMHX8lnz5s1DWFgYkpOT4eTkhNGjR8slQImIiOglJBIRERG1Q7/99psIQNy/f3+t99evXy8CEO/cuSOKoija2tqKQUFBcnVGjx4tDh8+XK7s7bffFvX19aXrwYMHi+Hh4XJ1/ud//ke0sLCQrgGI06dPl6vTULtjx46Jampq4q1bt6T7R44cqfeZioqKRHV1dXH37t1SWVlZmWhpaSmuXr1aFEVRPHXqlAhA/OGHH6Q69+7dE7W0tMSYmBhRFEVxx44dcs9YxdbWVtywYYPcc82fP1+6TkxMFAGI33zzjVS2Z88eUVNTU7petGiR6O7uXqNvmUwmBgcHi15eXmJxcbEoiqK4bNkycejQoXL1cnJyRABienq6KIqiOGDAALFXr161vh7PGjdunGhmZiY+efJErry211NfX1/csWOHKIqimJ2dLQIQt2/fLt3/448/RABiWlpag+MSERFR+6WmpFweERERUasQn5mJ1hBvb2+567S0NAQHB8uV9e3bF0ePHpWuU1JSkJCQIDczraKiAqWlpSguLpb2IKved0Pt0tLS0LlzZ1haWsqNXZ+srCw8ffoUr776qlSmrq4OHx8fpKWl1XiOKkZGRnB2dq5RpzF69uwpfW1mZgYAcHNzkysrLS1FYWEh9PT06uzn888/R2JiIs6fPy/NLExJScGpU6fQsWPHGvWzsrLg5OQEAPDy8mpUrG5ubtDQ0GhU3eqefU4LCwsAQH5+Prp169ak/oiIiOjFx6QaERERtUsODg4QBKHWxBhQmTAzNDSEiYmJVKajo6PwOEVFRViyZAlCQkJq3NPU1Kyz78a2a+vU1dWlrwVBqLNMJpPV2cd3332HDRs2IC4uDlZWVlJ5UVERAgMDsWrVqhptqhJbQOPft9rqCYJQI/Fa20ESij4TERERtX9MqhEREVG7ZGxsjCFDhmDz5s349NNP5fZVy8vLw+7du/Hee+9JCZLauLi44OzZs3Jlv/32m9y1p6cn0tPT4eDgoFB8DbVzcXFBTk4OcnNzpQRS9bGr69q1q7S3mK2tLYDKBFFSUhKmT59e4zlsbGwAAA8ePMC1a9fg4uICANDQ0EBFRYVCz9NUiYmJ+OCDD7Bt2za88sorcvc8PT2xd+9e2NnZQU2tZX5tNTExQW5urnSdkZGB4uLiFhmLiIiI2hceVEBERETt1qZNm/DkyRMEBAQgPj4eOTk5OHr0KIYMGQIrK6sahwlUN3XqVBw9ehRr165FRkYGNm3aJLf0EwAWLlyIXbt2YcmSJfjjjz+QlpaGH374AfPnz6+374ba+fv7w8nJCePGjUNKSgpOnz4td1ppbXR0dPDxxx9j1qxZOHr0KFJTU/Gvf/0LxcXFmDBhglzdpUuXIjY2FleuXEFoaCg6deqEoKAgAJWnfBYVFSE2NhYFBQUtlmTKy8tDcHAw3nnnHQQEBCAvLw95eXm4e/cugMrTW+/fv4/Ro0cjKSkJWVlZOHbsGMaPH99sSb9BgwZh06ZNuHTpEs6fP4+PPvpIblYaERERUV2YVCMiIqJ2y9HREefPn0eXLl0watQodO3aFRMnTsTAgQORmJgIIyOjetu/8sor+Prrr7Fx40a4u7vj+PHjNZJlAQEBOHToEI4fP47evXvjlVdewYYNG6SZYnVpqJ2Kigr279+PkpIS+Pj44IMPPmgwCQgAK1euxMiRI/Huu+/C09MTmZmZOHbsGAwNDWvUmzZtGry8vJCXl4f//d//lfYb69evHz766CO8/fbbMDExwerVqxsctymuXr2KO3fuYOfOnbCwsJA+evfuDQCwtLREQkICKioqMHToULi5uWH69OkwMDCAikrz/Bq7bt06dO7cGf3798eYMWMQFhYm7YNHREREVB9BVGT3XiIiIiJ6ocXFxWHgwIF48OABDAwMlB0OERER0QuLM9WIiIiIiIiIiIgUxKQaERERERERERGRgrj8k4iIiIiIiIiISEGcqUZERERERERERKQgJtWIiIiIiIiIiIgUxKQaERERERERERGRgphUIyIiIiIiIiIiUhCTakRERERERERERApiUo2IiIiIiIiIiEhBTKoREREREREREREpiEk1IiIiIiIiIiIiBf0/pJclXsEIy54AAAAASUVORK5CYII=\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAABNUAAAIjCAYAAAAkzS0sAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAACztklEQVR4nOzdeXxU5d3///dsmclkIxCykQ1cAdeCC6gFLRZFqYpbXepau9zYqhS3atXqrbVWq7RGuylWv9W6/Kyta6vUBRAXVHCjoEhWQkIgZJ/Mdn5/cM9pJplJZsIkk+X1fDzmAbnOnDNXQkhm3nNdn4/FMAxDAAAAAAAAAGJmTfYEAAAAAAAAgJGGUA0AAAAAAACIE6EaAAAAAAAAECdCNQAAAAAAACBOhGoAAAAAAABAnAjVAAAAAAAAgDgRqgEAAAAAAABxIlQDAAAAAAAA4kSoBgAAAAAAAMSJUA0AAGAMqq+v1xlnnKEJEybIYrHovvvui/nciooKWSwWPfLII+bYLbfcIovFkrD5RXoMAACA4YRQDQAAIEZPPfWULBaL/va3v/U6dvDBB8tisej111/vdaykpESzZ8+O67EeeOCBQQ2UrrrqKv3zn//U9ddfr8cee0wnnHDCoD3WUHv77bd1yy23aNeuXcmeCgAAGMUI1QAAAGJ09NFHS5JWrVoVNt7S0qJPP/1Udrtdq1evDjtWXV2t6upq89xYDXao9u9//1unnHKKli5dqvPPP1/777//oD3WUHv77bf185//nFANAAAMKkI1AACAGBUWFmry5Mm9QrU1a9bIMAydeeaZvY6FPo43VBsMfr9fXq9XktTQ0KBx48Yld0IAAAAjGKEaAABAHI4++mh99NFH6uzsNMdWr16t6dOn68QTT9Q777yjYDAYdsxiseioo46SJC1fvlzHHXeccnNz5XQ6NW3aND344INhj1FWVqbPPvtMb775piwWiywWi+bOnWse37Vrl6688koVFxfL6XRq77331i9/+cuwxw3VJLv77rt13333aa+99pLT6dQDDzwgi8UiwzBUXl5uXl+Sdu7cqaVLl+rAAw9Uenq6MjMzdeKJJ2r9+vUJ+/rNnTtXBxxwgD744APNnj1bqampmjx5sn73u9/FdP6///1vHXPMMUpLS9O4ceN0yimnaMOGDebxW265RVdffbUkafLkyebnV1FRkbDPAQAAQJLsyZ4AAADASHL00Ufrscce07vvvmsGXatXr9bs2bM1e/ZsNTc369NPP9VBBx1kHtt///01YcIESdKDDz6o6dOn61vf+pbsdruef/55/c///I+CwaAWL14sSbrvvvv0ox/9SOnp6brhhhskSXl5eZKkjo4OzZkzR7W1tfr+97+vkpISvf3227r++utVV1fXq+HA8uXL5fF49L3vfU9Op1Nf+9rX9Nhjj+k73/mOjj/+eF1wwQXmfb/66is999xzOvPMMzV58mTV19fr97//vebMmaPPP/9chYWFCfkaNjU1acGCBTrrrLN0zjnn6KmnntIPf/hDpaSk6JJLLol63muvvaYTTzxRU6ZM0S233KLOzk799re/1VFHHaUPP/xQZWVlWrRokTZt2qQnnnhC9957r3JyciRJEydOTMjcAQAATAYAAABi9tlnnxmSjNtuu80wDMPw+XxGWlqa8ec//9kwDMPIy8szysvLDcMwjJaWFsNmsxmXXXaZeX5HR0eva86fP9+YMmVK2Nj06dONOXPm9LrvbbfdZqSlpRmbNm0KG7/uuusMm81mVFVVGYZhGFu2bDEkGZmZmUZDQ0Ov60gyFi9eHDbm8XiMQCAQNrZlyxbD6XQat956a9iYJGP58uXm2M0332zE8tRyzpw5hiTjnnvuMce6urqMQw45xMjNzTW8Xm/UxwjdZ8eOHebY+vXrDavValxwwQXm2K9+9StDkrFly5Z+5wMAADBQbP8EAACIw9SpUzVhwgSzVtr69evV3t5udvecPXu22axgzZo1CgQCYfXUUlNTzb83NzersbFRc+bM0VdffaXm5uZ+H//pp5/WMccco+zsbDU2Npq3efPmKRAI6K233gq7/+mnnx7zKi2n0ymrdffTw0AgoB07dig9PV377befPvzww5iuEQu73a7vf//75scpKSn6/ve/r4aGBn3wwQcRz6mrq9O6det00UUXafz48eb4QQcdpOOPP14vvfRSwuYHAAAQC0I1AACAOFgsFs2ePdusnbZ69Wrl5uZq7733lhQeqoX+7B6qrV69WvPmzTNrgk2cOFE//elPJSmmUO2LL77QK6+8ookTJ4bd5s2bJ2l3A4LuJk+eHPPnFgwGde+992qfffaR0+lUTk6OJk6cqI8//jimucWqsLBQaWlpYWP77ruvJEWtfVZZWSlJ2m+//Xodmzp1qhobG9Xe3p6wOQIAAPSHmmoAAABxOvroo/X888/rk08+MeuphcyePVtXX321amtrtWrVKhUWFmrKlCmSpM2bN+sb3/iG9t9/f/36179WcXGxUlJS9NJLL+nee+8NazQQTTAY1PHHH69rrrkm4vFQOBXSfWVcf+644w797Gc/0yWXXKLbbrtN48ePl9Vq1ZVXXhnT3AAAAMYSQjUAAIA4hVaerVq1SqtXr9aVV15pHpsxY4acTqfeeOMNvfvuu1qwYIF57Pnnn1dXV5f+8Y9/qKSkxBx//fXXez1GqCNnT3vttZfa2trMlWmJ9Mwzz+jYY4/VQw89FDa+a9cus+B/ImzdulXt7e1hq9U2bdokaXfn00hKS0slSRs3bux17D//+Y9ycnLM60X72gEAACQS2z8BAADiNHPmTLlcLv3lL39RbW1t2Eq1UIfN8vJytbe3h239tNlskiTDMMyx5uZmLV++vNdjpKWladeuXb3GzzrrLK1Zs0b//Oc/ex3btWuX/H7/gD8vm80WNjdpdw232traAV8zEr/fr9///vfmx16vV7///e81ceJEzZgxI+I5BQUFOuSQQ/TnP/857Ovy6aef6l//+ldYeBkK1yJ9/QAAABKFlWoAAABxSklJ0WGHHaaVK1fK6XT2CoJmz56te+65R1J4PbVvfvObSklJ0cKFC/X9739fbW1t+uMf/6jc3FzV1dWFXWPGjBl68MEH9b//+7/ae++9lZubq+OOO05XX321/vGPf+jkk0/WRRddpBkzZqi9vV2ffPKJnnnmGVVUVAx4VdnJJ5+sW2+9VRdffLFmz56tTz75RH/5y1/M7auJUlhYqF/+8peqqKjQvvvuqyeffFLr1q3TH/7wBzkcjqjn/epXv9KJJ56oWbNm6dJLL1VnZ6d++9vfKisrS7fccot5v9C/xw033KBvf/vbcjgcWrhwYa86bgAAAHuClWoAAAADEArLQts9uzvqqKMkSRkZGTr44IPN8f3220/PPPOMLBaLli5dqt/97nf63ve+pyuuuKLX9W+66SYtWLBAd911l8455xzdeuutkiS3260333xTV199td544w1dccUVuvPOO/XFF1/o5z//ubKysgb8Of30pz/VT37yE/3zn//UFVdcoQ8//FAvvviiiouLB3zNSLKzs/XSSy9p7dq1uvrqq1VdXa37779fl112WZ/nzZs3T6+88oomTJigm266SXfffbeOPPJIrV69Oqwhw2GHHabbbrtN69ev10UXXaRzzjlH27dvT+jnAAAAYDF6rvEHAAAABsncuXPV2NioTz/9NNlTAQAA2COsVAMAAAAAAADiRKgGAAAAAAAAxIlQDQAAAAAAAIgTNdUAAAAAAACAOLFSDQAAAAAAAIgToRoAAAAAAAAQJ3uyJ5BswWBQW7duVUZGhiwWS7KnAwAAAAAAgCQxDEOtra0qLCyU1dr3WrQxH6pt3bpVxcXFyZ4GAAAAAAAAhonq6moVFRX1eZ8xH6plZGRI2v3FyszMTPJsAAAAAAAAkCwtLS0qLi4286K+jPlQLbTlMzMzk1ANAAAAAAAAMZUIo1EBAAAAAAAAECdCNQAAAAAAACBOhGoAAAAAAABAnAjVAAAAAAAAgDgRqgEAAAAAAABxIlQDAAAAAAAA4kSoBgAAAAAAAMRpzIZq5eXlmjZtmg477LBkTwUAAAAAAAAjjMUwDCPZk0imlpYWZWVlqbm5WZmZmcmeDgAAAAAAAJIknpxozK5UAwAAAAAAAAaKUA0AAAAAAACIE6EaAAAAAAAAECdCNQAAAAAAACBO9mRPAAkUDEjbV0qddVJqgTTxGMlqS/asAAAAAAAARh1CtdGi+lnpgyukjpr/jrmLpBnLpOJFyZsXAAAAAAAYfVjYQ6g2KlQ/K608Q5IRPt5Ru3v8mGcI1gAAAAAAQGKwsEcSNdVGvmBg9zdyz0BN+u/YB1fuvh8AAAAAAMCeCC3s6R6oSf9d2FP9bHLmlQSEaiPd9pW9v5HDGFJHteo/fUb19fVqampSe3u7/H6/DCNSEAcAAAAAABDB/y3sMVjYI4ntnyNfZ11Md+vaVaFdqg8bs1qtSklJkdPpVEpKinlzOp1yOByyWCyDMWMAAAAAADCMGYahQCAgr9errq4ueb1eeb1eWRvf0qSOGkVPC3Yv7NH2lVLe3KGbcJIQqo10qQUx3S0jd19Z08eb/xl8Pp+CwaA8Ho88Hk+v+1sslrCgrWf4ZrWyyBEAAAAAgJHKMAz5fL6w0Cx06+rqUjAY7HXOuNa+dsp1E+MCoJGOUG2km3jM7mKAHbWKXFfNIrmLlL3vt5TdrQtHMBjs9R+m+8eGYairq0tdXV0RH9bhcEQM3JxOp2y2sdXtAwAAAACA4Si02izSa3+fz9dvWaier/3d7mlSLLlajAuARjpCtZHOatvdXWPlGZIsCg/W/m9B5oz7erW1tVqtcrlccrlcvS4ZSqsjhW2htNrn88nn86m9vb3X+TabLeLqNqfTKbvdzrZSAAAAAAASwDAM+f3+qMGZ3+/v8/yeu9R6lofqtUtt4gLp0/4X9mjiMQn7HIezMRuqlZeXq7y8XIHAKCieV7xIOuaZKO1s74u7nW33/1Tp6elhx0L7qiOFbaH/sIFAQJ2dners7Ix67Wh13NhWCgAAAADAf4UWtkTbptnfajObzdbrNXjoFnc99QEu7BmtLMYYbwHZ0tKirKwsNTc3KzMzM9nT2TPBwO5igJ11u5daTjxmyL+R93RpaV913NhWCgAAAAAYjfpavOLz+fo9P1JgFno9PSivpaufjbCwp3hAC3uGm3hyIkK10RSqDXOGYUSt4RZLum6326NuK7XZbGwrBQAAAAAMS93LLEV6XdzfLjqr1Ro1NEvarq9hsLBnMMSTE43Z7Z8YehaLRU6nU06nUxkZGWHHuu8DjxS4BQIB+f1++f1+dXR09Lp26AdMtG2lBG4AAAAAgMHUvSFgpK2asS4kibRVc1jWJ7fapLy5yZ5FUhGqYViwWCxyOBxyOBxKS0vrdTy0rbT7D6buS2GDwaA8Ho88Hk/Ea/e1rZQ6bgAAAACA/sRSY7wv0V6bhjpsUvJo5CFUw4hgs9mUmpqq1NTUXse6vxsQ6R0BwzDU1dWlrq6uiNfu2SK4e+Bmt/NfBAAAAADGiu5liyK9zgwGg32eb7PZ+tymOexWm2GPkBhgxLNarXK5XHK5XL2Odd+3HundhFAXFZ/Pp/b29l7nd/+B2HMJLj8QAQAAAGDk6d5gr+frxFga7IUWZkTapkm977GFUA2jWvfltenp6WHHQkt3o20r9fv9CgQC6uzsVGdnZ9RrR6vjxrZSAAAAABh6oZrdkeqaxbNNM1JoRgkhdEeohjHLYrHIbrfLbrfL7Xb3Ot793YuewVvo3Yu+tpX2VceNvfIAAAAAMHA9ywD1fN0Wa1OASK/bhmVTAAxLhGpAFH3Vceu5z77nSrfuxyPp/gO857sf/AAHAAAAMNZ131kUbZtmX0LN8KK97mKhAxKBUA0YAIvFIqfTKafT2etYaKlxtMAtEAjI7/fL7/ero6Oj1/lWq7XPbaUEbgAAAABGg75qYHu9XgUCgT7Pj/baKXTjtRMGG6EakGChd0QcDofS0tJ6He+rjpvP51MwGJTH45HH44l47b62lbK3HwAAAMBw0rOsTs9bLNs0I4VmTqeTpgBIOkI1YIj1ta20Z12Anu/W9FfHrfvy5p6Bm93Of3cAAAAAidVzp07P1zGxNgWItk2ThQMYzniVDQwjVqtVLpdLLper17HuS6MjrXQLBoPy+Xzy+Xxqb2/vdb7NZov6i4ptpQAAAACiCb3WiLZNMxgM9nk+r0UwWhGqASNE93dweupexDPStlK/369AIKDOzk51dnZGvXa0Om68OwQAAACMbpFeT3S/9cfhcPS5TRMYjQjVgFHAYrHIbrfLbrfL7Xb3Ot6zjkH3X5Q+n6/fbaV91XHjFyQAAAAw/PXc+RJ6XeDz+cyGan0JNWuL9NqAN+IxVhGqAWNAX3XcDMPos45b9zpvkdjt9qhLue12O0u5AQAAgCESS43mvvDcHogPoRowxoXecXI6nb2O9Sw62nNraSAQkN/vl9/vV0dHR6/zo7W4Dr2bxS9lAAAAIHbRyr5034XSF4vFYjY3i7TqjF0oQHwI1QBEFfql63A4lJaW1ut4X3XcfD6fgsGgPB6PPB5PxGv3ta2U5eMAAAAYi0LbNCOFZqEGZX2xWq19btPkjW0gcQjVAAxYX9tKey497xm+9VfHLfQOWqTAzW7nRxcAAABGrlhqHvelr+fKNpuN4AwYImP2lWl5ebnKy8v7LcYIYGCsVqtcLpdcLlevYz2LpPZc6RZq2e3z+dTe3t7rfFpyAwAAYDjrq4yK1+uV3+/v8/zuuzoirTpjVwcwPFiM/iLwUa6lpUVZWVlqbm5WZmZmsqcDjHnR6kSE/h7rE5Boddx4AgIAAIBECL0RHG2bZn8vtW02W8TAjDeKgeSKJycasyvVAAxPFotFdrtddrtdbre71/GeS+V71nHrb1tpX3XcKMwKAACA7rqvNov03LM/PPcERjdCNQAjSl913AzD6LOFePc6b5HQQhwAAGBs6assidfr7bdcUKjbfbTnkDx/BEY3QjUAo4bFYpHT6ZTT6ex1rK+6Fl1dXQoEAvL7/fL7/ero6Oh1fugJU7RtpTxhAgAAGJ66v7Eaaatmf9s0Q2+8RtqqyRuvwNhGqAZgTLBYLHI4HHI4HEpLS+t1PFIdt9DHPp9PwWBQHo9HHo8n4rX7WtpPHTcAAIDB0/PN04HW5I30XM7hcLBNE0BUhGoAoL63lXZ/dzPSu5z91XHrq+W53c6PYQAAgP5EKvPRvUlAMBjs8/zu3eN7Ph9j1wGAgeLVHAD0w2q1yuVyyeVy9TrWVx2Orq4usyuUz+dTe3t7r/O7P8HruaWAJ3gAAGAs6d6QqufugVBDqr6E3siMtk0TABKNnywAsAe6bxfoyTCMPreV+v1+BQIBdXZ2qrOzM+q1o9VxY1spAAAYSXq+GdnzuVF/TQF4bgRguCFUA4BBYrFYZLfbZbfb5Xa7ex3v/m5spBbt/W0rpUU7AAAYbiKVzej+HCfWpgA9AzOn00lTAADDDqEaACRJX3XcItUN6f5x9yeskXR/Qtrz3VyekAIAgIHqvhI/2jbNvoSaR0V7nsIbgwBGEkI1ABiGLBaLnE6nnE5nr2M9O1z1fDLr9/vNW0dHR6/zrVZrn1snCNwAABjbum/TjFTCor+mADzXADBWEKoBwAgTeofX4XAoLS2t1/G+6rj5fD4Fg0F5PB55PJ6I1+5rWym1SgAAGB2ilaEIhWmxNgWI9LzBZrMRnAEYEwjVAGCU6WtbaaQ6J93Dt/7quPV8At09cKOrFgAAw0fPle09f+f7/f4+z+/5RlvPVWe80QYAhGoAMKZYrVa5XC65XK5ex3p25Oq50i0QCMjn88nn86m9vb3X+TabLeoTb7Z6AACQeMFgMOo2zVAN1r7YbLawRgD87gaA+BCqAQAkhb8j3VP3osSRtpX6/X4FAgF1dnaqs7Mz6rWj1Vbh3W4AACILBAIRA7O+GhZ1F2mLZvdtmgCAgSNUAwD0y2KxyG63y263y+129zoerS5LqAtYf9tK+6rjxhN+AMBo1nOleM83sAKBQJ/nh5oCRPo9yhtXADC4CNUAAHusrzpuoRcLoRcIPd9t717nLRK73R51W6ndbmdrCgBg2OtZ07Tn78L+mgLwuxAAhidCNQDAoOpvW2n3Iso9X2T4/X7z1tHR0ev80Lvz0baV8iIDADAUQmUSom3T9Pl8fZ4fqft29xurtgFgeCJUAwAkjcVikcPhkMPhUFpaWq/jfdVx8/l8CgaD8ng88ng8Ea/d17ZStsMAAOLRc+V1zzeE+msKYLVaI74JRFMAABi5CNUAAMNWX9tKQx3Pur+46f73/uq4ORyOqIGb3c6vRwAYi3rWCO3+eyVUI7Qvff1usdlsBGcAMMrwqgEAMCKF3vF3Op29jvUs+txzVUEgEJDP55PP51N7e3uv8202W9TaNawmAICRK1R2INo2Tb/f3+f50bpZswoaAMYmQjUAwKjTXx23vraV+v1+BQIBdXZ2qrOzM+q1o9Vx4wUVACRXpJXM3X/mx9MUoOfPeZoCAAC6I1QDAIwpFotFdrtddrtdbre71/HuHdp6diwNbf3pa1tpX3XcKDQNAInRvclNz5/ZsTQF6G+bJgAAsSBUAwCgG6vVKpfLJZfL1etYzyLVPVdBdA/kIum++qHnSjdWPwDAf3Xfxh9pq2YgEOjz/GjdoUM3ft4CABKBUA0AgBj1t620+8qJni8C/X6/eevo6Oh1frQXgKFtpbwABDDahOpbRgvOYt2mGennJk0BAABDgVANAIAECG0ncjgcSktL63W8e0e5nh1LfT6fgsGgPB6PPB5PxGv3ta2UOm4AhqOebzb0/BkYa1MAfvYBAIYrQjUAAIaAzWZTamqqUlNTex2LVFS7+9/7q+PWV20gu51f9QAGj2EYUVfohrbF94VuywCAkWzMPtMuLy9XeXl5v/UYAAAYbFarVU6nU06ns9ex7nWFIr1oDW2f8vl8am9v73U+L1gB7KloK237qiHZXSj4j7ZNEwCAkcpi9FesYJRraWlRVlaWmpublZmZmezpAAAQM8Mw+txWGuvWqmh13NhaBYwNPcP7nls1+3sT2mKxRGwIwM8SAMBIFE9ONGZXqgEAMNJZLBbZ7XbZ7Xa53e5ex7t3I+3ZsdTn8/W7rbSvWkasLgFGlu4/D6JtM+8L3YsBAOiNUA0AgFHKarXK5XLJ5XL1OhZamRKtjlv3F+CR8AIbGF76WrkaCtL7Emq2Eu3/NUE6AAC9EaoBADAGde+q11Okjn3dX6D7/X7z1tHR0et8q9Xa57ZSAjdgYCKF4d3/j/bXFCBUvzHaNk3+bwIAEB9CNQAAECa0YsXhcCgtLa3X8b7quPl8PgWDQXk8Hnk8nojX7mtbKbWXMNZ1///V8/9ZaNt2X3p2A+7+f8xmsxGcAQCQQIRqAAAgLjabTampqUpNTe11LBgM9rmttL86bj0Dge6Bm93O0xaMfLGsBO1Lz2C658ozgmkAAIYOz04BAEDChLaXOZ3OXscidRjsHiYEAgH5fD75fD61t7f3Ot9ms0UNEti6huEkUrjc/dbfNk2bzRZxmybf6wAADC+EagAAYEj0V8etr22lfr9fgUBAnZ2d6uzsjHrtaHXcWL2DRAsEAlFrm/XXFEDq3V235zZNAAAw/BGqAQCApLNYLLLb7bLb7XK73b2Od+9GGqmOW3/bSvuq40aAgUhiWVnZl1DDjkjfdwS9AACMDoRqAABg2LNarXK5XHK5XL2OReuIGPq4eyAXid1uj7qt1G63s9VuFOv+vdEzNAvVAOxL6Hsn0lZNvncAABj9CNUAAMCI1t+20v6KwoduHR0dvc4PrTaKtq2U0GR4C20rjrZNM96mAD1vrHIEAGBsI1QDAACjlsVikcPhkMPhUFpaWq/jfdVx8/l8CgaD8ng88ng8Ea/d17ZStvcNDcMwIjYD6L5SsS/dG2BE2qZJcAoAAKIhVAMAAGOWzWZTamqqUlNTex2L1sEx9HF/ddwcDkfUwM1u5ylYPLqHnz0D0FBNvb6E/i0ibdO02WwEZwAAYEB4RgcAABCB1WqV0+mU0+nsdSyWIvY+n08+n0/t7e29zu++Oqpn0DMWV0eFtulG2qYZ2qbbl2jdX1k1CAAABhOhGgAAQJz6q+MWbVtpaGVVIBBQZ2enOjs7o147Wh23QQmIggFp+0qps05KLZAmHiNZE1svrGdTgEgr//rSvaFEz68LTQEAAEAyEKoBAAAkkMVikd1ul91ul9vt7nW8e7gUaWVWf9tK+6rjNqDC+dXPSh9cIXXU/HfMXSTNWCYVL4r5Mj3DxJ6fo8/n6/P8UP27aCv4aAoAAACGG0I1AACAIWS1WuVyueRyuXodC20rjVbHrXsgF0n31Vw9Q6mIq7mqn5VWniGpxyqxjtrd48c8Exasdd/2GikQDAQC/X7ufW3TZLUZAAAYSQjVAAAAhon+tpX6/f6oddz8fr956+jo6HV+r0DLYVP2+z+SRYZ6R1mGDFkUfO9H2maZKa8vELaSri92uz1iaOZ0OmkKAAAARhVCNQAAgBEgtD3S4XAoLS2t1/G+6riFVrl5PB55PB5JUlrb+5rg2Rr98WTI1rVVnqpX1Z5+WNg8om0/pSkAAAAYSwjVAAAARgGbzabU1FSlpqb2OhYMBnttK3V09e5KGskEt1fZRUVjujspAABAJIRqAAAAo5zVapXT6ZTT6fzvoO0g6Yv+zx1XMFUaP37wJgcAADBCsT4fAABgLJp4zO4unxEqqu1mkdzFu+8HAACAXgjVAAAAxiKrTZqx7P8+6Bms/d/HM+7bfT8AAAD0QqgGAAAwVhUvko55RnJPCh93F+0eL16UnHkBAACMANRUAwAAGMuKF0mTTpG2r5Q666TUgt1bPlmhBgAA0CdCNQAAgLHOapPy5iZ7FgAAACMK2z8BAAAAAACAOBGqAQAAAAAAAHEiVAMAAAAAAADiRKgGAAAAAAAAxIlQDQAAAAAAAIhTXN0/N2zYoL/+9a9auXKlKisr1dHRoYkTJ+rQQw/V/Pnzdfrpp8vpdA7WXAEAAAAAAIBhwWIYhtHfnT788ENdc801WrVqlY466igdfvjhKiwsVGpqqnbu3KlPP/1UK1euVEtLi6655hpdeeWVIyZca2lpUVZWlpqbm5WZmZns6QAAAAAAACBJ4smJYlqpdvrpp+vqq6/WM888o3HjxkW935o1a7Rs2TLdc889+ulPfxrXpAEAAAAAAICRIqaVaj6fTw6HI+aLxnv/ZGKlGgAAAAAAAKT4cqKYGhXEG5CNlEANAAAAAAAAGIi4un92dnZq1apV+vzzz3sd83g8evTRRxM2MQAAAAAAAGC4ijlU27Rpk6ZOnaqvf/3rOvDAAzVnzhzV1dWZx5ubm3XxxRcPyiQBAAAAAACA4STmUO3aa6/VAQccoIaGBm3cuFEZGRk66qijVFVVNZjzAwAAAAAAAIadmEO1t99+W7/4xS+Uk5OjvffeW88//7zmz5+vY445Rl999dVgzhEAAAAAAAAYVmIO1To7O2W3282PLRaLHnzwQS1cuFBz5szRpk2bBmWCAAAAAAAAwHBj7/8uu+2///5au3atpk6dGjZ+//33S5K+9a1vJXZmAAAAAAAAwDAV80q10047TU888UTEY/fff7/OOeccGYaRsInFqrq6WnPnztW0adN00EEH6emnnx7yOQAAAAAAAGBssRjJSMISqK6uTvX19TrkkEO0bds2zZgxQ5s2bVJaWlpM57e0tCgrK0vNzc3KzMwc5NkCAAAAAABguIonJ4p5+2dPXV1dkiSn0znQSyREQUGBCgoKJEn5+fnKycnRzp07Yw7VAAAAAAAAgHjFvP1Tkl599VUtWLBA2dnZcrvdcrvdys7O1oIFC/Taa68NaAJvvfWWFi5cqMLCQlksFj333HO97lNeXq6ysjK5XC4dccQReu+99yJe64MPPlAgEFBxcfGA5gIAAAAAAADEIuZQ7c9//rMWLFigrKws3XvvvXrhhRf0wgsv6N5779W4ceO0YMECPfbYY3FPoL29XQcffLDKy8sjHn/yySe1ZMkS3Xzzzfrwww918MEHa/78+WpoaAi7386dO3XBBRfoD3/4Q5+P19XVpZaWlrAbAAAAAAAAEI+Ya6rtu+++uuKKK7R48eKIxx944AHde++9+uKLLwY+GYtFf/vb33TqqaeaY0cccYQOO+wws8toMBhUcXGxfvSjH+m6666TtDsoO/7443XZZZfpO9/5Tp+Pccstt+jnP/95r3FqqgEAAAAAAIxt8dRUi3mlWlVVlebNmxf1+De+8Q3V1NTEPssYeL1effDBB2GPa7VaNW/ePK1Zs0aSZBiGLrroIh133HH9BmqSdP3116u5udm8VVdXJ3TOAAAAAAAAGP1iDtWmT5+uhx56KOrxhx9+WNOmTUvIpEIaGxsVCASUl5cXNp6Xl6dt27ZJklavXq0nn3xSzz33nA455BAdcsgh+uSTT6Je0+l0KjMzM+wGAAAAAAAAxCPm7p/33HOPTj75ZL3yyiuaN2+eGXTV19drxYoV+uqrr/Tiiy8O2kSjOfrooxUMBof8cQEAAAAAADB2xRyqzZ07V59++qkefPBBvfPOO+ZKsfz8fJ144on6wQ9+oLKysoROLicnRzabTfX19WHj9fX1ys/PT+hjAQAAAAAAALGKOVSTpLKyMv3yl78crLn0kpKSohkzZmjFihVm84JgMKgVK1bo8ssvH7J5AAAAAAAAAN3FFaoNhra2Nn355Zfmx1u2bNG6des0fvx4lZSUaMmSJbrwwgs1c+ZMHX744brvvvvU3t6uiy++OImzBgAAAAAAwFi2R6HaSSedpD/96U8qKCgY8DXWrl2rY4891vx4yZIlkqQLL7xQjzzyiM4++2xt375dN910k7Zt26ZDDjlEr7zySq/mBQAAAAAAAMBQsRiGYQz05IyMDK1fv15TpkxJ5JyGRHl5ucrLyxUIBLRp0yY1NzfTCRQAAAAAAGAMa2lpUVZWVkw5kXWI5jTsLF68WJ9//rnef//9ZE8FAAAAAAAAI8weh2oWiyUR8wAAAAAAAABGjLhqqlmt1l4h2t577y1JMgxDFotFgUAgcbMDAAAAAAAAhqG4QrUtW7aYfzcMQwcccIBeeukllZaWJnxiAAAAAAAAwHAVV6jWMzyzWCwqKioiVAMAAAAAAMCYMmYbFQAAAAAAAAADFddKtZ5KS0vlcDgSNRcAAAAAAACMAB6PT3fc/7y+qKvVPgWT9NPLF8rlGlsZkcUwDCPZk0iG8vJylZeXKxAIaNOmTWpublZmZmaypwUAAAAAADCsXXr9H7W86xYZWVvNMUtzoS523qKHfnFZEme251paWpSVlRVTTjRmQ7WQeL5YAAAAAAAAY9ml1/9RDzu/L8mQLN0OGLs/uKTr9yM6WIsnJxpQTbXHHntMRx11lAoLC1VZWSlJuu+++/T3v/99IJcDAAAAAADAMNfe7tEj3lvUK1CTJMvuNVvLu34uj8c31FNLirhDtQcffFBLlizRggULtGvXLgUCAUnSuHHjdN999yV6fgAAAAAAABgCgUBAzc3Nqqmp0caNG/XRRx9pzZo1evPNN/Xaa6/ptkfKFczc2jtQC7EYMrJqdcf9zw/pvJMl7kYFv/3tb/XHP/5Rp556qu68805zfObMmVq6dGlCJwcAAAAAAIDE8Hq9amtrU2trq9rb29XZ2amuri55vV75/X75/f4+z2/saorpcb6oq03EdIe9uEO1LVu26NBDD+017nQ61d7enpBJAQAAAAAAID4ej0etra1qa2sLC818Pp/8fr+527A/NptNDodDDodDTqdTqampcrvdylm/I6bz9ymYtCefxogRd6g2efJkrVu3TqWlpWHjr7zyiqZOnZqwiQEAAAAAAGC3QCCgrq4utbS0qLW1VZ2dners7JTX6zVDs2Aw2O91LBaLbDab7Ha7nE6nGZqlpaUpIyNDmZmZstlsEc+95Yoi3fXTa2Rk1pk11MIYFllaCvXTaxfu6ac7IsQdqi1ZskSLFy+Wx+ORYRh677339MQTT+gXv/iF/vSnPw3GHAEAAAAAAEa1QCAQtjWzo6NDXV1d6urqMrdmGkaEIKsHi8Uiu90uh8OhlJQUuVwupaamKj09XZmZmXK73VFDs/64XA5d7LxFD+v7u7t9dg/W/q/758XOm+VyOQZ0/ZEm7lDtu9/9rlJTU3XjjTeqo6ND5557rgoLC7Vs2TJ9+9vfHow5AgAAAAAAjGihJgCtra3q6OgwQ7NQPbNAIBBTaGa1Ws3QzOl0yuVyye12Kz09XVlZWUpNTR3Uz+OhX1wmXS8t77pFRtZWc9zSUqiLnTfvPj5GWIxY/sWi6OjoUFtbm3JzcxM5pyFRXl6u8vJyBQIBbdq0Sc3NzcrMzEz2tAAAAAAAwAjk9XrV3Nxs1jPzeDy9QrNYhLZmpqSkmKFZWlqaGZqlpKQM8mcSG4/Hpzvuf15f1NVqn4JJ+unlC0fFCrWWlhZlZWXFlBPtUag2GsTzxQIAAAAAAGOPYRjyeDxmaNbR0WGGZgOtZ9Z9a6bb7VZmZmaf9cwwNOLJieLe/hnNhg0bdNJJJ+mrr75K1CUBAAAAAAAGXSAQUEdHh1paWsx6Zh6Px2wCEAgEYg7N7HZ7WBMAt9uttLQ0ZWZmKi0tjdBsFElYqOb1elVZWZmoywEAAAAAACREIBBQa2urmpub1dHRoc7OTjM029N6ZqmpqcrIyFBGRoZcLheh2RgSc6i2ZMmSPo9v3759jycDAAAAAAAQL6/Xq9bWVrW0tJih2Z7UM+semqWlpYWFZkBIzKHasmXLdMghh0TdT9rW1pawSQEAAAAAAIR0dnaqtbVVra2tZhOA0NZMn88X09ZMSebWzFATgNTU1LDQzOEY+YX2MXRiDtX23ntvXXXVVTr//PMjHl+3bp1mzJiRsIkBAAAAAIDRLxAIqLOz09yaGVppFlplFk8TgO6hWWhrZnp6utLT05WRkcHWTCRUzKHazJkz9cEHH0QN1SwWS0z7jwEAAAAAwNgRqmfW2tqqtra2sK2ZoSYA8dQzCzUBcLlcZhOArKws6plhyMUcqt1zzz3q6uqKevzggw+OebklAAAAAAAYHUL1zLpvzfR4PPL5fOZKs1hYrVY5HI6wemZut1uZmZnUM8OwFHOolp+fP5jzAAAAAAAAw1D3emadnZ3q6OgwV5nF0wSg+9bMlJQUud1upaammqFZSkrKIH8mQGLFHKoBAAAAAIDRJVTPLLQ1s6OjI6wJQDz1zGw2mxwOh9kEwO12h600Y2smRpuEhWrr16/X1772tZgT6mQrLy9XeXn5iJkvAAAAAADxCgQCamtrC6tnFgrNQlszY61nFgrNnE6nGZqFGgC43W5CM4w5FiNB3QXWr1+vQw89dMTVVWtpaVFWVpaam5uVmZmZ7OkAAAAAABAzv9+vlpYWs55Z9yYAA6ln1r0JQFpamtkEIDU1dZA/E2B4iCcninml2qJFi/o83tzcLIvFEuvlAAAAAABAP7q6utTc3GxuzQyFZvHWMwutMgutNEtNTZXb7VZGRoYyMzOpZwYMQMyh2vPPP6/jjz9eeXl5EY+zjRIAAAAAgNgZhqHOzk41Nzervb3dDM0SWc8sFJqxNRNIvJhDtalTp+r000/XpZdeGvH4unXr9MILLyRsYgAAAAAAjGSBQEDt7e29mgD4fD4zNIulIpPFYpHdbu8VmoXqmaWlpRGaAUkQc6g2Y8YMffjhh1FDNafTqZKSkoRNDAAAAACA4czv96u1tVUtLS3q6OhQR0dHWD2zQCAQcxOAUGgWqmfWPTRLTU2V1Wodgs8IQDxiblTQ1dWlQCAgt9s92HMaUjQqAAAAAABE4vV6w+qZdXR0yOv1hoVmsbDZbGGhWfd6ZhkZGXK5XIP8mQCI1aA0KnA6nXs8MQAAAAAAhoNQPbOWlpawrZndQ7N465k5HA65XC65XC5zlVl6erocDscQfEYAhlrMoVpIIBAI26v97rvvqqurS7NmzeIHBQAAAABgWAgEAuro6FBLS4vZBCAUmvl8PgUCgZhDM7vdLrvdrpSUFHNrZlpamjIzM6lnBoxhMYdqdXV1OvPMM/XOO+/oqKOO0nPPPafvfOc7eumllyRJ++yzj9544w0VFBQM2mQBAAAAAJD+W8+sra1NbW1t6uzsDGsCEG89M7vdLpfLJafTqbS0NLndbmVlZVHPDEBUMYdq1157rQzD0N/+9jf95S9/0cknnyybzabq6moFAgGde+65uv3223X//fcP5nwBAAAAAGOA1+s1t2a2t7fL4/GYK832pJ6Zy+VSWloa9cwA7LGYQ7XXXntNzz77rI488kgdddRRysnJ0auvvqpJkyZJkm699VZddtllgzZRAAAAAMDoEKpn1tbWptbWVjM0C9UzCwQCMYVmoXpmoa2ZoSYA3UMzyhQBGCwxh2pNTU1mgDZ+/Hi53W6Vlpaax/fee2/V1dUlfoaDpLy8XOXl5TG/uwEAAAAAiE0gEFBnZ6e5PbNnPbN4mgD0rGcWCs0yMzOVnp5OPTMASRNzqJabm6u6ujoVFxdLki6//HKNHz/ePN7U1KS0tLTEz3CQLF68WIsXLzZbpQIAAAAAYhMIBNTW1hbWBKCrqyusCUCs9cxCnTNDWzNDTQCysrLkcrkIzQAMWzGHaocccojWrFmjww8/XJJ05513hh1ftWqVDjrooMTODgAAAAAw5Px+v5qbm9Xa2qqOjo6ITQBiEamemdvtVnp6uhmaAcBIFXOo9ve//73P44cddpjmzJmzxxMCAAAAAAyurq4uNTc3m1szOzs7zZVm8dQzs1qtcjgcZmjWvZ5ZZmYm9cwAjGoxh2r9Ca1gAwAAAAAkTyAQ6BWaJaKemdPplNvtltvtVmZmpjIyMtiaCWBMS1ioVldXJ5/Pp5KSkkRdEgAAAADQQyAQUHt7u1paWtTW1tZra6bf74+pnlkoNHM4HGYTgNDWzMzMTKWmphKaAUAfEhaqHXfccdq0aRPdNAEAAABgD/j9frW0tJj1zLo3AfD7/fL7/TFdx2q1htUzS01NDatnlpKSIqvVOsifDQCMXgkL1R599FF1dHQk6nIAAAAAMCp1dXWFhWahemahVWbxNgEIbc0M1TNLT09Xeno6TQAAYJAlLFQ77LDDEnUpAAAAABiRDMNQZ2enmpub1d7ervb2dnV1dYWFZrHWM7PZbGYTAJfLJZfLpfT0dLMJAFszASC5EhaqAQAAAMBoFwgE1NHRoebmZnNrZs8mAAOpZxZqAhCqZ+Z2uwnNAGCYS1iotn79en3ta1+jphoAAACAEcvv96u1tVWtra1qb2/v1QQgEAjEFJr1rGfWswmAy+WinhkAjHAJXakWyy8XAAAAAEiWrq6usNDM4/GENQGIt55Z9yYAoXpmGRkZ1DMDgDEg5lBt0aJFfR5vbm6WxWLZ4wkBAAAAwECE6pm1traqra0tLDQbSD2zUBOAUD2ztLQ0ZWRkKCMjQw6HYwg+IwDAcBZzqPb888/r+OOPV15eXsTjbPsEAAAAMJhC9cxaWlrU3t6ujo6OXk0A4q1nFmoCkJqaqoyMDLNzJvXMAAD9iTlUmzp1qk4//XRdeumlEY+vW7dOL7zwQsImBgAAAGBs8fv9amtrM7dmhpoA7Ek9s9BKs7S0NLndbmVlZSk1NZV6ZgCAPRZzqDZjxgx9+OGHUUM1p9OpkpKShE0MAAAAwOji9Xp71TPrGZrFomc9s+5NALKysqhnBgAYEhYjxu4CXV1dCgQCcrvdgz2nIVFeXq7y8nIFAgFt2rRJzc3NyszMTPa0AAAAgBHJMAx1dXWpublZ7e3tvZoABAKBmEKznvXMUlJS5Ha75Xa7lZGRoczMTOqZAQAGTUtLi7KysmLKiWIO1UareL5YAAAAwFgVCATk8XjM0Cy0NTNUzywQCMTcBMBut5uhmdPplNvtVlpamjIzM6lnBgBIqnhyopi3f0Zy0kkn6U9/+pMKCgr25DIAAAAAkszv96u9vb1XEwCv1yu/3x9XE4BQAwCHw6HU1NSw0MztdlPPDAAwKuxRqPbWW2+ps7MzUXMBAAAAMEh8Pp9aWlrU2tqqjo4OdXZ29grNYtG9nllKSooZmlHPDAAw1uxRqAYAAAAg+UL1zFpaWtTW1hZWz8zn88nv98dcz8xqtZqrzJxOp1JTU5WWlmaGZtQzAwBgtz0K1UpLS/mlCgAAAAwywzDU0dFhhmahrZndQ7OB1jNLTU1Venq6MjIylJGRQT0zAABitEeh2qeffpqoeQAAAABjViAQMOuZdXR0qL293QzN4q1n1n1rpsvlCqtnlpaWRj0zAAAShO2fAAAAwCDz+/1qaWkxQ7Oe9cwCgUBMoZnVajVXmYXqmaWmppqrzFwuF6EZAABDZEChWmZmptatW6cpU6aE/R0AAAAYawzDkNfrDWsCEKpn1j0060+onln30MztdsvtdpuhmdPpHILPCAAAxGJAoVr3d9FieUcNAAAAGKkMw1BnZ6daW1vV2toatjUz3npmNpvNbALgcrnMzpmZmZlKT0+nXjEAACMI2z8BAAAwpvWsZxZaaeb1es3QbKD1zEJNADIzM+V2u2kCAADAKEKoBgAAgFHN7/erra1NLS0tam9vV2dnpzwej3w+n3w+X9z1zEKhWWiVWVpamrKysqhnBgDAGEOoBgAAgBGtq6srbGtmqJ5Z99AsFjabzQzNnE6nXC6X0tPTlZGRofT0dLlcrkH+TAAAwEhCqAYAAIBhq2c9s87OTrNz5kDqmYWaADidTqWmpiotLY16ZgAAYEAI1QAAAJA0gUBAHR0dam1tVVtbmxmaheqZBQKBmEMzu91uhmYul8vsnJmVlaW0tDTqmQEAgIQiVAMAABjjPB6f7rj/eX1RV6t9Cibpp5cvlMuVmFVboXpm3UOzrq4ueb1e+f3+mJsA9Kxn5nK5lJaWRj0zAACQNAMK1c4//3xlZmb2+jsAAABGlkuv/6OWd90iI2urlCmpXfrfnxbqYucteugXl/V7vs/nU0tLi1pbW83OmV6vNyw0i0WkemZpaWlm50zqmQEAgOHGYsTy1uAo1tLSoqysLDU3NxMOAgCAMeXS6/+oh53fl2RIlm4HjN0fXNL1O5XffEFYaNZ9a6bf74+pCYDFYpHVajVXmYU6Z6alpSkjI0OZmZnUMwMAAMNCPDlR3CvVbr31Vi1dulRutztsvLOzU7/61a900003xXtJAAAADDGPx6flXbdIzh6BmiRZDMmw6CnHTTptxSTZ+6lFFqmeWffQLCMjg3pmAABg1Il7pZrNZlNdXZ1yc3PDxnfs2KHc3NyYW5YPF6xUAwAAo5VhGAoEAuZ2zNDN5/PpsX/9Szdv+0G/17hu4t2au9cBcjgcstvtcjqdcjqdcrvdZmDmdrupZwYAAEaFQV2pZhiGLJaeb2dK69ev1/jx4+O9XNKUl5ervLx8xIWAAAAA3UULzUJ/j9Q50+/3q6a9Nqbrb9ls1+0/OJ7QDAAAoIeYQ7Xs7GxZLBZZLBbtu+++YcFaIBBQW1ubfvCD/t/tHC4WL16sxYsXmwkkAADAcBQIBMJCsp6hWSxvEIa2ZQYCATU1Nam9vV2OzokxPf6+BcUEagAAABHEvP3zz3/+swzD0CWXXKL77rsvLIhKSUlRWVmZZs2aNWgTHSxs/wQAAMkUDAZ7hWbdg7NYumeGQrPujQBCN5vNpsbGRtXU1Kitrc08x2pzaO5zZ8nIqNtdQ60nwyJLS6E67tgil4smAgAAYGwYlO2fF154oSRp8uTJOuqoo2S3x71zFAAAYMwxDCNiaBa6xRKa2Ww2MyTrGZw5HI6ITQD8fr9qampUV1enrq4uczwzM1MlJSXKycnRxS/doof1/d3dPrsHa//X/fNi580EagAAAFHEnYzNmTNHmzdv1vLly7V582YtW7ZMubm5evnll1VSUqLp06cPxjwBAACGpe6hWbQVZ/2xWq1RQ7PQarNYeTweVVZWqqGhwdwaarFYlJOTo9LSUqWnp5v3fegXl0nXS8u7bpGRtdUct7QU6mLnzbuPAwAAIKK4u3+++eabOvHEE3XUUUfprbfe0oYNGzRlyhTdeeedWrt2rZ555pnBmuugYPsnAADoi2EY8vv9UWua+Xw+9fd0ymKx9BuaRWoEFY+WlhZVVFSoqanJnI/dbldeXp5KS0uVkpIS9VyPx6c77n9eX9TVap+CSfrp5QtZoQYAAMakeHKiuEO1WbNm6cwzz9SSJUuUkZGh9evXa8qUKXrvvfe0aNEi1dTU7NHkhxqhGgAAY5thGP120IwlNOselvUMzux2+x6HZpEEg0E1Njaqurpara2t5rjL5VJhYaGKiopoMgAAABCHQampFvLJJ5/o8ccf7zWem5urxsbGeC8HAAAw6PoLzYLBYL/XiLTCLDTmcDgGJTSLxu/3a+vWrdq6das8Ho85npGRoeLiYuXk5BCmAQAADLK4Q7Vx48aprq5OkydPDhv/6KOPNGnSpIRNDAAAIFaBQKBXPbPuH4dqi/Ul1EEzUnDmcDiGRUjl9XpVUVGhhoYGs8GBxWLR+PHjVVpayqp7AACAIRR3qPbtb39b1157rZ5++mlZLBYFg0GtXr1aS5cu1QUXXDAYcwQAAGNcMBiM2gQg1g6aodAs2oqz4RCaRdPa2qrKykrt2LHD3Ipqs9mUl5enkpISuVyuJM8QAABg7Ik7VLvjjju0ePFiFRcXKxAIaNq0aQoEAjr33HN14403DsYcAQDAKNe9g2akWyyhmc1mi1rTzOFwxNVBczgIBoPauXOnqqqq1NLSYo47nU4VFhZq0qRJstvjfioHAACABIm7UUFIdXW1PvnkE7W1tenQQw/VPvvsk+i5DQkaFQAAMPi6h2bRVpz1x2q19ttBczQIBoOqra3V1q1b1dnZaY6np6erqKhIubm5w3pVHQAAwEg2qI0KQoqLi83Vap988omampqUnZ090MsBAIARzDAM+f3+iPXMQh/H0kGzv9BsKJsBDDWv16uqqipt27YtbGVeqF5aVlZWEmcHAACAnuIO1a688kodeOCBuvTSSxUIBDRnzhy9/fbbcrvdeuGFFzR37txBmCYAAEgmwzB6ddDsGZzFEpp1D8t6Bmd2u31Uh2bRtLW1qbKyUo2NjWH10nJzc1VaWkq9NAAAgGEq7lDtmWee0fnnny9Jev755/XVV1/pP//5jx577DHdcMMNWr16dcInCQAABl/P0KxncBYMBvu9RrQmAKE/x2JoFs2OHTtUVVWl5uZmcywlJUWFhYUqKiqiXhoAAMAwF/eztcbGRuXn50uSXnrpJZ111lnad999dckll2jZsmUJnyAAAEiMQCAQcVtm6O+BQKDfa4Q6aEYKzoZ7B83hIBgMqq6uTjU1NWH10tLS0lRUVKS8vDy+hgAAACNE3KFaXl6ePv/8cxUUFOiVV17Rgw8+KEnq6OgYNQWCAQAYiYLBYNQmALF20AyFZpG6Z6akpBD4DJDX61V1dbW2bdsW1pQhOztbJSUl1KUFAAAYgeIO1S6++GKdddZZKigokMVi0bx58yRJ7777rvbff/+ETxAAAOzWvYNmpOAslg6aNpstaiMAh8PBG2QJ1t7ebtZLC22ftVqtmjhxokpLS+V2u5M8QwAAAAxU3KHaLbfcogMPPFBVVVU688wz5XQ6Je1+kn7dddclfIIAAIwV3UOzaNs0+2O1WvvtoInB19TUpMrKSu3atcscS0lJUX5+voqKipSSkpK8yQEAACAhYgrVxo8fr02bNiknJ8esnZaRkRF2nwsvvHBQJggAwGhhGIb8fn/E0Cw0FksHzf5CM5oBJEcwGNS2bdtUU1Ojjo4Oc9ztdquoqEj5+flsnwUAABhFLEZ/z94lpaen6+OPP9aUKVNks9m0bds2TZw4cSjmN+haWlqUlZWl5uZmZWZmJns6AIARzDCMsA6akYKzWEKz7mFZz+DMbrcTmg0zfr9f1dXVqqurC1tNOG7cOBUXF2vChAlJnB0AAADiEU9OFNNKtVmzZunUU0/VjBkzZBiGfvzjHys1NTXifR9++OH4ZwwAwAjRPTSLFJyF6mb1JVoTgNDfCc1Ghs7OTlVUVGj79u1h9dJycnJUWlqqtLS0JM8QAAAAgymmUO3//b//p3vvvVebN2+WJDU3N8vj8QzqxAAASIZAIBC1npnX61UgEOj3GqEOmpGCM4fDwRbAEa6pqUlVVVVqamoyxxwOh/Lz81VcXEy9NAAAgDEipu2f3U2ePFlr164dNVsZ2P4JAGNLMBiMWs/M6/XK7/f3ew273R61e2ZKSgqh2SgUDAbV0NCg6upqtbe3m+OpqakqKipSQUEB/+4AAACjQMK3f3ZvVHDsscfyDiwAYNjq3kEzUnDm8/n6vYbNZovaCMDhcNBBcwzx+/2qqalRXV2durq6zPGsrCwVFxcrJycnibMDAABAMtGogJVqADCidA/NIm3TjKWDptVqjRqahTpoYmzzeDyqrKxUQ0ODueXXYrGY9dLS09OTPEMAAAAMBhoVAABGLMMw5Pf7o4ZmsXbQjNY9MxSa0QwAkTQ3N6uyslJNTU3m95ndbld+fr5KSkpYrQ8AAABT3I0KLBYLjQoAAANmGIbZQTPaNs1YQrOeHTO7h2Z2u53QDDELBoPavn27qqur1dbWZo67XC5NmjRJkyZNol4aAAAAehmzjQrKy8tVXl6uQCCgTZs2sf0TABIoFJpFC86CwWC/1+gZlPUM0QjNsKf8fr+2bt2q2trasHppGRkZKikp0YQJEwjTAAAAxph4tn/GHaqNNtRUA4D4BQKBqFszvV6vWYOqL3a7vc/QjDADg8Xj8aiqqkr19fVh9dLGjx+vsrIyZWRkJHmGAAAASJaE11Tr6c0339Tdd9+tDRs2SJKmTZumq6++Wsccc8xALgcAGGaCwWDEFWahMb/f3+81Qh00owVnhGYYaq2traqoqNDOnTvD6qXl5uaqpKRELpcryTMEAADASBJ3qPb//t//08UXX6xFixbpxz/+sSRp9erV+sY3vqFHHnlE5557bsInCQBIrO4dNCMFZz6fr99rhDpoRgvO6KCJ4SAYDKqxsVHV1dVqbW01x51OpyZNmqTCwkLZ7QN6jxEAAABjXNzbP6dOnarvfe97uuqqq8LGf/3rX+uPf/yjuXptpGD7J4DRqHtoFmmbps/n67cZgNVqjdg5s3sHTWC4CgaDqq2tVW1tbVhzpfT0dBUXF2vixImslgQAAEAvg1pTzel06rPPPtPee+8dNv7ll1/qgAMOGHFdQQnVAIxEhmHI7/dHDc1i7aAZqXNm99CMZgAYabxeryorK1VfX29uU7ZYLMrOzlZpaamysrKSPEMAAAAMZ4NaU624uFgrVqzoFaq99tprKi4ujvdyAIAIDMMwO2hG26YZS2jWs/h/99DMbrcTmmHUaGtrU2VlpRobG83/GzabTbm5uSotLaVeGgAAABIu7lDtJz/5iX784x9r3bp1mj17tqTdNdUeeeQRLVu2LOETBIDRqr/QLBgM9nuNnkFZzxCN0AyjXaheWnNzsznmdDpVUFCgoqIi6qUBAABg0MT9TPOHP/yh8vPzdc899+ipp56StLvO2pNPPqlTTjkl4RMEgJEqGAxG7Z7p9XoVCAT6vYbdbu8zNKMmFMaiYDCouro61dTUqLOz0xxPS0tTcXGxcnNz+b8BAACAQRd3TbXRhppqAAYqGAxGrWfm9XrNek59sdlsUUOzlJQUggGgG6/Xq+rqam3bti2sQ212drZKSkqUnZ2dxNkBAABgNEh4TTXDMNhCBGDM6d5BM1Jw1v1FfTRWqzViE4BQeEYHTaB/7e3tZr200LZoq9WqiRMnqqysTKmpqUmeIQAAAMaimEK16dOn66abbtKiRYuUkpIS9X5ffPGFfv3rX6u0tFTXXXddwiYJAIMhFJpFC858Pl+/zQCsVmvU7pmhlWa8KQEMzI4dO1RVVRVWLy0lJUUFBQUqLi6mXhoAAACSKqZno7/97W917bXX6n/+5390/PHHa+bMmSosLJTL5VJTU5M+//xzrVq1Sp999pkuv/xy/fCHPxzseQNAvwzDkN/vj9gMIPRxLB00I23LDN1sNhuhGZBAwWBQ27ZtU01NjTo6OszxtLQ0TZo0Sfn5+WyLBgAAwLAQV021VatW6cknn9TKlStVWVmpzs5O5eTk6NBDD9X8+fN13nnnjbh6JtRUA0YuwzD67aAZS2jWs/h/99DMbrcTmgFDIFQvrb6+Xl6v1xwfN26cSktLR9zzCwAAAIxM8eRENCogVAOGtf5Cs1B9pb70DMp6hmiEZkDydHR0qLKyUtu3bw+rl5aTk6OysjK53e4kzxAAAABjScIbFQDAYAkGg1G7Z3q9XgUCgX6vYbfb+wzN2CoGDD9NTU2qqqpSU1OTOeZwOJSfn6/i4uI+a7gCAAAAwwGhGoBBFQwGw4KynqGZ3+/v9xo2my1qaBZqBgBg+AsGg6qvr1dNTY3a29vNcbfbrUmTJqmgoID/zwAAABgxCNUA7JFQB81oq818Pl+/17BarRGbAITCM5vNNgSfCYDB4vf7VV1drbq6urB6aVlZWSopKdGECROSODsAAABgYAjVAPSpewfNSMGZz+eLuYNmtJvVaqWuGTAKeTweVVZWqqGhwdzKbbFYlJOTo9LSUqWnpyd5hgAAAMDAEaoBY1woNIvUCCA0Fmto1nNbZuhms9kIzYAxpLm5WZWVldq5c6c55nA4lJeXp5KSEuqlAQAAYFQYUKi2efNmLV++XJs3b9ayZcuUm5url19+WSUlJZo+fXqi5whgDxiGoUAgELV7ps/n67eDpsVi6VX8v3toZrfbCc2AMS4YDKqhoUE1NTVqa2szx1NTU1VYWKhJkyZRLw0AAACjStyh2ptvvqkTTzxRRx11lN566y3dfvvtys3N1fr16/XQQw/pmWeeGYx5AuhDIBCI2AQgdOsvNJPUKyjrGaIRmgGIxO/3q7a2Vlu3blVXV5c5npmZqZKSEo0fP54wDQAAAKNS3KHaddddp//93//VkiVLlJGRYY4fd9xxuv/++xM6OQC7BYPBqI0AvF6vWauoL3a7vc/QjBe9AOIRrV7ahAkTVFpaGvYcAQAAABiN4g7VPvnkEz3++OO9xnNzc9XY2JiQSQFjTTAY7NUxs3to5vf7+72GzWaLGpqFmgEAwJ5qaWkx66WF6i3a7Xbl5uaqrKyMemkAAAAYM+IO1caNG6e6ujpNnjw5bPyjjz7SpEmTEjYxYDQxDKPP0Mzn8/V7DavVGrEJQCg8s9lsQ/CZABiLgsGgGhsbVV1drdbWVnPc5XKpsLBQhYWFstvpfQQAAICxJe5nwN/+9rd17bXX6umnn5bFYlEwGNTq1au1dOlSXXDBBYMxR2DYC3XQjLZF0+fzxdxBM1pwRgdNAEMtGAyqpqZGW7dulcfjMcczMjJUXFysnJwcVsECAABgzIo7VLvjjju0ePFiFRcXKxAIaNq0aQoEAjr33HN14403DsYcgaQLddCM1j3T6/XGHJr13JYZGqODJoDhwuv1qqKiQg0NDeb2c4vFouzsbJWVlSkzMzPJMwQAAACSz2L0lwREUVVVpU8//VRtbW069NBDtc8++yR6bkOipaVFWVlZam5u5kXCGGYYRq9mAD2Ds/46aFosFjMwixScEZoBGO7a2tpUUVGhHTt2mG8U2Gw25ebmqrS0VC6XK8kzBAAAAAZXPDnRgAuglJSUqKSkZKCnA0MutNKsZz2z0K2/0ExSr46ZPVebEZoBGIkaGxtVVVWllpYWc8zpdKqgoEBFRUXUSwMAAAAiiPtZ8iWXXNLn8YcffnjAkwH2RM+VZj3Ds0Ag0O817HZ71A6aDoeD2kEARo1gMKitW7eqtrZWnZ2d5nh6erqKioqUm5vLzzwAAACgD3GHak1NTWEf+3w+ffrpp9q1a5eOO+64hE0M6CkYDPbZQTNU96cvNpstamiWkpLCC0gAo57X61VVVZXq6+vDOg+PHz9epaWlysrKSuLsAAAAgJEj7lDtb3/7W6+xYDCoH/7wh9prr70SMimMTYZh9BmadX/xF43Vao3aPTMlJUU2m20IPhMAGH7a29tVUVGhxsbGXvXSSkpKlJqamuQZAgAAACPLgBsV9LRx40bNnTtXdXV1ibjckKFRwdAxDEN+vz/qFk2fzxdzB82+QjPqmgHAf+3YsUNVVVVqbm42x1JSUlRQUKDi4mLqpQEAAADdDEmjgp42b94c0/Y7jF6GYZjNACJ1z/R6vTGHZpG6ZzocDjpoAkAMgsGg6urqVFtbq46ODnM8LS1NRUVFysvLY7s7AAAAsIfiDtWWLFkS9rFhGKqrq9OLL76oCy+8MGETQ/wCwYBWVq1UXWudCjIKdEzJMbJZE7vdMVpoFgrO+uugabFYzMAsUvdMOmgCwMB5vV5VV1ervr5eXq/XHM/OzlZJSYmys7OTODsAAABgdIk7VPvoo4/CPrZarZo4caLuueeefjuDYvA8u+FZXfHKFappqTHHijKLtOyEZVo0dVHM1wmFZj3rmYXGYumgGS00C40RmgFAYnV0dJj10kJvboR+P5eWlsrtdid5hgAAAMDok7CaaiPVaKip9uyGZ3XGU2fIUPg/pUW7w6tnznrGDNaCwWDURgBerzem0Mxut0ftnulwONhSBABDpKmpSVVVVWGduVNSUpSXl6fi4mKlpKQkcXYAAADAyJOUmmpIjkAwoCteuaJXoCZJhgxZZNHlL16u6bbpCvgDMdW9s9lsEZsAhG6EZgCQPMFgUPX19aqpqVF7e7s57na7VVRUpPz8fH5OAwAAAEMgplDt0EMPjXnL3ocffrhHE0J8VlatDNvy2ZMhQ3XtdVpVvUqHTTxM0u4tQf110AQADC9+v1/V1dWqq6sLq5eWlZWlkpISTZgwIYmzAwAAAMaemEK1U089dZCngYGqa62L7Y7p0t57722GZtQ1A4CRobOzU5WVldq+fbu5Rd9isZj10tLS0pI8QwAAAGBsiilUu/nmmwd7HhiggoyCmO63V95eFKoGgBGkublZlZWV2rlzpznmcDiUn59PvTQAAABgGKCm2gh3TMkxKsosUm1LbcS6ahZZVJRZpGNKjknC7AAA8QgGg2poaFBNTY3a2trM8dTUVBUVFamgoIB6aQAAAMAwEfcz80AgoLvvvluHH3648vPzNX78+LBbMpx22mnKzs7WGWeckZTHTyab1aZlJyyT9N9unyGhj+874T7ZrNRJA4Dhyu/3q6KiQu+++67+85//mIFaZmamDjjgAB1xxBGaNGkSgRoAAAAwjMT97PznP/+5fv3rX+vss89Wc3OzlixZokWLFslqteqWW24ZhCn274orrtCjjz6alMceDhZNXaRnznpGkzInhY0XZRbpmbOe0aKpi5I0MwBAXzwejzZu3Kg1a9aooqJCXV1dZr20mTNn6mtf+5pycnKSPU0AAAAAEVgMw+i9Z7APe+21l37zm9/opJNOUkZGhtatW2eOvfPOO3r88ccHa659euONN3T//ffrmWeeieu8lpYWZWVlqbm5WZmZmYM0u6ERCAa0smql6lrrVJBRoGNKjmGFGgAMQ6F6aU1NTQr9Grbb7crLy1NpaSn10gAAAIAkiScninul2rZt23TggQdKktLT09Xc3CxJOvnkk/Xiiy/GPdm33npLCxcuVGFhoSwWi5577rle9ykvL1dZWZlcLpeOOOIIvffee3E/zlhgs9o0t2yuzjnwHM0tm0ugBgDDSKhe2gcffKCPPvpIO3fulGEYcrlc2muvvTR79mzts88+BGoAAADACBF3qFZUVKS6ujpJu1et/etf/5Ikvf/++3I6nXFPoL29XQcffLDKy8sjHn/yySe1ZMkS3Xzzzfrwww918MEHa/78+WpoaIj7sQAAGGp+v19VVVV677339Pnnn6u1tVWSlJGRoWnTpunwww9XcXEx9dIAAACAESbu7p+nnXaaVqxYoSOOOEI/+tGPdP755+uhhx5SVVWVrrrqqrgncOKJJ+rEE0+MevzXv/61LrvsMl188cWSpN/97nd68cUX9fDDD+u6666L+/G6urrU1dVlftzS0hL3NQAA6I/X61VFRYUaGhrk9/slSRaLRePHj1dpaemILzkAAAAAjHVxh2p33nmn+fezzz5bpaWlevvtt7XPPvto4cKFCZ2c1+vVBx98oOuvv94cs1qtmjdvntasWTOga/7iF7/Qz3/+80RNEQCAMK2traqsrNSOHTvMemk2m015eXkqKSmRy+VK8gwBAAAAJELcoZrH4wl7QXDkkUfqyCOPTOikQhobGxUIBJSXlxc2npeXp//85z/mx/PmzdP69evV3t6uoqIiPf3005o1a1bEa15//fVasmSJ+XFLS4uKi4sHZf4AgLEhGAxqx44dqq6uDlsB7XQ6NWnSJBUWFspuj/tXLgAAAIBhLO5n+Lm5uTrttNN0/vnn6xvf+MawqAHz2muvxXxfp9M5oNpvAAD0FAwGVVtbq61bt6qzs9McT09PV3FxsSZOnDgsfk8CAAAASLy4Q7U///nPevzxx3XKKacoKytLZ599ts4//3zNnDkz4ZPLycmRzWZTfX192Hh9fb3y8/MT/ngAAMTC6/WqqqpK27ZtM+ulSTLrpWVlZSVxdgAAAACGQtxvn5922ml6+umnVV9frzvuuEOff/65jjzySO2777669dZbEzq5lJQUzZgxQytWrDDHgsGgVqxYEXV7JwAAg6WtrU2fffaZ1qxZo5qaGvn9ftlsNhUUFOjII4/UQQcdRKAGAAAAjBEWI1RFeQ98/vnnOu+88/Txxx8rEAjEdW5bW5u+/PJLSdKhhx6qX//61zr22GM1fvx4lZSU6Mknn9SFF16o3//+9zr88MN133336amnntJ//vOfXrXWBqKlpUVZWVlqbm6mExsAIKIdO3aoqqpKzc3N5lhKSooKCwtVVFREvTQAAABglIgnJxrwqwCPx6N//OMfevzxx/XKK68oLy9PV199ddzXWbt2rY499ljz41ATgQsvvFCPPPKIzj77bG3fvl033XSTtm3bpkMOOcR8PAAABkswGFRdXZ1qamrC6qWlpaWpuLhYubm51EsDAAAAxrC4V6r985//1OOPP67nnntOdrtdZ5xxhs477zx9/etfH6w5Dory8nKVl5crEAho06ZNrFQDAEjaXS+turpa27Ztk8/nM8ezs7NVUlKi7OzsJM4OAAAAwGCKZ6Va3KGa2+3WySefrPPOO08LFiyQw+HYo8kmG9s/AQCS1N7ersrKSjU2NioYDEqSrFarJk6cqNLSUrnd7iTPEAAAAMBgG9Ttn/X19crIyBjw5AAAGE6amppUWVmpXbt2mWMpKSkqKChQcXEx9dIAAAAARBT3KwUCNQDASBcMBrVt2zbV1NSoo6PDHHe73SoqKlJ+fj710gAAAAD0ibffAQBjht/vV3V1terq6uT1es3xcePGqbi4WBMmTEji7AAAAACMJIRqAIBRr6OjQ5WVldq+fXtYvbScnByVlpYqLS0tyTMEAAAAMNIQqgEARq2mpiZVVVWpqanJHHM4HMrPz1dxcbFSUlKSODsAAAAAI9mAQ7Uvv/xSmzdv1te//nWlpqbKMAxZLJZEzg0AgLgFg0E1NDSourpa7e3t5nhqaqqKiopUUFBAvTQAAAAAeyzuUG3Hjh06++yz9e9//1sWi0VffPGFpkyZoksvvVTZ2dm65557BmOeAAD0ye/3q6amRlu3bg2rl5aVlaWSkhLqpQEAAABIqLjfqr/qqqtkt9tVVVUlt9ttjp999tl65ZVXEjq5wVReXq5p06bpsMMOS/ZUAAB7wOPxaOPGjVqzZo0qKirk9XplsVg0ceJEzZw5U4ceeiiBGgAAAICEsxiGYcRzQn5+vv75z3/q4IMPVkZGhtavX68pU6boq6++0kEHHaS2trbBmuugaGlpUVZWlpqbm5WZmZns6QAAYtTc3KzKykrt3LnTHLPb7crPz1dJSQn10gAAAADELZ6cKO7tn+3t7WEr1EJ27twpp9MZ7+UAAIhZMBjU9u3bVV1dHfYmTmpqqgoLCzVp0iTqpQEAAAAYEnGHasccc4weffRR3XbbbZIki8WiYDCou+66S8cee2zCJwgAgN/v19atW1VbW6uuri5zPDMzU8XFxZowYQJhGgAAAIAhFXeodtddd+kb3/iG1q5dK6/Xq2uuuUafffaZdu7cqdWrVw/GHAEAY5TH41FVVZXq6+sVCAQk7X4zZ8KECSotLVVGRkaSZwgAAABgrIo7VDvggAO0adMm3X///crIyFBbW5sWLVqkxYsXq6CgYDDmCAAYY1pbW1VRUaGdO3cqVPrTbrcrNzdXZWVl1EsDAAAAkHRxNyoYbWhUAADDQzAYVGNjo6qrq9Xa2mqOu1wuFRYWqrCwUHZ73O8FAQAAAEDMBrVRwd57763zzz9f5513nvbZZ58BTxIAAGl3mFZbW6va2lp5PB5zPCMjQ8XFxcrJyaFeGgAAAIBhJ+5XKYsXL9aLL76o/fbbT4cddpiWLVumbdu2DcbcAACjmNfr1RdffKG3335bmzdvlsfjkcVi0fjx43XooYdqxowZys3NJVADAAAAMCwNePvnpk2b9Je//EVPPPGEtmzZomOPPVbnn3++LrjggkTPcVCUl5ervLxcgUBAmzZtYvsnAAyRtrY2VVZWqrGx0ayXZrPZlJubq9LSUrlcriTPEAAAAMBYFc/2z4TUVHvnnXf0wx/+UB9//LHZnW2koKYaAAyNxsZGVVVVqaWlxRxzOp0qKChQUVER9dIAAAAAJN2g1lTr7r333tPjjz+uJ598Ui0tLTrzzDP35HIAgFEmGAyqrq5ONTU16uzsNMfT09NVVFTE9k4AAAAAI1bcoVrPbZ/HHXecfvnLX2rRokVKT08fjDkCAEYYr9er6upqbdu2TT6fzxwfP368SktLlZWVlcTZAQAAAMCeiztU23///XXYYYdp8eLF+va3v628vLzBmBcAYARqb29XZWWltm/fbtZLs1qtZr201NTUJM8QAAAAABIj7lBt48aN2meffQZjLgCAEWrHjh2qqqpSc3OzOZaSkqKCggIVFxdTLw0AAADAqBP3qxwCNQCAtLte2rZt21RTU6OOjg5zPC0tTUVFRcrLy6NeGgAAAIBRK6ZQbfz48dq0aZNycnKUnZ0ti8US9b47d+5M2OQAAMNPqF5afX29vF6vOZ6dna2SkhJlZ2cncXYAAAAAMDRiCtXuvfdeZWRkmH/vK1QDAIxOHR0dZr20YDAoaXe9tJycHJWVlcntdid5hgAAAAAwdCxGqJL0GNXS0qKsrCw1NzcrMzMz2dMBgGGnqalJVVVVampqMsccDofy8/NVXFyslJSUJM4OAAAAABInnpwo7ppqNptNdXV1ys3NDRvfsWOHcnNzFQgE4r1kUpSXl6u8vHzEzBcAhlIwGFR9fb1qamrU3t5ujrvdbk2aNEkFBQXUSwMAAAAwpsW9Us1qtWrbtm29QrWtW7dqr732UmdnZ0InONhYqQYA/+X3+1VdXa26urqwemlZWVkqKSnRhAkTkjg7AAAAABhcg7JS7Te/+Y0kyWKx6E9/+pPS09PNY4FAQG+99Zb233//AU4ZAJBMHo9HlZWVamhoMFfwWiwW5eTkqLS0NOxnPgAAAAAgjlDt3nvvlSQZhqHf/e53stls5rGUlBSVlZXpd7/7XeJnCAAYNM3NzaqsrAzr3OxwOJSXl6eSkhLqpQEAAABAFDGHalu2bJEkHXvssXr22WeVnZ09aJMCAAyeYDCohoYG1dTUqK2tzRxPTU3VpEmTVFhYSL00AAAAAOhH3I0KXn/99cGYBwBgkPn9ftXU1Kiurk5dXV3meGZmpkpKSpSTk5PE2QEAAADAyBJ3qHb66afr8MMP17XXXhs2ftddd+n999/X008/nbDJAQD2XLR6aRMmTFBZWRn10gAAAABgAOIO1d566y3dcsstvcZPPPFE3XPPPYmYEwAgAVpaWlRRUaGmpiaFGj3b7Xbl5uaqrKyMemkAAAAAsAfiDtXa2toivhBzOBxqaWlJyKQAAAMTDAbV2Nio6upqtba2muMul0uFhYUqKiqiXhoAAAAAJEDcodqBBx6oJ598UjfddFPY+F//+ldNmzYtYRMDAMQuGAyqpqZGW7dulcfjMcczMjJUXFysnJwcwjQAAAAASKC4Q7Wf/exnWrRokTZv3qzjjjtOkrRixQo98cQT1FMDgCHm9XpVUVGhhoYG+f1+SbvrpY0fP16lpaXKzMxM8gwBAAAAYHSKO1RbuHChnnvuOd1xxx165plnlJqaqoMOOkivvfaa5syZMxhzBAD00NraqsrKSu3YscOsl2az2ZSbm6vS0lK5XK4kzxAAAAAARjeLEXo1Nka1tLQoKytLzc3NrOgAMKwFg0Ht3LlTVVVVYTUsnU6nCgsLNWnSJNntcb9XAgAAAAD4P/HkRAN69bVr1y4988wz+uqrr7R06VKNHz9eH374ofLy8jRp0qQBTXqolZeXq7y8XIFAINlTAYA+BYNB1dbWauvWrers7DTH09PTVVRUpNzcXOqlAQAAAMAQi3ul2scff6x58+YpKytLFRUV2rhxo6ZMmaIbb7xRVVVVevTRRwdrroOClWoAhiuv16uqqirV19fL5/OZ46F6aVlZWUmcHQAAAACMPoO6Um3JkiW66KKLdNdddykjI8McX7Bggc4999z4ZwsACNPW1qbKyko1Njb2qpdWUlKi1NTUJM8QAAAAABB3qPb+++/r97//fa/xSZMmadu2bQmZFACMRTt27FBVVZWam5vNsZSUFBUUFKi4uJh6aQAAAAAwjMT9Cs3pdIYVyA7ZtGmTJk6cmJBJAcBYEQwGVVdXp9raWnV0dJjjaWlpKioqUl5eHvXSAAAAAGAYijtU+9a3vqVbb71VTz31lCTJYrGoqqpK1157rU4//fSETxAARiOv16vq6mpt27YtrF5adna2SkpKlJ2dncTZAQAAAAD6E3ejgubmZp1xxhlau3atWltbVVhYqG3btmnWrFl66aWXlJaWNlhzHRQ0KgAwlDo6OlRRUaHGxkYFg0FJktVq1cSJE1VaWiq3253kGQIAAADA2DWojQqysrL06quvatWqVfr444/V1tamr33ta5o3b96AJwwAo11TU5MqKyu1a9cucywlJUV5eXkqLi5WSkpK8iYHAAAAAIhb3CvVRhtWqgEYLMFgUNu2bVNtba3a29vNcbfbraKiIuXn51MvDQAAAACGkYSvVPvNb36j733ve3K5XPrNb37T533T09M1ffp0HXHEEbHPGABGEb/fr+rqatXV1cnr9Zrj48aNU3FxsSZMmJDE2QEAAAAAEiGmlWqTJ0/W2rVrNWHCBE2ePLnP+3Z1damhoUFXXXWVfvWrXyVsooOFlWoAEqWzs1MVFRXavn17WL20nJwclZaWjriakwAAAAAw1sSTEw3K9s9XX31V5557rrZv357oSyccoRqAPdXU1KSqqio1NTWZYw6HQ/n5+dRLAwAAAIARZFAbFcTi6KOP1o033jgYlwaAYSEYDKqhoUHV1dVh9dJSU1NVVFSkgoIC6qUBAAAAwCg2oJVqK1as0L333qsNGzZIkqZOnaorr7xyRHYAZaUagHj4/X7V1NSorq5OXV1d5nhWVpaKi4uVk5OTxNkBAAAAAPbEoK5Ue+CBB3TFFVfojDPO0BVXXCFJeuedd7RgwQLde++9Wrx48cBmDQDDmMfjUWVlpRoaGhQIBCRJFovFrJeWnp6e5BkCAAAAAIZS3CvVioqKdN111+nyyy8PGy8vL9cdd9yh2trahE5wsLFSDUBfmpubVVlZqaamJoV+XNrtduXl5am0tJR6aQAAAAAwigzqSrVdu3bphBNO6DX+zW9+U9dee228l0ua8vJylZeXmytOACAkGAxq+/btqq6uVltbmznucrk0adIkTZo0iXppAAAAADDGxb1S7dxzz9Whhx6qq6++Omz87rvv1tq1a/XXv/41oRMcbKxUAxDi9/u1detWbd26VR6PxxzPyMgw66URpgEAAADA6JXwlWq/+c1vzL9PmzZNt99+u9544w3NmjVL0u6aaqtXr9ZPfvKTPZg2ACSHx+NRVVWVGhoa5Pf7Je2ulzZ+/HiVlZUpIyMjyTMEAAAAAAw3Ma1Umzx5cmwXs1j01Vdf7fGkhhIr1YCxq7W1VRUVFdq5c6dZL81msykvL08lJSVyuVxJniEAAAAAYCglfKXali1bEjIxAEi2YDCoxsZGVVdXq7W11Rx3Op2aNGmSCgsLZbfHXW4SAAAAADDGDPiVY2NjoyQpJycnYZMBgMESDAZVW1urrVu3qrOz0xxPT09XcXGxJk6cSL00AAAAAEDM4grVdu3apRtuuEFPPvmkmpqaJEnZ2dn69re/rf/93//VuHHjBmOOADBgXq9XlZWVqq+vD6uXlp2drdLSUmVlZSV5hgAAAACAkSjmUG3nzp2aNWuWamtrdd5552nq1KmSpM8//1yPPPKIVqxYobffflvZ2dmDNlkAiFVbW5sqKyvV2NgYVi8tNzdXpaWl1EsDAAAAAOyRmEO1W2+9VSkpKdq8ebPy8vJ6HfvmN7+pW2+9Vffee2/CJwkAsQrVS2tubjbHnE6nCgoKVFRURL00AAAAAEBCxNT9U5LKysr0+9//XvPnz494/JVXXtEPfvADVVRUJHJ+g47un8DIFwwGVVdXp5qamrB6aWlpaSouLlZubi710gAAAAAA/Up4909Jqqur0/Tp06MeP+CAA7Rt27bYZwkAe8jr9aq6ulrbtm2Tz+czx7Ozs1VSUsJ2dAAAAADAoIk5VMvJyVFFRYWKiooiHt+yZYvGjx+fsIkBQDTt7e1mvbRgMChJslqtmjhxosrKypSamprkGQIAAAAARruYQ7X58+frhhtu0KuvvqqUlJSwY11dXfrZz36mE044IeETBICQHTt2qLq6Wrt27TLHUlJSVFBQoOLiYuqlAQAAAACGTMw11WpqajRz5kw5nU4tXrxY+++/vwzD0IYNG/TAAw+oq6tLa9euVXFx8WDPOaGoqQYMb8FgUNu2bVNNTY06OjrMcbfbraKiIuXn51MvDQAAAACQEINSU62oqEhr1qzR//zP/+j6669XKIuzWCw6/vjjdf/994+4QA3A8OX3+1VVVaVt27bJ6/Wa4+PGjVNpaSn10gAAAAAASRXXXqnJkyfr5ZdfVlNTk7744gtJ0t57700tNQAJ09HRocrKSm3fvj2sXlpOTo5KS0uVlpaW5BkCAAAAABBnqBaSnZ2tww8/PNFzATCGNTU1qaqqSk1NTeaYw+FQfn6+iouLe9VyBAAAAAAgmajqDSBpgsGg6uvrVVNTo/b2dnM8NTVVRUVFKigooF4aAAAAAGBYIlQDMOT8fr9qamq0devWsHppWVlZKikp0YQJE5I4OwAAAAAA+keoBmDIeDweVVZWqqGhQYFAQNLuZiehemnp6elJniEAAAAAALEZs6FaeXm5ysvLzRf2AAZPc3OzKisrtXPnTnPMbrcrPz9fJSUl1EsDAAAAAIw4FsMwjGRPIplaWlqUlZWl5uZmZWZmJns6wKgRDAbV0NCgmpoatbW1meOpqakqLCzUpEmTqJcGAACAAQsEAvL5fMmeBoARxuFwyGazRT0eT040ZleqARgcfr9ftbW12rp1q7q6uszxzMxMlZSUaPz48YRpAAAAGDDDMLRt2zbt2rUr2VMBMEKNGzdO+fn5slgse3QdQjUACeHxeFRVVaX6+vqwemkTJkxQaWmpMjIykjxDAAAAjAahQC03N1dut3uPXxQDGDsMw1BHR4caGhokSQUFBXt0PUI1AHukpaXFrJcW2k1ut9uVm5ursrIy6qUBAAAgYQKBgBmo0TEewECkpqZKkhoaGpSbm9vnVtD+EKoBiFswGFRjY6Oqq6vV2tpqjrtcLhUWFqqwsFB2Oz9eAAAAkFihGmputzvJMwEwkoV+hvh8PkI1AEMjGAyqpqZGW7dulcfjMcczMjJUXFysnJwc6qUBAABg0LHlE8CeSNTPEEI1AP3yer2qrKxUfX29/H6/pN0/hLKzs1VWVkbnXAAAAADAmMOSEgBRtbW16dNPP9WaNWtUW1srv98vm82mgoICHXHEETrooIMI1AAAAIBhpKysTPfdd98eXeONN96QxWJJWIfViooKWSwWrVu3LiHXs1gseu655xJyrUSL5XN95JFHNG7cuIQ9Zqz/XitWrNDUqVPNxnID1fN7LN7vuVtuuUWHHHLIHs1Bkl555RUdcsghCgaDe3ytgSJUA9BLY2OjPvzwQ61du1aNjY0yDENOp1NlZWWaNWuW9ttvP7lcrmRPEwAAABiQYCCoijcq9MkTn6jijQoFA0PzonzNmjWy2Ww66aSThuTxYjF37lxdeeWVYWOzZ89WXV2dsrKyhmwefQVDPUOburo6nXjiiUM2t0Q7++yztWnTpiF/3GuuuUY33njjHtUQi+T999/X9773vZjvv3TpUq1YsSKux4gU3J1wwglyOBz6y1/+Ete1EontnwAk7a6XtnXrVtXW1qqzs9McT09PV1FRkXJzc6mXBgAAgBFvw7Mb9MoVr6ilpsUcyyzK1AnLTtDURVMH9bEfeugh/ehHP9JDDz2krVu3qrCwcFAfb6BSUlKUn5+f7GlEtadz83q9SklJifs8wzAUCAT2uClbamqq2YFyqKxatUqbN2/W6aefnvBrT5w4Ma77p6enKz09PSGPfdFFF+k3v/mNvvOd7yTkevHiFTIwxnm9Xm3evFlr1qzRl19+aQZq48eP16GHHqqZM2cqPz+fQA0AAAAj3oZnN+ipM54KC9QkqaW2RU+d8ZQ2PLth0B67ra1NTz75pH74wx/qpJNO0iOPPBJ2PLRSa8WKFZo5c6bcbrdmz56tjRs3mvfZvHmzTjnlFOXl5Sk9PV2HHXaYXnvttaiPeckll+jkk08OG/P5fMrNzdVDDz2kiy66SG+++aaWLVsmi8Uii8WiioqKiKvGVq9erblz58rtdis7O1vz589XU1OTpN3b8I4++miNGzdOEyZM0Mknn6zNmzfv+Rctip7bP6urq3XWWWdp3LhxGj9+vE455RRVVFSYxy+66CKdeuqpuv3221VYWKj99ttPkvTYY49p5syZysjIUH5+vs4991w1NDSY54W+Di+//LJmzJghp9OpVatWKRgM6q677tLee+8tp9OpkpIS3X777WFz/Oqrr3TsscfK7Xbr4IMP1po1a8xjkbZ/Pv/88zrssMPkcrmUk5Oj0047zTzW3zxj8de//lXHH3982I6jWL6fGhoatHDhQqWmpmry5MkRV4X1XEVWVVWlU045Renp6crMzNRZZ52l+vp683jP7Z+hf5+7775bBQUFmjBhghYvXmx2+507d64qKyt11VVXmd+nIQsXLtTatWsH9futL7xKBsao9vZ2ffbZZ1qzZo2qq6vNVsLd66UN5XJvAAAAIF6GYcjb7o3p5mnx6OUfvywZkS60+4+Xr3hZnhZPTNczjEgXiu6pp57S/vvvr/3220/nn3++Hn744YjXuOGGG3TPPfdo7dq1stvtuuSSS8xjbW1tWrBggVasWKGPPvpIJ5xwghYuXKiqqqqIj/nd735Xr7zyiurq6syxF154QR0dHTr77LO1bNkyzZo1S5dddpnq6upUV1en4uLiXtdZt26dvvGNb2jatGlas2aNVq1apYULF5q1udrb27VkyRKtXbtWK1askNVq1WmnnTYkta58Pp/mz5+vjIwMrVy5UqtXr1Z6erpOOOEEeb1e834rVqzQxo0b9eqrr+qFF14wz73tttu0fv16Pffcc6qoqNBFF13U6zGuu+463XnnndqwYYMOOuggXX/99brzzjv1s5/9TJ9//rkef/xx5eXlhZ1zww03aOnSpVq3bp323XdfnXPOOWbTt55efPFFnXbaaVqwYIE++ugjrVixQocffnjY5xjLPPuycuVKzZw5M2wslu+niy66SNXV1Xr99df1zDPP6IEHHugz0AsGgzrllFO0c+dOvfnmm3r11Vf11Vdf6eyzz+5zfq+//ro2b96s119/XX/+85/1yCOPmMHzs88+q6KiIt16663m92lISUmJ8vLytHLlyri+HonC9k9gjNmxY4eqqqrU3NxsjqWkpKigoEDFxcV7vJQZAAAAGCq+Dp9+kf6LxFzMkFprWvXLrF/GdPfr265XSlrsWwgfeughnX/++ZJ214Jqbm7Wm2++qblz54bd7/bbb9ecOXMk7Q5zTjrpJHk8HrlcLh188ME6+OCDzfvedttt+tvf/qZ//OMfuvzyy3s95uzZs7Xffvvpscce0zXXXCNJWr58uc4880xz+11KSorcbnefWyrvuusuzZw5Uw888IA5Nn36dPPvPbcUPvzww5o4caI+//xzHXDAAbF8eUxFRUW9xjo6OqLe/8knn1QwGNSf/vQncwXT8uXLNW7cOL3xxhv65je/KUlKS0vTn/70p7Btn90DyylTpug3v/mNDjvsMLW1tYVtT7z11lt1/PHHS5JaW1u1bNky3X///brwwgslSXvttZeOPvrosHktXbrUrJ3385//XNOnT9eXX36p/fffv9fncPvtt+vb3/62fv7zn5tj3f+dY51nXyorK3ttN+7v+2nTpk16+eWX9d577+mwww6TtPv7eOrU6NukV6xYoU8++URbtmwxA9pHH31U06dP1/vvv29ep6fs7Gzdf//9stls2n///XXSSSdpxYoVuuyyyzR+/HjZbDZzpV5PhYWFqqysjOnrkGisVAPGgGAwqNraWr333nv65JNPzEAtLS1N++23n4488khNnjyZQA0AAAAYBBs3btR7772nc845R5Jkt9t19tln66GHHup134MOOsj8e0FBgSSZK4Pa2tq0dOlSTZ06VePGjVN6ero2bNgQdaWatHu12vLlyyVJ9fX1evnll8NCmliEVqpF88UXX+icc87RlClTlJmZqbKyMkmKOq/p06ebdbV6NhxYuXKl1q1bF3brq/bc+vXr9eWXXyojI8O85vjx4+XxeMK2BB544IG96qh98MEHWrhwoUpKSpSRkWGGmT3n3X2F14YNG9TV1dXn10Pq+9+xp/6+vrHOsy+dnZ29ms319/20YcMG2e12zZgxwzxn//3377Nz6YYNG1RcXBy24nHatGkaN26cNmyIvr16+vTpYQ0UCgoKYt7impqa2mfwOph4BQ2MYl6vV9XV1aqvrw9b+pydna2SkhJlZ2cncXYAAADAnnG4Hbq+7fqY7lv5VqUeX/B4v/c796VzVfr10pgeO1YPPfSQ/H5/WDhkGIacTqfuv//+sLIrDsd/rxtaeRXaRrl06VK9+uqruvvuu7X33nsrNTVVZ5xxRthz/Z4uuOACXXfddVqzZo3efvttTZ48Wcccc0zMc5fUb1H9hQsXqrS0VH/84x9VWFioYDCoAw44IOq8XnrpJbNeVs9rT548uVdo09eb/21tbZoxY0bEWl/dC+inpaWFHWtvb9f8+fM1f/58/eUvf9HEiRNVVVWl+fPn95p393NjbTDQ179jT31dM5559iUnJ8esgRcykO+nwdL96yXt/prFun14586dcTdLSBRCNWAU6ujoUGVlpbZv327+ILJarZo4caJKS0vldruTPEMAAABgz1kslpi3YO71zb2UWZSpltqWyHXVLLu7gO71zb1ktSVuU5ff79ejjz6qe+65x9yKGHLqqafqiSee0A9+8IOYrrV69WpddNFFZhH7tra2sIL8kUyYMEGnnnqqli9frjVr1ujiiy8OO56SkmLWRovmoIMO0ooVK8K2J4bs2LFDGzdu1B//+EczrFu1alWf1yst7T+0jNXXvvY1Pfnkk8rNzVVmZmbM5/3nP//Rjh07dOedd5qrqtauXdvvefvss49SU1O1YsUKffe73x3wvLsLfX17/tvsyTx7OvTQQ/X555+HjfX3/bT//vvL7/frgw8+MLdtbty4MayBRU9Tp05VdXW1qqurzfl+/vnn2rVrl6ZNmxb3vEOifZ+GViQeeuihA772nmD7JzCKNDU1af369XrvvfdUX1+vYDAoh8Oh4uJiHXnkkZo6dSqBGgAAAMYkq82qE5adsPsDS4+D//fxCfedkNBATdrdGKCpqUmXXnqpDjjggLDb6aefHnELaDT77LOPnn32Wa1bt07r16/XueeeG9Nqnu9+97v685//rA0bNph1wELKysr07rvvqqKiQo2NjRGvd/311+v999/X//zP/+jjjz/Wf/7zHz344INqbGxUdna2JkyYoD/84Q/68ssv9e9//1tLliyJ+XPaU+edd55ycnJ0yimnaOXKldqyZYveeOMN/fjHP1ZNTU3U80pKSpSSkqLf/va3+uqrr/SPf/xDt912W7+P53K5dO211+qaa67Ro48+qs2bN+udd96J69+xp5tvvllPPPGEbr75Zm3YsEGffPKJfvnLX+7RPHuaP39+r7Czv++n/fbbTyeccIK+//3v691339UHH3yg7373u32urJs3b54OPPBAnXfeefrwww/13nvv6YILLtCcOXN6NUqIR1lZmd566y3V1taqsbHRHH/nnXfkdDo1a9asAV97TxCqASNcMBhUXV2d3n//fa1fv95c0ut2u7XPPvto1qxZ2muvvXrVDwAAAADGmqmLpuqsZ85S5qTwFU2ZRZk665mzNHVR9ALsA/XQQw9p3rx5YVs8Q04//XStXbtWH3/8cUzX+vWvf63s7GzNnj1bCxcu1Pz58/W1r32t3/PmzZungoICzZ8/v1d9sqVLl8pms2natGnm1sKe9t13X/3rX//S+vXrdfjhh2vWrFn6+9//LrvdLqvVqr/+9a/64IMPdMABB+iqq67Sr371q5g+n0Rwu9166623VFJSokWLFmnq1Km69NJL5fF4+ly5NnHiRD3yyCN6+umnNW3aNN155526++67Y3rMn/3sZ/rJT36im266SVOnTtXZZ58dc/2vSObOnaunn35a//jHP3TIIYfouOOO03vvvbfH8+zuvPPO02effaaNGzeaY7F8Py1fvlyFhYWaM2eOFi1apO9973vKzc2N+jgWi0V///vflZ2dra9//euaN2+epkyZoieffDLuOXd36623qqKiQnvttVfYVs8nnnhC5513XtIWj1iMePsAjzItLS3KyspSc3NzXEtFgWTz+/2qrq5WXV1d2J73rKwslZSUaMKECUmcHQAAAJB4Ho9HW7Zs0eTJk3sVXY9HMBBU1coqtda1KqMgQyXHlCR8hdpw0tbWpkmTJmn58uVatGhRsqeDJLn66qvV0tKi3//+9wm9bkFBgW677baEbYeNVWNjo/bbbz+tXbtWkydPjuvcvn6WxJMTUVMNGGE6OztVVVWlhoYGc0+5xWIx66X1LMAJAAAAIJzVZlXZ3LJkT2PQBYNBNTY26p577tG4ceP0rW99K9lTQhLdcMMNeuCBBxQMBmW17nmI3NHRodWrV6u+vl7Tp09PwAzjU1FRoQceeCDuQC2RCNWAEaK5uVmVlZXauXOnOeZwOJSfn6/i4mK2dwIAAAAIU1VVpcmTJ6uoqEiPPPJIn100MfqNGzdOP/3pTxN2vT/84Q+67bbbdOWVVyalptnMmTP3qE5bIvA/ChjGgsGgGhoaVFNTo7a2NnM8NTVVkyZNUmFhYULeYQAAAAAw+pSVlWmMV3zCILryyit15ZVXJnsaSUWoBgxDfr9fNTU1qqurU1dXlzmemZmpkpIS5eTkJHF2AAAAAACAUA0YRjwejyorK3vVS8vJyVFpaanS09OTPEMAAAAAACARqgHDQktLiyoqKtTU1GQuz7bb7crLy1NpaSn10gAAAAAAGGYI1YAkCXXiqa6uVmtrqznucrk0adIkTZo0iXppAAAAAAAMU4RqwBDz+/3aunWrtm7dKo/HY45nZGSouLhYOTk5hGkAAAAAAAxzYzZUKy8vV3l5uVm3ChhsXq9XFRUVamhokN/vl7S7Xtr48eNVWlqqzMzMJM8QAAAAAADEaswuh1m8eLE+//xzvf/++8meCka51tZWffrpp1qzZo22bt0qv98vm82mwsJCHXHEETrwwAMJ1AAAAIAhFAhIb7whPfHE7j9H01qLsrIy3XfffXt0jTfeeEMWi0W7du1KyJwqKipksVi0bt26hFzPYrHoueeeS8i1Ei2Wz/WRRx7RuHHjEvaYsf57rVixQlOnTg1bXPSHP/xBxcXFslqte/x9kyxz587VlVdeaX585JFH6v/7//6/IXnsMRuqAYMpVC/tww8/1AcffKDGxkYZhiGn06nJkydr1qxZ2nfffeVyuZI9VQAAAGBMefZZqaxMOvZY6dxzd/9ZVrZ7fLCtWbNGNptNJ5100uA/WIx6BhKSNHv2bNXV1SkrK2vI5tFXMNQzKKyrq9OJJ544ZHNLtLPPPlubNm0a8se95pprdOONN8pms0na3TDv8ssv17XXXqva2lp973vfG/I5DYYbb7xR1113nYLB4KA/FqEakEDBYFDV1dV6//339emnn6qlpUWSlJ6erv33319HHHGESktLZbeP2Z3XAAAAQNI8+6x0xhlSTU34eG3t7vHBDtYeeugh/ehHP9Jbb72lrVu3Du6D7YGUlBTl5+fLYrEkeyoR5efny+l0Dvh8r9c7oPMMwzBL+eyJ1NRU5ebm7vF14rFq1Spt3rxZp59+ujlWVVUln8+nk046SQUFBXK73QO6ts/nS9Q0o4rna3/iiSeqtbVVL7/88iDPilANSAiv16svv/xSb7/9tjZv3qzOzk5J0vjx43XooYdq5syZys/PpwEBAAAAkECGIbW3x3ZraZF+/OPd50S6jiRdccXu+8VyvUjX6UtbW5uefPJJ/fCHP9RJJ52kRx55JOx4aKXWihUrNHPmTLndbs2ePVsbN24077N582adcsopysvLU3p6ug477DC99tprUR/zkksu0cknnxw25vP5lJubq4ceekgXXXSR3nzzTS1btkwWi0UWi0UVFRURV42tXr1ac+fOldvtVnZ2tubPn6+mpiZJ0iuvvKKjjz5a48aN04QJE3TyySdr8+bN8X2B4tBz+2d1dbXOOussjRs3TuPHj9cpp5yiiooK8/hFF12kU089VbfffrsKCwu13377SZIee+wxzZw5UxkZGcrPz9e5556rhoYG87zQ1+Hll1/WjBkz5HQ6tWrVKgWDQd11113ae++95XQ6VVJSottvvz1sjl999ZWOPfZYud1uHXzwwVqzZo15LNL2z+eff16HHXaYXC6XcnJydNppp5nH+ptnLP7617/q+OOPN3dLPfLIIzrwwAMlSVOmTDH/7SXpwQcf1F577aWUlBTtt99+euyxx3p9/R988EF961vfUlpamm6//XbNnDlTd999t3mfU089VQ6HQ21tbZKkmpoaWSwWffnll3v0tW9vb9cFF1yg9PR0FRQU6J577un1udpsNi1YsEB//etf4/oaDQSv8IE90NbWps8++0xr1qxRTU2NWS+toKBARx55pA466KAhXTINAAAAjCUdHVJ6emy3rKzdK9KiMYzdK9iysmK7XkdHfHN96qmntP/++2u//fbT+eefr4cfflhGhGTuhhtu0D333KO1a9fKbrfrkksuMY+1tbVpwYIFWrFihT766COdcMIJWrhwoaqqqiI+5ne/+1298sorqqurM8deeOEFdXR06Oyzz9ayZcs0a9YsXXbZZaqrq1NdXZ2Ki4t7XWfdunX6xje+oWnTpmnNmjVatWqVFi5caNbmam9v15IlS7R27VqtWLFCVqtVp5122pBsv/P5fJo/f74yMjK0cuVKrV69Wunp6TrhhBPCVqStWLFCGzdu1KuvvqoXXnjBPPe2227T+vXr9dxzz6miokIXXXRRr8e47rrrdOedd2rDhg066KCDdP311+vOO+/Uz372M33++ed6/PHHlZeXF3bODTfcoKVLl2rdunXad999dc4550RdafXiiy/qtNNO04IFC/TRRx9pxYoVOvzww8M+x1jm2ZeVK1dq5syZ5sdnn322Gci+99575r/93/72N11xxRX6yU9+ok8//VTf//73dfHFF+v1118Pu94tt9yi0047TZ988okuueQSzZkzR2+88Yak3avKVq5cqXHjxmnVqlWSpDfffFOTJk3S3nvvvUdf+6uvvlpvvvmm/v73v+tf//qX3njjDX344Ye9zjv88MO1cuXKuL5GA2KMcc3NzYYko7m5OdlTwQjS2NhofPjhh8brr79u3lavXm1s2bLF8Pl8yZ4eAAAAMCp1dnYan3/+udHZ2WkYhmG0tRnG7jhs6G9tbfHNffbs2cZ9991nGIZh+Hw+Iycnx3j99dfN46+//rohyXjttdfMsRdffNGQZH6+kUyfPt347W9/a35cWlpq3HvvvebH06ZNM375y1+aHy9cuNC46KKLzI/nzJljXHHFFWHXDM2lqanJMAzDOOecc4yjjjoq5s91+/bthiTjk08+MQzDMLZs2WJIMj766KOo54QeMy0trdfNYrGEfU6SjL/97W+GYRjGY489Zuy3335GMBg0j3d1dRmpqanGP//5T8MwDOPCCy808vLyjK6urj7n/f777xuSjNbW1rA5Pffcc+Z9WlpaDKfTafzxj3+MeI3Q5/qnP/3JHPvss88MScaGDRsMwzCM5cuXG1lZWebxWbNmGeedd16fc4tlnqF/r0iysrKMRx99NGzso48+MiQZW7ZsMcdmz55tXHbZZWH3O/PMM40FCxaYH0syrrzyyrD7/OMf/zCysrIMv99vrFu3zsjPzzeuuOIK49prrzUMwzC++93vGueee27cn1P3r31ra6uRkpJiPPXUU+bYjh07jNTU1F7fw3//+98Nq9VqBAKBiI/X82dJd/HkRKxUA2IUDAZVW1urd999V5988omam5slSWlpadpvv/105JFHqqysjHppAAAAwBBxu6W2tthuL70U2zVfeim268VTfmrjxo167733dM4550iS7Ha7zj77bD300EO97nvQQQeZfy8oKJAkc1tcW1ubli5dqqlTp2rcuHFKT0/Xhg0boq5Uk3avVlu+fLkkqb6+Xi+//HLY6rdYhFaqRfPFF1/onHPO0ZQpU5SZmamysjJJijqv6dOnKz09Xenp6b0aDqxcuVLr1q0LuxUWFkZ97PXr1+vLL79URkaGec3x48fL4/GEbUE98MADlZKSEnbuBx98oIULF6qkpEQZGRmaM2dOxHl3X+G1YcMGdXV19fn1kPr+d+ypv69vrPPsS2dn5//f3n1HRXWtbQB/ht5771hQVAQBsUXFEie6LlHQmKg3ijFXc9WrRrGlWGMvQWNNTCxfjDHXFj+NLShBERELqBELBBWQIkpAQKTM+f7g4yyHOoPAAD6/tVhy9t5n7/fM6Ajv2kWhg/Li4+PRq1cvubJevXohPj5eruzV1wQAevfujefPn+P69ev4448/0LdvX/j7+4uz1/744w/4+/sr/UyvjpOYmIiioiJ069ZNLDMzMxOX875KV1cXMpkML1++rPWZXwd/+yeqRVFREZKTk5Geni63AaOpqSmcnJxgamqqwuiIiIiIiN5cEgmgr69Y20GDAAeHsiWgVe2HJpGU1Q8aBPz/4Yj15vvvv0dJSYlcckgQBGhra2PTpk1yW8Zoamq+ElPZQQHlyyhDQkJw5swZrF27Fm3atIGuri5GjBhR48b7Y8eOxbx58xAVFYWLFy/C1dUVvXv3Vip+XV3dGusDAgLg7OyM7777DnZ2dpDJZOjUqVO1cf3222/i71YV+3Z1da2031hNExfy8vLg4+ODvXv3VqqztLQUv9ev8BclPz8fUqkUUqkUe/fuhaWlJR49egSpVFop7lfvre21KFfT+1hRTX0qE2dNLCwsxD3w6kPF19PExASenp4IDw9HVFQU3n77bfTp00c86fT+/fti4qyur70ynj17Bn19fYXfr7riTDWiauTn5+P27du4dOkSkpOTUVxcDDU1NVhbW8PPzw+enp5MqBERERERNRPq6sCGDWXfVzzUsvw6NLT+E2olJSXYs2cP1q1bJzf7Ki4uDnZ2dti3b5/CfUVGRiI4OBiBgYHw8PCAjY2N3Ib8VTE3N8ewYcOwc+dO7Nq1C+PHj5er19LSEvdGq07nzp0RFhZWZd3Tp09x9+5dfPHFFxgwYADc3d1rTd44OzujTZs2aNOmDezt7WtsWxtvb2/cv38fVlZWYp/lXzXtb33nzh08ffoUK1euRO/evdG+fXuFNv9v27YtdHV1q3096qKm17eucVbUpUsX3L59u9Z27u7uiIyMlCuLjIxEhw4dar23b9++OHfuHCIiIuDv7w8zMzO4u7tj2bJlsLW1hZub22s9U+vWraGpqYno6GixLDs7G/fu3avU9tatW+jSpUutfb4uJtWIKsjOzkZsbCxiYmKQmZkJmUwGLS0tODk5oXv37nB3d6/zUcNERERERKQ6QUHAgQNAxTyOg0NZeVBQ/Y957NgxZGdnY8KECejUqZPc1/Dhw6tcAlqdtm3b4tChQ2JSbvTo0QodBvDxxx9j9+7diI+Px7hx4+TqXFxcEB0djQcPHiArK6vK/ubPn4+YmBhMnjwZN27cwJ07d7B161ZkZWXB1NQU5ubm+Pbbb5GQkICzZ89i5syZCj/T6xozZgwsLCwwdOhQnD9/HklJSQgPD8e0adOQkpJS7X1OTk7Q0tLCN998g7/++gtHjx7F0qVLax1PR0cHc+fOxZw5c7Bnzx4kJibi0qVLSr2PFS1cuBD79u3DwoULER8fj5s3b2LVqlWvFWdFUqlUPDSgJrNnz8auXbuwdetW3L9/H+vXr8ehQ4cQEhJS673+/v44deoUNDQ00L59e7Fs79694iy113kmAwMDTJgwAbNnz8bZs2dx69YtBAcHQ02tcmrr/PnzGDRoUK19vi4m1YhQNg338ePHuHz5MuLi4sSjo/X09ODm5obu3bujVatWldbgExERERFR8xIUBDx4AJw7B/z0U9mfSUkNk1ADypZ+Dhw4sMpZU8OHD8eVK1dw48YNhfpav349TE1N0bNnTwQEBEAqlcLb27vW+wYOHAhbW1tIpdJK+5OFhIRAXV0dHTp0EJfhVeTm5obTp08jLi4Ofn5+6NGjB3799VdoaGhATU0NP//8M65evYpOnTrh008/xZo1axR6nvqgp6eHiIgIODk5ISgoCO7u7pgwYQIKCwthZGRU7X2WlpbYtWsX/vvf/6JDhw5YuXIl1q5dq9CYX375JWbNmoUFCxbA3d0d77//fp1mj5Xz9/fHf//7Xxw9ehReXl7o378/Ll++/NpxvmrMmDH4888/cffu3RrbDRs2DBs2bMDatWvRsWNHbN++HTt37pTbD606vXv3hkwmk0ug+fv7o7S0VO7+13mmNWvWoHfv3ggICMDAgQPx1ltvwcfHR65NamoqLl68WGlWZkOQCEJVq8nfHLm5uTA2NkZOTk6N/+CoZSopKUFycjLS0tLk1m6bmJjA0dER5ubmKoyOiIiIiIheVVhYiKSkJLi6uiq06TqVycvLg729PXbu3ImghsoeUpM3e/Zs5ObmYvv27aoOpUHNnTsX2dnZ+Pbbb6ttU9NniTJ5Ih5UQG+kFy9e4MGDB3jy5Ik4vVlNTQ0WFhZwdnau82aIRERERERETYVMJkNWVhbWrVsHExMTvPvuu6oOiVTo888/x5YtWyCTyapcMtlSWFlZNdoSZCbV6I2SnZ2NR48eyW2cqampCRsbGzg6OnJ5JxERERERtRiPHj2Cq6srHBwcsGvXrhpP0aSWz8TEBJ999pmqw2hws2bNarSx+C+KWjyZTIbMzEwkJycjPz9fLNfV1YWDgwNsbW1bdJaeiIiIiIjeTC4uLnjDd3wialBMqlGLVVJSgpSUFDx+/FhuvzRjY2M4OjrCwsJChdERERERERERUXPGpBq1OIWFhXj48CEyMzNRWloKAJBIJOJ+aQYGBiqOkIiIiIiIiIiaOybVqMXIycnBw4cPkZ2dLU5x1tDQgI2NDZycnLhfGhERERERERHVGybVqFmTyWR48uQJkpOTkZeXJ5br6OjA3t4e9vb23C+NiIiIiIiIiOodk2rULJWUlODx48dITU3Fy5cvxXJDQ0M4OTnB3NycyTQiIiIiIiIiajBMqlGzUlhYiEePHiEjI0NuvzQzMzO4uLjA0NBQxRESERERERER0ZuAU3moWXj+/Dlu3ryJ6OhoPH78GKWlpdDQ0ICdnR26desGDw8PJtSIiIiIiEghpbJShD8Ix76b+xD+IBylslJVh9Rkubi4IDQ0tN768/f3x4wZM+qlr+DgYAwbNqxe+moIijyrRCLBkSNH6m3M+n6/qGacqUZNlkwmQ1ZWFpKTk/H8+XOxXEdHB3Z2drCzs4OGBv8KExERERGR4g7FH8L0k9ORkpsiljkYOWDDOxsQ5B7UYOMGBwdj9+7dWLFiBebNmyeWHzlyBIGBgeJha01NTEwM9PX1G3VMFxcXzJgxo1JCatGiRThy5AhiY2MBABs2bGiyr5ui0tLSYGpqquowqI6YkaAmRyaTITU1FampqSgsLBTLDQwM4OTkBAsLC+6XRkRERERESjsUfwgjfhkBAfKJmNTcVIz4ZQQOjDzQoIk1HR0drFq1CpMmTWryiZSioiJoaWnB0tJS1aFUy9jY+LXuFwRBXAWlrPLX53XZ2Ni8dh+kOsxMUJNRVFSE+/fv4+LFi0hMTERhYaG4X1qXLl3g6+sLKysrJtSIiIiIiAhAWVIkvyhfoa/cwlxMOzGtUkINgFg2/cR05BbmKtRfXWZIDRw4EDY2NlixYkWV9YsWLYKXl5dcWWhoKFxcXMTr8iWPy5cvh7W1NUxMTLBkyRKUlJRg9uzZMDMzg4ODA3bu3CnXT3JyMkaOHAkTExOYmZlh6NChePDgQaV+ly1bBjs7O7Rr1w5A5eWEf//9NyZNmgRra2vo6OigU6dOOHbsGADg6dOnGDVqFOzt7aGnpwcPDw/s27dP6ddJURWXf8pkMqxYsQKurq7Q1dWFp6cnDhw4INaHh4dDIpHgxIkT8PHxgba2Ni5cuIDExEQMHToU1tbWMDAwQNeuXfH777/LjeXi4oKlS5di7NixMDIywsSJEwEAkZGR8Pf3h56eHkxNTSGVSpGdnS0X05w5c2BmZgYbGxssWrRIrt+Kyz9TUlIwatQomJmZQV9fH76+voiOjgYAheKkxsWZaqRyeXl5ePjwIbKyssT/mNTV1WFlZQVnZ2fo6OioOEIiIiIiImqKCooLYLDCoF76EiAg5XkKjFcpNvspb34e9LWUWxaprq6O5cuXY/To0Zg2bRocHBzqEirOnj0LBwcHREREIDIyEhMmTMDFixfRp08fREdHY//+/Zg0aRLefvttODg4oLi4GFKpFD169MD58+ehoaGBr776Cu+88w5u3LghzrgKCwuDkZERzpw5U+W4MpkMgwcPxvPnz/Hjjz+idevWuH37NtTV1QGUHSzn4+ODuXPnwsjICMePH8eHH36I1q1bw8/Pr07PqowVK1bgxx9/xLZt29C2bVtERETgn//8JywtLdG3b1+x3bx587B27Vq0atUKpqamSE5OxpAhQ7Bs2TJoa2tjz549CAgIwN27d+Hk5CTet3btWixYsAALFy4EAMTGxmLAgAH46KOPsGHDBmhoaODcuXPioXoAsHv3bsycORPR0dGIiopCcHAwevXqhbfffrtS/Hl5eejbty/s7e1x9OhR2NjY4Nq1a5DJZGK9InFS42FSjVQmKysLjx49Qm5urlimra0NW1tbODg4cL80IiIiIiJqcQIDA+Hl5YWFCxfi+++/r1MfZmZm2LhxI9TU1NCuXTusXr0aBQUF+OyzzwAA8+fPx8qVK3HhwgV88MEH2L9/P2QyGXbs2AGJRAIA2LlzJ0xMTBAeHo5BgwYBAPT19bFjx45qlzX+/vvvuHz5MuLj4+Hm5gYAaNWqlVhvb2+PkJAQ8fo///kPTp06hV9++UXppNrcuXPxxRdfyJUVFRWhQ4cOVbZ/+fIlli9fjt9//x09evQQY7tw4QK2b98ul1RbsmSJXFLLzMwMnp6e4vXSpUtx+PBhHD16FFOnThXL+/fvj1mzZonXo0ePhq+vL7Zs2SKWdezYUS6uzp07i0m4tm3bYtOmTQgLC6syqfbTTz/hyZMniImJgZmZGQCgTZs2Yr2np6dCcVLjYdaCGpVMJkNaWhpSUlLw4sULsVxfXx+Ojo5c3klERERERArT09RD3vw8hdpGPIzAkJ+G1Nrut9G/oY9zH4XGrqtVq1ahf//+cgkoZXTs2FHu9yZra2t06tRJvFZXV4e5uTkyMzMBAHFxcUhISIChoaFcP4WFhUhMTBSvPTw8atwnLDY2Fg4ODmJCraLS0lIsX74cv/zyC1JTU1FUVISXL19CT6/q12r58uVYvny5eH379m1xxtXs2bMRHBws137jxo2IiIiosq+EhAQUFBRUSlYVFRWhS5cucmW+vr5y13l5eVi0aBGOHz+OtLQ0lJSU4MWLF3j06FGN98XGxuK9996rMp5ynTt3lru2tbUV35eKYmNj0aVLFzGhVpGicVLjYVKNGkVRURGSk5ORnp6O4uJisdzMzAyOjo5NfpNOIiIiIiJqeiQSicJLMAe1HgQHIwek5qZWua+aBBI4GDlgUOtBUFdTr+9Q5fTp0wdSqRTz58+XSxypqalV2qvt1d+fymlqaspdSySSKsteXTbo4+ODvXv3Vurr1YMIajvlU1dXt8b6NWvWYMOGDQgNDYWHhwf09fUxY8YMFBUVVdn+k08+wciRI8VrOzs78XsLCwu5WVoAqk02AWXPCADHjx+Hvb29XJ22trbcdcXnDAkJwZkzZ7B27Vq0adMGurq6GDFiRKW4K95X2+sBVP1elb8vFdXWn6JxUuNhUo0aVH5+vrhfWvkHh5qamrhfmiIfQkRERERERK9LXU0dG97ZgBG/jIAEErnEmgRlSyJD3wlt8IRauZUrV8LLy0s8EAAoS3Clp6dDEARxmWZsbOxrj+Xt7Y39+/fDysoKRkZGde6nc+fOSElJwb1796qcrRYZGYmhQ4fin//8J4CylUr37t2rdsmmmZlZjYkyZXTo0AHa2tp49OiR3FJPRURGRiI4OBiBgYEAyhJ0rx7iUJ3OnTsjLCwMixcvrkvIVfa3Y8cOPHv2rMrXpa5xUsPhOjtqEE+fPsX169cRExODzMxMyGQyaGlpwdnZGT179kT79u2ZUCMiIiIiokYV5B6EAyMPwN5IfiaTg5EDDow8gCD3oEaLxcPDA2PGjMHGjRvFMn9/fzx58gSrV69GYmIiNm/ejBMnTrz2WGPGjIGFhQWGDh2K8+fPIykpCeHh4Zg2bRpSUlIU7qdv377o06cPhg8fjjNnziApKQknTpzAyZMnAZTtGXbmzBlcvHgR8fHxmDRpEjIyMl47fkUYGhoiJCQEn376KXbv3o3ExERcu3YN33zzDXbv3l3jvW3btsWhQ4cQGxuLuLg4jB49utrZZK+aP38+YmJiMHnyZNy4cQN37tzB1q1bkZWVVadnGDVqFGxsbDBs2DBERkbir7/+wsGDBxEVFfVacVLDYVKN6o1MJsPjx49x+fJl3Lx5Ezk5OQDKpsi6ubmhe/fucHV15QEERERERESkMkHuQXgw/QHOjTuHn4J+wrlx55A0PalRE2rllixZIpcUcXd3x5YtW7B582Z4enri8uXLdd537VV6enqIiIiAk5MTgoKC4O7ujgkTJqCwsFDpmWsHDx5E165dMWrUKHTo0AFz5swRT7v84osv4O3tDalUCn9/fzFB1FiWLl2KL7/8EitWrIC7uzveeecdHD9+HK6urjXet379epiamqJnz54ICAiAVCqFt7d3reO5ubnh9OnTiIuLg5+fH3r06IFff/21zr/zamlp4fTp07CyssKQIUPg4eGBlStXiqer1jVOajgSoeKC7TdMbm4ujI2NkZOT81rTYN9k5fulZWRkyK3lNjExgbOzM/dLIyIiIiKielFYWIikpCS4urpCR0dH1eEQUTNV02eJMnkiThmiOisoKMDDhw/x5MkTuf3SLCws4OLiUu0JL0REREREREREzR2TaqS07OxsPHr0CNnZ2WKZpqYmbGxs4OjoWOMRzERERERERERELQGTaqQQmUyGjIwMpKSkID8/XyzX09ODvb09bG1toabGLfqIiIiIiIiI6M3ApBrVqKSkBMnJyUhLS5PbL83Y2BhOTk4wNzdXYXRERERERERERKrBpBpVqbCwEA8fPkRmZqZ4kotEIoGFhQWcnZ1hYGCg4giJiIiIiIiIiFSHSTWSk5OTg4cPH+LZs2dimaamJqytreHk5MT90oiIiIiIiIiIwKQaoWy/tMzMTKSkpCAvL08s19XVhZ2dHezt7blfGhERERERERHRK5hUe4OVlJQgJSUFaWlpePnypVhuZGQEJycnmJmZMZlGRERERERERFSFFpExOXbsGNq1a4e2bdtix44dqg6nySssLMTdu3cRFRWFBw8e4OXLl+J+aT4+PvD29oaFhQUTakRERERERERE1Wj2WZOSkhLMnDkTZ8+exfXr17FmzRo8ffpU1WGpRHGRDD+HpmPVfx7h59B0FBfJ5Opzc3Nx8+ZNREdHIy0tDaWlpdDQ0ICdnR169OiBTp06wdDQUEXRExERERERNRJZKZARDjzYV/anrFTVETUZLi4uCA0NVXUY1ZJIJDhy5Ei19eHh4ZBIJPj777/rZbwHDx5AIpEgNja2XvqjlqXZJ9UuX76Mjh07wt7eHgYGBhg8eDBOnz6t6rAa3cY5KbDUy8eoT20wb5MTRn1qA0u9fITOfoTMzExcvXoV165dw9OnTyEIAnR0dNCqVSv07NkTbm5uPICAiIiIiIjeDMmHgKMuQFg/4OLosj+PupSVN6Dg4GBIJBKsXLlSrvzIkSOQSCQNOnZNiSF/f3/MmDFDvI6JicHEiRMbNJ6G1LNnT6SlpcHY2FjVodAbQOVJtYiICAQEBMDOzq7ajPPmzZvh4uICHR0ddOvWDZcvXxbrHj9+DHt7e/Ha3t4eqampjRF6k7FxTgqmr7FHTqmBXHlOqQE+XeuIDcuS8fz5cwCAoaEhOnToAD8/Pzg5OXGJJxERERERvTmSDwHnRwAFKfLlBall5Q2cWNPR0cGqVauQnZ3doOO8DktLS+jp6dX5/qKiojrfW1xcXOd7y2lpacHGxqbBE5VEQBNIquXn58PT0xObN2+usn7//v2YOXMmFi5ciGvXrsHT0xNSqRSZmZmNHGnTVFwkw4L15Rn4ih8aZdfbfmgPI0NTeHt7w8fHB1ZWVkymERERERFR8ycIQEm+Yl9FucCVaQCEqjoq++PK9LJ2ivQnVNVPzQYOHAgbGxusWLGi2jYHDx5Ex44doa2tDRcXF6xbt06u3sXFBcuXL8dHH30EQ0NDODk54dtvv1U6lupUXP75999/4+OPP4alpSWMjIzQv39/xMXFifWLFi2Cl5cXduzYAVdXV+jo6AAATp48ibfeegsmJiYwNzfHP/7xDyQmJor3lc+e279/P/r27QsdHR3s3bsXAPDDDz+Ir4GtrS2mTp0qF2NWVhYCAwOhp6eHtm3b4ujRo2JdVcs/IyMj4e/vDz09PZiamkIqlYqJzdriJKqJyjMrgwcPxldffYXAwMAq69evX49//etfGD9+PDp06IBt27ZBT08PP/zwAwDAzs5ObmZaamoq7Ozsqh3v5cuXyM3Nlftqzg5uyUROqSEqJ9TKSfAsTx/3zlvDyMioMUMjIiIiIiJqWKUFwC8Gin0dMAZe1LSqSQBepJS1U6S/0gKlw1VXV8fy5cvxzTffICUlpVL91atXMXLkSHzwwQe4efMmFi1ahC+//BK7du2Sa7du3Tr4+vri+vXrmDx5Mv7973/j7t27SsejiPfeew+ZmZk4ceIErl69Cm9vbwwYMADPnj0T2yQkJODgwYM4dOiQuMQ0Pz8fM2fOxJUrVxAWFgY1NTUEBgZCJpPf+3vevHmYPn064uPjIZVKsXXrVkyZMgUTJ07EzZs3cfToUbRp00bunsWLF2PkyJG4ceMGhgwZgjFjxsjF86rY2FgMGDAAHTp0QFRUFC5cuICAgACUlpYqFSdRVTRUHUBNioqKcPXqVcyfP18sU1NTw8CBAxEVFQUA8PPzw61bt5CamgpjY2OcOHECX375ZbV9rlixAosXL27w2BvLw0TFptYq2o6IiIiIiIgaTmBgILy8vLBw4UJ8//33cnXr16/HgAEDxN9p3dzccPv2baxZswbBwcFiuyFDhmDy5MkAgLlz5+Lrr7/GuXPn0K5duxrH7tmzZ6VVSy9evICXl1eV7S9cuIDLly8jMzMT2traAIC1a9fiyJEjOHDggLj3WlFREfbs2QNLS0vx3uHDh8v19cMPP8DS0hK3b99Gp06dxPIZM2YgKChIvP7qq68wa9YsTJ8+XSzr2rWrXF/BwcEYNWoUAGD58uXYuHEjLl++jHfeeafSM6xevRq+vr7YsmWLWNaxY0el4ySqSpNOqmVlZaG0tBTW1tZy5dbW1rhz5w4AQENDA+vWrUO/fv0gk8kwZ84cmJubV9vn/PnzMXPmTPE6NzcXjo6ODfMAjcC5tWIHDCjajoiIiIiIqNlQ1wNG5inWNjMCCB9Sezv/3wCrPoqNXUerVq1C//79ERISIlceHx+PoUOHypX16tULoaGhKC0thbq6OgCgc+fOYr1EIoGNjY24RdLgwYNx/vx5AICzszP+/PNPse3+/fvh7u4u1/+YMWOqjTMuLg55eXmVfsd+8eKF3BJJZ2dnuYQaANy/fx8LFixAdHQ0srKyxJlfjx49kktW+fr6it9nZmbi8ePHGDBgQLUxVXx+fX19GBkZVbtFVGxsLN57771q+1I0TqKqNOmkmqLeffddvPvuuwq11dbWFjPsLcHwyVYwDnn+/4cUVLUEVICJ+nMMn2zV2KERERERERE1LIkE0NBXrK3NIEDPoexQgir3VZOU1dsMAtTU6zPKSvr06QOpVIr58+fLzUBTlKampty1RCIRk0E7duzAixcvqmzn6OhYaSmlrq5utePk5eXB1tYW4eHhlepMTEzE7/X1K78HAQEBcHZ2xnfffQc7OzvIZDJ06tSp0kEGr95bUyyvqun5K6qtT0XjJKpKk06qWVhYQF1dHRkZGXLlGRkZsLGxUVFUTYumlhqWzMzB9DUGKPuP4dXEWtl/FItn5kJTi/upERERERHRG0xNHfDZUHbKJySQT6z9/+9RPqENnlArt3LlSnh5eckt2XR3d0dkZKRcu8jISLi5uYmz1Gpjb29fbzF6e3sjPT0dGhoacHFxUfi+p0+f4u7du/juu+/Qu3dvAGVLSWtjaGgIFxcXhIWFoV+/fnUNW07nzp0RFhZW5TZQdY2TqJzKDyqoiZaWFnx8fBAWFiaWyWQyhIWFoUePHiqMrGmZttoBG2anwlhdftqzifpzbJidimmrHVQUGRERERERURPiGAT0PgDoVUg86TmUlTsGVX1fA/Dw8MCYMWOwceNGsWzWrFkICwvD0qVLce/ePezevRubNm2qtEy0sQwcOBA9evTAsGHDcPr0aTx48AAXL17E559/jitXrlR7n6mpKczNzfHtt98iISEBZ8+elduGqSaLFi3CunXrsHHjRty/fx/Xrl3DN998U+dnmD9/PmJiYjB58mTcuHEDd+7cwdatW5GVlfVacRIBTWCmWl5eHhISEsTrpKQkxMbGwszMDE5OTpg5cybGjRsHX19f+Pn5ITQ0FPn5+Rg/frwKo256pq12wL+/kuHglnQ8TCyCc2stDJ9sxRlqREREREREr3IMAuyHAk/OAy/SAF1bwLJ3o81Qe9WSJUuwf/9+8drb2xu//PILFixYgKVLl8LW1hZLliyp0xLR+iCRSPDbb7/h888/x/jx4/HkyRPY2NigT58+lfY+f5Wamhp+/vlnTJs2DZ06dUK7du2wceNG+Pv71zrmuHHjUFhYiK+//hohISGwsLDAiBEj6vwMbm5uOH36ND777DP4+flBV1cX3bp1w6hRo14rTiIAkAiCUNVi8kYTHh5e5bTOcePGiccGb9q0CWvWrEF6ejq8vLywceNGdOvWrV7Gz83NhbGxMXJycmBkxAQUERERERFRU1VYWIikpCS4urpCR0dH1eEQUTNV02eJMnkilc9U8/f3R215valTp2Lq1Kn1Ou7mzZuxefNmlJaW1mu/RERERERERETU8jXpPdUa0pQpU3D79m3ExMSoOhQiIiIiIiIiImpm3tikGhERERERERERUV0xqUZERERERERERKQkJtWIiIiIiIioWVHxeXtE1MzV12cIk2pERERERETULGhqagIACgoKVBwJETVn5Z8h5Z8pdaXy0z+JiIiIiIiIFKGurg4TExNkZmYCAPT09CCRSFQcFRE1F4IgoKCgAJmZmTAxMYG6uvpr9cekGhERERERETUbNjY2ACAm1oiIlGViYiJ+lryONzaptnnzZmzevBmlpaWqDoWIiIiIiIgUJJFIYGtrCysrKxQXF6s6HCJqZjQ1NV97hlo5ifCG7/CYm5sLY2Nj5OTkwMjISNXhEBERERERERGRiiiTJ+JBBUREREREREREREpiUo2IiIiIiIiIiEhJTKoREREREREREREp6Y09qKBc+ZZyubm5Ko6EiIiIiIiIiIhUqTw/pMgRBG98Uu358+cAAEdHRxVHQkRERERERERETcHz589hbGxcY5s3/vRPmUyGx48fw9DQEBKJRNXhvLbc3Fw4OjoiOTmZp5kSERGRwvgzBBERESmrJf78IAgCnj9/Djs7O6ip1bxr2hs/U01NTQ0ODg6qDqPeGRkZtZi/0ERERNR4+DMEERERKaul/fxQ2wy1cjyogIiIiIiIiIiISElMqhERERERERERESmJSbUWRltbGwsXLoS2traqQyEiIqJmhD9DEBERkbLe9J8f3viDCoiIiIiIiIiIiJTFmWpERERERERERERKYlKNiIiIiIiIiIhISUyqERERERERERERKYlJNSIiIiIiIiIiIiUxqdbCbN68GS4uLtDR0UG3bt1w+fJlVYdERERETVhERAQCAgJgZ2cHiUSCI0eOqDokIiIiauJWrFiBrl27wtDQEFZWVhg2bBju3r2r6rAaHZNqLcj+/fsxc+ZMLFy4ENeuXYOnpyekUikyMzNVHRoRERE1Ufn5+fD09MTmzZtVHQoRERE1E3/88QemTJmCS5cu4cyZMyguLsagQYOQn5+v6tAalUQQBEHVQVD96NatG7p27YpNmzYBAGQyGRwdHfGf//wH8+bNU3F0RERE1NRJJBIcPnwYw4YNU3UoRERE1Iw8efIEVlZW+OOPP9CnTx9Vh9NoOFOthSgqKsLVq1cxcOBAsUxNTQ0DBw5EVFSUCiMjIiIiIiIiopYsJycHAGBmZqbiSBoXk2otRFZWFkpLS2FtbS1Xbm1tjfT0dBVFRUREREREREQtmUwmw4wZM9CrVy906tRJ1eE0Kg1VB0BERERERERERM3TlClTcOvWLVy4cEHVoTQ6JtVaCAsLC6irqyMjI0OuPCMjAzY2NiqKioiIiIiIiIhaqqlTp+LYsWOIiIiAg4ODqsNpdFz+2UJoaWnBx8cHYWFhYplMJkNYWBh69OihwsiIiIiIiIiIqCURBAFTp07F4cOHcfbsWbi6uqo6JJXgTLUWZObMmRg3bhx8fX3h5+eH0NBQ5OfnY/z48aoOjYiIiJqovLw8JCQkiNdJSUmIjY2FmZkZnJycVBgZERERNVVTpkzBTz/9hF9//RWGhobiXu7GxsbQ1dVVcXSNRyIIgqDqIKj+bNq0CWvWrEF6ejq8vLywceNGdOvWTdVhERERURMVHh6Ofv36VSofN24cdu3a1fgBERERUZMnkUiqLN+5cyeCg4MbNxgVYlKNiIiIiIiIiIhISdxTjYiIiIiIiIiISElMqhERERERERERESmJSTUiIiIiIiIiIiIlMalGRERERERERESkJCbViIiIiIiIiIiIlMSkGhERERERERERkZKYVCMiIiIiIiIiIlISk2pERERERERERERKYlKNiIiISAm7du2CiYmJysaXSCQ4cuSISsZ2cXFBaGjoa/WxaNEieHl51Us8RERERKrEpBoRERG1aMnJyfjoo49gZ2cHLS0tODs7Y/r06Xj69KmqQ2uyqkscxsTEYOLEia/Vd0hICMLCwl6rDyIiIqKmgEk1IiIiarH++usv+Pr64v79+9i3bx8SEhKwbds2hIWFoUePHnj27Fm19xYVFTVYXMXFxQ3Wd0OytLSEnp7ea/VhYGAAc3PzeoqoMkXft4Z8f4mIiOjNwKQaERERtVhTpkyBlpYWTp8+jb59+8LJyQmDBw/G77//jtTUVHz++ediWxcXFyxduhRjx46FkZGROCNr165dcHJygp6eHgIDA6uc4fbrr7/C29sbOjo6aNWqFRYvXoySkhKxXiKRYOvWrXj33Xehr6+PZcuWKXTf/fv30adPH+jo6KBDhw44c+ZMrc/88uVLTJs2DVZWVtDR0cFbb72FmJgYsT48PBwSiQTHjx9H586doaOjg+7du+PWrVti/fjx45GTkwOJRAKJRIJFixaJr9Gryz8lEgm2b9+Of/zjH9DT04O7uzuioqKQkJAAf39/6Ovro2fPnkhMTBTvqbj8s3yMV79cXFzE+lu3bmHw4MEwMDCAtbU1PvzwQ2RlZYn1/v7+mDp1KmbMmAELCwtIpdIqX5fg4GAMGzYMy5Ytg52dHdq1ayeOX3E5rYmJCXbt2gUAePDgASQSCQ4dOoR+/fpBT08Pnp6eiIqKqvW9ICIiopaNSTUiIiJqkZ49e4ZTp05h8uTJ0NXVlauzsbHBmDFjsH//fgiCIJavXbsWnp6euH79Or788ktER0djwoQJmDp1KmJjY9GvXz989dVXcn2dP38eY8eOxfTp03H79m1s374du3btEhNn5RYtWoTAwEDcvHkTH330Ua33yWQyBAUFQUtLC9HR0di2bRvmzp1b63PPmTMHBw8exO7du3Ht2jW0adMGUqm00qy82bNnY926dYiJiYGlpSUCAgJQXFyMnj17IjQ0FEZGRkhLS0NaWhpCQkKqHa88ERkbG4v27dtj9OjRmDRpEubPn48rV65AEARMnTq12vvLx0hLS0NCQgLatGmDPn36AAD+/vtv9O/fH126dMGVK1dw8uRJZGRkYOTIkXJ97N69G1paWoiMjMS2bduqHSssLAx3797FmTNncOzYsVpfy1d9/vnnCAkJQWxsLNzc3DBq1Ci5BCgRERG9gQQiIiKiFujSpUsCAOHw4cNV1q9fv14AIGRkZAiCIAjOzs7CsGHD5NqMGjVKGDJkiFzZ+++/LxgbG4vXAwYMEJYvXy7X5n/+538EW1tb8RqAMGPGDLk2td136tQpQUNDQ0hNTRXrT5w4UeMz5eXlCZqamsLevXvFsqKiIsHOzk5YvXq1IAiCcO7cOQGA8PPPP4ttnj59Kujq6gr79+8XBEEQdu7cKfeM5ZydnYWvv/5a7rm++OIL8ToqKkoAIHz//fdi2b59+wQdHR3xeuHChYKnp2elvmUymRAYGCj4+PgIBQUFgiAIwtKlS4VBgwbJtUtOThYACHfv3hUEQRD69u0rdOnSpcrX41Xjxo0TrK2thZcvX8qVV/V6GhsbCzt37hQEQRCSkpIEAMKOHTvE+j///FMAIMTHx9c6LhEREbVcGirK5RERERE1CuGVmWi18fX1lbuOj49HYGCgXFmPHj1w8uRJ8TouLg6RkZFyM9NKS0tRWFiIgoICcQ+yin3Xdl98fDwcHR1hZ2cnN3ZNEhMTUVxcjF69eollmpqa8PPzQ3x8fKXnKGdmZoZ27dpVaqOIzp07i99bW1sDADw8POTKCgsLkZubCyMjo2r7+eyzzxAVFYUrV66IMwvj4uJw7tw5GBgYVGqfmJgINzc3AICPj49CsXp4eEBLS0uhthW9+py2trYAgMzMTLRv375O/REREVHzx6QaERERtUht2rSBRCKpMjEGlCXMTE1NYWlpKZbp6+srPU5eXh4WL16MoKCgSnU6OjrV9q3ofU2dpqam+L1EIqm2TCaTVdvHjz/+iK+//hrh4eGwt7cXy/Py8hAQEIBVq1ZVuqc8sQUo/r5V1U4ikVRKvFZ1kISyz0REREQtH5NqRERE1CKZm5vj7bffxpYtW/Dpp5/K7auWnp6OvXv3YuzYsWKCpCru7u6Ijo6WK7t06ZLctbe3N+7evYs2bdooFV9t97m7uyM5ORlpaWliAqni2BW1bt1a3FvM2dkZQFmCKCYmBjNmzKj0HE5OTgCA7Oxs3Lt3D+7u7gAALS0tlJaWKvU8dRUVFYWPP/4Y27dvR/fu3eXqvL29cfDgQbi4uEBDo2F+bLW0tERaWpp4ff/+fRQUFDTIWERERNSy8KACIiIiarE2bdqEly9fQiqVIiIiAsnJyTh58iTefvtt2NvbVzpMoKJp06bh5MmTWLt2Le7fv49NmzbJLf0EgAULFmDPnj1YvHgx/vzzT8THx+Pnn3/GF198UWPftd03cOBAuLm5Ydy4cYiLi8P58+flTiutir6+Pv79739j9uzZOHnyJG7fvo1//etfKCgowIQJE+TaLlmyBGFhYbh16xaCg4NhYWGBYcOGASg75TMvLw9hYWHIyspqsCRTeno6AgMD8cEHH0AqlSI9PR3p6el48uQJgLLTW589e4ZRo0YhJiYGiYmJOHXqFMaPH19vSb/+/ftj06ZNuH79Oq5cuYJPPvlEblYaERERUXWYVCMiIqIWq23btrhy5QpatWqFkSNHonXr1pg4cSL69euHqKgomJmZ1Xh/9+7d8d1332HDhg3w9PTE6dOnKyXLpFIpjh07htOnT6Nr167o3r07vv76a3GmWHVqu09NTQ2HDx/Gixcv4Ofnh48//rjWJCAArFy5EsOHD8eHH34Ib29vJCQk4NSpUzA1Na3Ubvr06fDx8UF6ejr+93//V9xvrGfPnvjkk0/w/vvvw9LSEqtXr6513Lq4c+cOMjIysHv3btja2opfXbt2BQDY2dkhMjISpaWlGDRoEDw8PDBjxgyYmJhATa1+foxdt24dHB0d0bt3b4wePRohISHiPnhERERENZEIyuzeS0RERETNWnh4OPr164fs7GyYmJioOhwiIiKiZosz1YiIiIiIiIiIiJTEpBoREREREREREZGSuPyTiIiIiIiIiIhISZypRkREREREREREpCQm1YiIiIiIiIiIiJTEpBoREREREREREZGSmFQjIiIiIiIiIiJSEpNqRERERERERERESmJSjYiIiIiIiIiISElMqhERERERERERESmJSTUiIiIiIiIiIiIl/R9rbXcHQ9OsegAAAABJRU5ErkJggg==",
"text/plain": [
""
]
@@ -829,18 +867,17 @@
" colors=np.array(list(map(to_rgba, ('purple', 'blue', 'green', 'orange')))),\n",
" order_by_id=True,\n",
" size=(15, 6),\n",
- ")\n",
- "plt.savefig(\"all.png\")"
+ ")"
]
},
{
"cell_type": "code",
- "execution_count": 15,
+ "execution_count": 18,
"metadata": {},
"outputs": [
{
"data": {
- "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAJsCAYAAADnSEneAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABzWUlEQVR4nO3dd1gU5/o+8HtpK71LE6SDSFNURLF3jb1rjno0yYkmJmo8sSRq1FiSk6jRGE2sMWqMGkusWFDsBRVQVAwCglKkCAsIC+zu7w9/u1+JDRSdHbw/17XXOcwuy5NMdueed97nHYlKpVKBiIiISIR0hC6AiIiI6GUxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWjpCV3A66ZUKpGeng5TU1NIJBKhyyEiIqIqUKlUKCwshKOjI3R0nj3uUuuDTHp6OpydnYUug4iIiF5CWloa6tWr98zna32QMTU1BfDoX4SZmZnA1RAREVFVyGQyODs7a47jz1Lrg4z6cpKZmRmDDBERkci8aFoIJ/sSERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFo6QldABER0SvbLBG6grfXMJWgf54jMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWloTZBYuXAiJRIIJEyZotpWWluKjjz6CtbU1TExM0L9/f2RlZQlXJBEREWkVrQgyFy9exM8//4zAwMBK2ydOnIg9e/Zg27ZtiIqKQnp6Ovr16ydQlURERKRtBA8yRUVFGD58OFatWgVLS0vN9oKCAqxZswaLFi1C+/btERISgnXr1uHMmTM4d+6cgBUTERGRthA8yHz00Ufo0aMHOnbsWGn7pUuXUF5eXmm7r68vXFxccPbs2We+n1wuh0wmq/QgIiKi2knQm0Zu2bIFly9fxsWLF594LjMzEwYGBrCwsKi03c7ODpmZmc98zwULFmD27Nk1XSoRERFpIcFGZNLS0vDpp59i06ZNqFOnTo2977Rp01BQUKB5pKWl1dh7ExERkXYRLMhcunQJ9+/fR+PGjaGnpwc9PT1ERUVh6dKl0NPTg52dHcrKypCfn1/p97KysmBvb//M95VKpTAzM6v0ICIiotpJsEtLHTp0wNWrVytt+/e//w1fX19MmTIFzs7O0NfXx9GjR9G/f38AQEJCAlJTUxEWFiZEyURERKRlBAsypqam8Pf3r7TN2NgY1tbWmu1jxozBpEmTYGVlBTMzM4wfPx5hYWFo3ry5ECUTERGRlhF0su+LLF68GDo6Oujfvz/kcjm6dOmCn376SeiyiIiISEtIVCqVSugiXieZTAZzc3MUFBRwvgwRUW21WSJ0BW+vYa8nRlT1+C34OjJEREREL4tBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiERL0CCzYsUKBAYGwszMDGZmZggLC8OBAwc0z7dt2xYSiaTS48MPPxSwYiIiItImekL+8Xr16mHhwoXw8vKCSqXCr7/+it69e+PKlSto2LAhAOD999/HnDlzNL9jZGQkVLlERESkZQQNMj179qz087x587BixQqcO3dOE2SMjIxgb28vRHlERESk5bRmjoxCocCWLVtQXFyMsLAwzfZNmzbBxsYG/v7+mDZtGh4+fPjc95HL5ZDJZJUeREREVDsJOiIDAFevXkVYWBhKS0thYmKCnTt3ws/PDwAwbNgw1K9fH46OjoiLi8OUKVOQkJCAHTt2PPP9FixYgNmzZ7+p8omIiEhAEpVKpRKygLKyMqSmpqKgoADbt2/H6tWrERUVpQkzj4uMjESHDh2QmJgIDw+Pp76fXC6HXC7X/CyTyeDs7IyCggKYmZm9tn8OIiIS0GaJ0BW8vYa9nhghk8lgbm7+wuO34CMyBgYG8PT0BACEhITg4sWL+OGHH/Dzzz8/8drQ0FAAeG6QkUqlkEqlr69gIiIi0hpaM0dGTalUVhpReVxMTAwAwMHB4Q1WRERERNpK0BGZadOmoVu3bnBxcUFhYSE2b96M48ePIyIiArdv38bmzZvRvXt3WFtbIy4uDhMnTkTr1q0RGBgoZNlERESkJQQNMvfv38eIESOQkZEBc3NzBAYGIiIiAp06dUJaWhqOHDmCJUuWoLi4GM7Ozujfvz++/PJLIUsmIiIiLSL4ZN/XraqThYiISMQ42Vc4Ak/21bo5MkRERERVxSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESiJWiQWbFiBQIDA2FmZgYzMzOEhYXhwIEDmudLS0vx0UcfwdraGiYmJujfvz+ysrIErJiIiIi0iaBBpl69eli4cCEuXbqE6OhotG/fHr1790Z8fDwAYOLEidizZw+2bduGqKgopKeno1+/fkKWTERERFpEolKpVEIX8TgrKyv873//w4ABA2Bra4vNmzdjwIABAICbN2+iQYMGOHv2LJo3b16l95PJZDA3N0dBQQHMzMxeZ+lERCSUzRKhK3h7DXs9MaKqx2+tmSOjUCiwZcsWFBcXIywsDJcuXUJ5eTk6duyoeY2vry9cXFxw9uzZZ76PXC6HTCar9CAiIqLaSfAgc/XqVZiYmEAqleLDDz/Ezp074efnh8zMTBgYGMDCwqLS6+3s7JCZmfnM91uwYAHMzc01D2dn59f8T0BERERCETzI+Pj4ICYmBufPn8fYsWMxcuRIXL9+/aXfb9q0aSgoKNA80tLSarBaIiIi0iZ6QhdgYGAAT09PAEBISAguXryIH374AYMHD0ZZWRny8/MrjcpkZWXB3t7+me8nlUohlUpfd9lERESkBQQfkfknpVIJuVyOkJAQ6Ovr4+jRo5rnEhISkJqairCwMAErJCIiIm0h6IjMtGnT0K1bN7i4uKCwsBCbN2/G8ePHERERAXNzc4wZMwaTJk2ClZUVzMzMMH78eISFhVW5Y4mIiIhqN0GDzP379zFixAhkZGTA3NwcgYGBiIiIQKdOnQAAixcvho6ODvr37w+5XI4uXbrgp59+ErJkIiIi0iJat45MTeM6MkREbwGuIyMcriNDRERE9HIYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQEDTILFixA06ZNYWpqirp166JPnz5ISEio9Jq2bdtCIpFUenz44YcCVUxERETaRNAgExUVhY8++gjnzp3D4cOHUV5ejs6dO6O4uLjS695//31kZGRoHt9++61AFRMREZE20RPyjx88eLDSz+vXr0fdunVx6dIltG7dWrPdyMgI9vb2b7o8IiIi0nJaNUemoKAAAGBlZVVp+6ZNm2BjYwN/f39MmzYNDx8+fOZ7yOVyyGSySg8iIiKqnQQdkXmcUqnEhAkT0LJlS/j7+2u2Dxs2DPXr14ejoyPi4uIwZcoUJCQkYMeOHU99nwULFmD27NlvqmwiIiISkESlUqle9KK//vqr2m/cqVMnGBoaVvn1Y8eOxYEDB3Dq1CnUq1fvma+LjIxEhw4dkJiYCA8Pjyeel8vlkMvlmp9lMhmcnZ1RUFAAMzOz6v1DEBGROGyWCF3B22vYC2PES5HJZDA3N3/h8btKIzJ9+vSp1h+XSCT4+++/4e7uXqXXf/zxx9i7dy9OnDjx3BADAKGhoQDwzCAjlUohlUqrVS8RERGJU5XnyGRmZkKpVFbpYWRkVKX3VKlU+Pjjj7Fz505ERkbCzc3thb8TExMDAHBwcKhq6URERFRLVWlEZuTIkdW6TPTuu+9W6TLORx99hM2bN2P37t0wNTVFZmYmAMDc3ByGhoa4ffs2Nm/ejO7du8Pa2hpxcXGYOHEiWrdujcDAwCrXQ0RERLVTlebIvLY/Lnn6Nc1169Zh1KhRSEtLw7vvvotr166huLgYzs7O6Nu3L7788ssqz3ep6jU2IiISMc6REY4Y5si86A9FRkbCx8cHDRo0qNbvvihDOTs7Iyoq6lXKIyIiolqs2uvIDBo0CD/++CMAoKSkBE2aNMGgQYMQGBiIP//8s8YLJCIiInqWageZEydOoFWrVgCAnTt3QqVSIT8/H0uXLsXXX39d4wUSERERPUu1g0xBQYFm5d2DBw+if//+MDIyQo8ePfD333/XeIFEREREz1LtIOPs7IyzZ8+iuLgYBw8eROfOnQEADx48QJ06dWq8QCIiIqJnqfZk3wkTJmD48OEwMTFB/fr10bZtWwCPLjkFBATUdH1EREREz1TtIDNu3DiEhoYiNTUVnTp1go7Oo0Edd3d3zpEhIiKiN+ql2q9DQkIQEhJSaVuPHj1qpCAiIiKiqqrSHJlJkyahuLi4ym86bdo05OXlvXRRRERERFVRpSDzww8/4OHDh1V+0+XLlyM/P/9layIiIiKqkipdWlKpVPD29n7mLQX+qTqjN0REREQvq0pBZt26ddV+Yzs7u2r/DhEREVF1VPnu10RERETaptoL4hERERFpCwYZIiIiEi0GGSIiIhItBhkiIiISrZcOMomJiYiIiEBJSQmARy3aRERERG9StYNMbm4uOnbsCG9vb3Tv3h0ZGRkAgDFjxuCzzz6r8QKJiIiInqXaQWbixInQ09NDamoqjIyMNNsHDx6MgwcP1mhxRERERM9T7ZtGHjp0CBEREahXr16l7V5eXrhz506NFUZERET0ItUekSkuLq40EqOWl5cHqVRaI0URERERVUW1g0yrVq2wYcMGzc8SiQRKpRLffvst2rVrV6PFERERET1PtS8tffvtt+jQoQOio6NRVlaGzz//HPHx8cjLy8Pp06dfR41ERERET1XtERl/f3/cunUL4eHh6N27N4qLi9GvXz9cuXIFHh4er6NGIiIioqeq9ogMAJibm+OLL76o6VqIiIiIquWlgkxpaSni4uJw//59KJXKSs/16tWrRgojIiIiepFqB5mDBw9ixIgRyMnJeeI5iUQChUJRI4URERERvUi158iMHz8eAwcOREZGBpRKZaUHQwwRERG9SdUOMllZWZg0aRLs7OxeRz1EREREVVbtIDNgwAAcP378NZRCREREVD3VniPz448/YuDAgTh58iQCAgKgr69f6flPPvmkxoojIiIiep5qB5nff/8dhw4dQp06dXD8+HFIJBLNcxKJhEGGiIiI3phqX1r64osvMHv2bBQUFCAlJQXJycmaR1JSUrXea8GCBWjatClMTU1Rt25d9OnTBwkJCZVeU1paio8++gjW1tYwMTFB//79kZWVVd2yiYiIqBaqdpApKyvD4MGDoaNT7V99QlRUFD766COcO3cOhw8fRnl5OTp37ozi4mLNayZOnIg9e/Zg27ZtiIqKQnp6Ovr16/fKf5uIiIjET6JSqVTV+YWJEyfC1tYW06dPr/FisrOzUbduXURFRaF169YoKCiAra0tNm/ejAEDBgAAbt68iQYNGuDs2bNo3rz5C99TJpPB3NwcBQUFMDMzq/GaiYhIC2yWvPg19HoMq1aMqLKqHr+rPUdGoVDg22+/RUREBAIDA5+Y7Lto0aLqV/v/FRQUAACsrKwAAJcuXUJ5eTk6duyoeY2vry9cXFyeGWTkcjnkcrnmZ5lM9tL1EBERkXardpC5evUqGjVqBAC4du1apecen/hbXUqlEhMmTEDLli3h7+8PAMjMzISBgQEsLCwqvdbOzg6ZmZlPfZ8FCxZg9uzZL10HERERiUe1g8yxY8deRx346KOPcO3aNZw6deqV3mfatGmYNGmS5meZTAZnZ+dXLY+IiIi00EvdNLKmffzxx9i7dy9OnDiBevXqabbb29ujrKwM+fn5lUZlsrKyYG9v/9T3kkqlkEqlr7tkIiIi0gJVCjL9+vXD+vXrYWZm9sKOoR07dlT5j6tUKowfPx47d+7E8ePH4ebmVun5kJAQ6Ovr4+jRo+jfvz8AICEhAampqQgLC6vy3yEiIqLaqUpBxtzcXDP/xdzcvMb++EcffYTNmzdj9+7dMDU11cx7MTc3h6GhIczNzTFmzBhMmjQJVlZWMDMzw/jx4xEWFlaljiUiIiKq3arcfj1nzhxMnjwZRkZGNffHnzE5eN26dRg1ahSARwviffbZZ/j9998hl8vRpUsX/PTTT8+8tPRPbL8mInoLsP1aOAK3X1c5yOjq6iIjIwN169atsSLfBAYZIqK3AIOMcAQOMlVenrea6+YRERERvXbVus/Aq6wTQ0RERFTTqtV+7e3t/cIwk5eX90oFEREREVVVtYLM7Nmza7RriYiIiOhVVCvIDBkyRHSTfYmIiKj2qvIcGc6PISIiIm3DriUiIiISrSpfWlIqla+zDiIiIqJqq1b7NREREZE2YZAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0RI0yJw4cQI9e/aEo6MjJBIJdu3aVen5UaNGQSKRVHp07dpVmGKJiIhI6wgaZIqLixEUFITly5c/8zVdu3ZFRkaG5vH777+/wQqJiIhIm+kJ+ce7deuGbt26Pfc1UqkU9vb2b6giIiIiEhOtnyNz/Phx1K1bFz4+Phg7dixyc3Of+3q5XA6ZTFbpQURERLWTVgeZrl27YsOGDTh69Ci++eYbREVFoVu3blAoFM/8nQULFsDc3FzzcHZ2foMVExER0ZskUalUKqGLAACJRIKdO3eiT58+z3xNUlISPDw8cOTIEXTo0OGpr5HL5ZDL5ZqfZTIZnJ2dUVBQADMzs5oum4iItMFmidAVvL2GvZ4YIZPJYG5u/sLjt1aPyPyTu7s7bGxskJiY+MzXSKVSmJmZVXoQERFR7SSqIHP37l3k5ubCwcFB6FKIiIhICwjatVRUVFRpdCU5ORkxMTGwsrKClZUVZs+ejf79+8Pe3h63b9/G559/Dk9PT3Tp0kXAqomIiEhbCBpkoqOj0a5dO83PkyZNAgCMHDkSK1asQFxcHH799Vfk5+fD0dERnTt3xty5cyGVSoUqmYiIiLSIoEGmbdu2eN5c44iIiDdYDREREYmNqObIEBERET2OQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiERL0CBz4sQJ9OzZE46OjpBIJNi1a1el51UqFWbOnAkHBwcYGhqiY8eO+Pvvv4UploiIiLSOoEGmuLgYQUFBWL58+VOf//bbb7F06VKsXLkS58+fh7GxMbp06YLS0tI3XCkRERFpIz0h/3i3bt3QrVu3pz6nUqmwZMkSfPnll+jduzcAYMOGDbCzs8OuXbswZMiQN1kqERERaSGtnSOTnJyMzMxMdOzYUbPN3NwcoaGhOHv27DN/Ty6XQyaTVXoQERFR7aS1QSYzMxMAYGdnV2m7nZ2d5rmnWbBgAczNzTUPZ2fn11onERERCUdrg8zLmjZtGgoKCjSPtLQ0oUsiIiKi10Rrg4y9vT0AICsrq9L2rKwszXNPI5VKYWZmVulBREREtZPWBhk3NzfY29vj6NGjmm0ymQznz59HWFiYgJURERGRthC0a6moqAiJiYman5OTkxETEwMrKyu4uLhgwoQJ+Prrr+Hl5QU3NzfMmDEDjo6O6NOnj3BFExERkdYQNMhER0ejXbt2mp8nTZoEABg5ciTWr1+Pzz//HMXFxfjggw+Qn5+P8PBwHDx4EHXq1BGqZCIiItIiEpVKpRK6iNdJJpPB3NwcBQUFnC9DRFRbbZYIXcHba9jriRFVPX5r7RwZIiIiohdhkCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLR0uog89VXX0EikVR6+Pr6Cl0WERERaQk9oQt4kYYNG+LIkSOan/X0tL5kIiIiekO0PhXo6enB3t5e6DKIiIhIC2n1pSUA+Pvvv+Ho6Ah3d3cMHz4cqampz329XC6HTCar9CAiIqLaSauDTGhoKNavX4+DBw9ixYoVSE5ORqtWrVBYWPjM31mwYAHMzc01D2dn5zdYMREREb1JEpVKpRK6iKrKz89H/fr1sWjRIowZM+apr5HL5ZDL5ZqfZTIZnJ2dUVBQADMzszdVKhERvUmbJUJX8PYa9npihEwmg7m5+QuP31o/R+ZxFhYW8Pb2RmJi4jNfI5VKIZVK32BVREREJBStvrT0T0VFRbh9+zYcHByELoWIiIi0gFYHmcmTJyMqKgopKSk4c+YM+vbtC11dXQwdOlTo0oiIiEgLaPWlpbt372Lo0KHIzc2Fra0twsPDce7cOdja2gpdGhEREWkBrQ4yW7ZsEboEIiIi0mJafWmJiIiI6HkYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi09IQugIjoTZLMlghdwltLNUsldAlUC3FEhoiIiESLIzKvYLZkttAlvLVmqWYJXQIREWkBjsgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFosf2a6CkkXDNNMCqumUZE1cARGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItUQSZ5cuXw9XVFXXq1EFoaCguXLggdElERESkBbQ+yPzxxx+YNGkSZs2ahcuXLyMoKAhdunTB/fv3hS6NiIiIBKb1QWbRokV4//338e9//xt+fn5YuXIljIyMsHbtWqFLIyIiIoFp9S0KysrKcOnSJUybNk2zTUdHBx07dsTZs2ef+jtyuRxyuVzzc0FBAQBAJpPVeH2lKK3x96SqeR37k7TDa9+1/NgK5rV+bh++vremF3hN+1X934vqBfct0eogk5OTA4VCATs7u0rb7ezscPPmzaf+zoIFCzB79uwntjs7O7+WGkkYC80XCl0CvSbm5kJXQK+L+ULu3Frp/de7XwsLC2H+nC8GrQ4yL2PatGmYNGmS5melUom8vDxYW1tDwjsBashkMjg7OyMtLQ1mZmZCl0M1iPu2duJ+rb24b59OpVKhsLAQjo6Oz32dVgcZGxsb6OrqIisrq9L2rKws2NvbP/V3pFIppFJppW0WFhavq0TRMzMz4wenluK+rZ24X2sv7tsnPW8kRk2rJ/saGBggJCQER48e1WxTKpU4evQowsLCBKyMiIiItIFWj8gAwKRJkzBy5Eg0adIEzZo1w5IlS1BcXIx///vfQpdGREREAtP6IDN48GBkZ2dj5syZyMzMRHBwMA4ePPjEBGCqHqlUilmzZj1xGY7Ej/u2duJ+rb24b1+NRPWiviYiIiIiLaXVc2SIiIiInodBhoiIiESLQYaIiIhEi0GGiIiIRItBhmqMet64SqV64b0xiIiIagKDDNUY9S0gJBIJJBIJSkpKBK6Iato/A6pSqWRoJSJBaf06MiQOycnJiImJwbVr13Dy5EkYGxvDyckJ9vb2cHNzQ2hoKDw9PQE8OhjyvlfiolQqoaOjA4VCgevXr8PCwgIuLi7Q0eG5kBjxM0i1CdeRoRqxYsUKrFixAs2aNUP9+vWRlJSEtLQ0FBQUoKysDI6Ojhg1ahQGDx4sdKn0EpYtW4Zff/0VpaWlsLe3R3JyMgoKChAcHIzBgwejf//+sLKyAsCDpLbJyspCSkoK3NzcYGNj80T4VB8CuM+014kTJ2BoaIgGDRrAxMRE6HK0DoMM1YicnBzY2Ng8sb2wsBDnzp3Dxo0bsXXrVoSFhWHlypXw9vYWoEp6Gbdv38bEiRMxbtw4FBUVoby8HHXq1MG9e/dw+vRpnD59Gvb29hg9ejQ+/PBDoculf5g5cybWrl2Ldu3aISAgAH5+fnB3d4ejoyNvqCsSbdq0wcmTJ1G/fn20aNEC3bp1Q/PmzeHi4gIDAwOhyxMcgwzVGPXlB+DpZ3l37tzBd999h2vXrmHx4sUIDg4WokyqhueNrqhUKsjlcty4cQPbtm3Dnj17EBISgrlz58LZ2fkNV0rP8vfff2Pnzp04ffo0rl69CoVCAScnJwQEBCAoKAi+vr5wc3ND3bp1YWxsLHS59BQKhQI3b97EkSNHsH//fpw/fx7FxcXw8fFB+/bt0aVLFzRu3Bh169aFrq6u0OW+cQwyVCPUIWb//v04dOgQlixZUuk5lUoFXV1dpKenY9myZfD19cWIESM4nC0CSUlJcHJyeuF9YM6fP4+vv/4aoaGh+OKLL7hvtZBCocCZM2dw4MABnDx5EikpKZBKpfD09ISLiwvmzJkDe3t7ocukFygqKkJMTAwOHDiAgwcPIj4+Hrq6uggKCsLJkyffujDDIEM1Qn1padCgQZBIJPjjjz8A/F8rto6OTqWz+zt37qB+/fpClkxVUFJSgl69esHb2xu+vr7w9fWFn58fnJycnvr6+Ph47Ny5EwMHDoSPj88brpaeRqVSQalUQiKRPDE/Ji8vD8ePH0dERAQuXLiAixcvQk+PPSDa6vFR78fl5OTg+PHjuHXrFqZPny5AZcJikKEaMWbMGDRo0AALFizA7NmzMWbMGEil0kofui5duqBPnz4YO3asgJVSdaSnp2PatGnIyMjAgwcPYGxsDBMTEzRo0AB+fn5o2LAhvLy8YGlpKXSpVEVZWVl48OABnJycYGpqKnQ5VE3x8fGQSCTQ1dWFhYUFLC0t3/p5Mgwy9MoKCgowdOhQ3Lp1C0lJSWjUqBECAwMRHByMBg0awNXVFfr6+mjcuDEOHz6MJk2aPPPMgrTXgQMHMG/ePFy7dg16enqwt7eHnp4ePD094eXlhVatWqF79+5Cl0n/oB4JjY6OxieffIKysjJYWVnBxcUFvr6+CAgIQL169dCgQQPNGlCkfcrLy/HDDz9g8eLFyMzMhIuLC+rVq4fw8HC0bNkSrq6u8PPzeyu/VxlkqMb89ddf+Pbbb9G9e3ccPnwYSUlJ0NXVhZOTE0pLS6Gjo4Pz588LXSZVg1KpREVFBQwMDPDhhx9CX18f//nPf+Dl5YWTJ09iz549WL9+PaRSKebNm4f333+fIVULyWQyNG/eHGFhYWjXrh1GjBiBxo0b48aNG3BxcYG9vT02btz4zEuGJBz152nPnj345JNPsGjRItjb26N9+/YYNGgQ9uzZg/z8fDg5OSEtLU3ocgXBIEOvTKVSoby8HHp6eigqKoKZmRmAR63XUVFROHXqFGxsbNC/f3+4ubnxQCdCcrkchoaGSE5OfmJu05QpUyCTyTBr1izY29tzHRktolAooKuri82bN2Pu3Lm4ceMGEhMT0aZNG6SmpmLv3r0YN24cunbtijVr1ghdLj2Feh8OHz4cFhYWWL58OWbOnInY2Fjs3r0b69atw5YtWzB58mR06tRJ6HIFwaMJvTKJRAIDAwPo6OggIyMDJ06cQEZGBkxNTfHOO+9g4cKFmDx5Mtzc3ACAIUaEbt++DScnJ5w4cQLAoy9XhUIBABgyZAguXLig6XZhiNE+J06cQOvWrQEAa9euRaNGjaCrq4vOnTujb9++6Nu3r8AV0rOoO5Bu376Nxo0bAwDOnDmD8PBwAMCwYcNgYmLyVs934vR0eiXqs++cnBxMnToVR44cgYODAwDAyckJjRo1QosWLdC0aVOuSClSKpUKfn5+GDBgABYtWgR3d3e0bNkSAJCSkoLffvtNE2rUZ4+kHdT7wsHBAUqlEsCj1l07OzuUlZXB0NAQsbGx8PDwELJMeoGysjL06dNHM9ptYmKC9PR0VFRUIC8vD4cPH8a8efMErlI4DDL0SpRKJXR1dbF27VpcuHABEyZMgLW1NRITE3Hr1i0cOnQIGzduREBAALZu3Sp0ufQSJBIJ0tLSMHLkSNy8eROtWrVCvXr14Ovri8zMTJSXl2Pu3LlCl0nP8cknn2jmT3To0AHjx4/H8uXLkZKSgqtXr2L9+vXCFkjPZWBggFGjRqGwsBAA0KdPH0ycOBEVFRWIjY1F/fr14evrK3CVwuEcGXol6hGZ3r17o1WrVpg8ebLmuZycHNy+fRsXL16Eo6Mj+vXrxzN2EcrIyEDbtm0RGxuLOnXq4OrVq4iMjMTVq1fh5OSEMWPGwNnZmZeUtJR6JEZ9Sbe4uBiTJ0/G4cOHYW1tjeHDh+OTTz4RskSqpqKiIvzwww/YunUrAgICMGXKFAQEBAhdlmAYZKhG/Pjjj8jOzsbs2bOFLoVq2O7du/Hll18iNjaW85tERD2pfseOHZBIJGjbtm2l9X6ys7NRXl4OR0dHAaukqvj444/RsmVLDBw4kAsWPgW/leilqTNwYmIifv31V6xevRo//fQT/v77b4Ero5qgPpMPCQlBq1atcPLkSQCP9rtCoUB5eTl4HqS91KFz4sSJyMnJ0UwGVc9nUt/8k/tQO6n3S2xsLHbs2AFnZ+dKIUalUuHatWuay01vM0Y7emX37t2Do6Mj9PT0sGjRIvzxxx9wcHBAYGAggoKC0KJFC678KkLqA2Hz5s2Rnp6OmzdvYsaMGWjXrh10dXV5iVCLqS/5Xrx4EaWlpXj33Xc1B0H1fjt79iwuXLiAefPm8SxfC6nnH+7YsQP+/v4IDw+vtHSFXC7Hr7/+iqKiIqxYsULgaoXFERl6aRKJBEqlEm3atMGff/6J9evXY968eQgPD4dKpcLRo0fxySefYPfu3QDAMz8RqqiowDfffIOpU6ciNzcXnTt3hoWFBbp164YVK1bg9u3bQpdIT6H+rF25cgWurq6a0bOKigrNSNuDBw9w8OBBhhgtpQ4seXl5sLKy0mxT78c6deogNzeXc9PAOTL0ElJSUjBs2DCcPn0aSqUSqampmjVi1GQyGW7cuIHz58+jb9++cHZ25kJpIqVSqVBSUoKSkhKkpaXh/PnziIyMxOHDh2Fpackwo8UuX76MQYMGYenSpZVuH1FeXo4RI0bA2NgYq1evFrBCepGTJ0+iW7du+Pnnn9G3b18YGRkBAP7++2+0a9cOK1euxDvvvCNwlcJikKFqi42NxbFjxzBhwgScPHkSffr0QaNGjRAUFIS2bduiZcuWmjMIqp3Ky8uRk5ODkpISuLu7sxtNSymVSgwaNAgREREYMWIE2rRpAz8/PyxbtgxHjx7Fhg0b0KJFC6HLpH94/KSvtLQUn3/+OQ4fPoxOnTrB3d0d2dnZ2LNnDxwdHbFv3763/rPHIEMvRX3gunHjBnbv3o20tDRcv34dWVlZkEgk8PDwQEBAAIYOHQp/f3+hy6WXlJ2djUWLFiE9PR1t27ZFUFAQvL29ubihliorK3vq/KU5c+bg+PHjyM/Px+3bt2Fra4vly5ejS5cuAlVKL/J4mMnMzMTy5ctx6NAhyOVyWFhYoEGDBpg9ezbq1q0rcKXCY5ChGlFYWIjMzEwkJCTg2rVrSEhIwOnTpzFr1iwMHz6c91cSEfW+unnzJt5//30oFAoYGRkhMjISEokEbm5u6Ny5M0JCQjBmzBihy6XHfPLJJ+jTpw/at2+PvLw86OjowNzcHEqlErdv30ZGRgbs7e3h7OysuURB2sXW1hbHjh2Dv78/7ty588S9zVJTU2FoaAhbW1uBKtQ+nOVFr0R9w0iFQgFra2u88847eOedd5CVlYWkpCTNIk0MMeKhDjJr1qyBqakpdu3ahU2bNuHhw4f44YcfMGnSJKxcuRLt2rXDmDFjGFK1iEwmg4WFBYBHq7+amJigW7duCA0NhY+PD7y9vYUtkJ5LLpfju+++g7+/P2QyGdzc3GBnZ4fw8HD07NkTXbt2hYuLi9Blah2OyFC1qQ9c2dnZ2LhxI77//nsUFRWhQYMGCA8Px9ixY+Hu7i50mfSS1Ps3ODgYY8eOxX/+8x90794dQUFBWLBgAQ4ePIj9+/djxowZsLW1ZZDRQiqVCsuXL8eePXtw5swZFBcXw8PDA61atUL79u3h6+uLxo0bc79psbKyMpw7dw6XLl1CREQELl68iPz8fHh4eKB9+/YYOHAgOnToIHSZWoFBhqpNPT9m7NixOHHiBP7973+jQYMGOH78OP7880/k5+dj06ZN6Natm9Cl0ksqKytDt27dMGXKFHTu3BmNGjXCZ599hnfffRcKhQK+vr74448/NHfjJeGpVCqoVKqnhhP1omp79+7FlStXULduXWRmZgpQJb0MpVKJrKwsXL16FVFRUdi+fTsCAgKwfft2oUvTCgwy9NJMTU2xZ88etG3bttL23r17w9DQEGvWrIGxsbEwxdErefjwIXbu3AkLCwt0794do0aNgkQiwerVq7Fp0yZ8+OGHKCkpEbpMeg6FQoHc3FxYW1s/Mfn36tWrb/W9ecSgoqICKpVKs3KvmZmZZs0fuVyOsrIyzWrNbzvOkaGXkpycDBMTE831eLlcDgCQSqWYPHkyhgwZgvLycgErpFdhZGSE4cOHo7S0FBKJBN27d8fw4cPxxx9/wNbWFhMnTgQAtl1rqX379mHDhg2QSCQwNTWFu7s7AgMDERAQABcXFwQEBHBdJy2k3ieFhYVYunQpFi5cCFNTUwQFBSE0NBRNmjSBl5cX7OzsNN+9xBEZekl5eXkYNmwYnJycsGbNmkrPbd26FRMmTEB6ejq/LEVGvb+WLVuGwYMHV2rtTEpKwoULF2BlZYVWrVrB0NCQ+1eLVFRUQE9PD0lJSejUqROcnZ3h4uKCBw8eIDc3FwBgbW2NunXrYtmyZexa0kLqffjDDz/g+++/x6RJk1C3bl3s27cPp0+fRn5+PkxNTfHOO++89bcleByDDL20jRs34oMPPoCHhwd69uyJFi1aICYmBhs3bsTAgQMxd+5czQeTxKOoqAi+vr7Q09PDiBEj8K9//QteXl5Cl0VV9P333+PPP//EmTNnADxaUO369euIjo7GuXPnUF5ejt9++03gKumfHj8p6N27N5o1a4Yvvvii0mtu376Nbdu2QSqVakZFiUGGqqiiogI5OTmwt7evtP3KlStYv349YmJicOPGDRgYGGDmzJkYPHgwzM3NecYuUiUlJVi9ejW2b98OPT09jB07FgMGDBC6LHqG3bt3w9bWFiEhIdi4cSMSExOxYMGCp762pKQEhoaGb7hCeh65XI5ffvkFTZs2haurK3799VdIpVJMmDABAPg9+gIMMlQlW7duxZkzZ7BkyRLk5eUhJSUFLi4usLGxQXl5Oe7fvw99fX2uMily//zCTEtLw6pVq7BixQr4+flh/Pjx6Nq1K1f21SIPHz5Es2bNYG1tjXr16qF+/frYt28f5s6diy5dukAqlQpdIr3A+fPnERYWBgMDA3h5ecHb2xunT5/GihUr0LJlS1haWkJfX1/oMrUWgwxVyc6dO5GXl4cxY8Zg/vz5WLNmDTp06ICAgAAEBgbCw8MDlpaW7FKqBZYsWQJzc3Pk5uaiuLgYjo6OuHPnDtauXYvMzEycOnWK9+fRIgqFAkeOHMGVK1dw4cIF3Lt3DwkJCbC2ttbcW6lhw4bw8fFB/fr1OTlbyzx+8hAbG4utW7fi8OHDiImJgVKpRJMmTdC2bVu0atUKnp6eqFevHr9n/4FBhqotJiYGf/zxBy5evIhbt25BR0cH9evXR3BwMAIDA+Hn5wd/f3+2BopQUlISPD09YWpqivHjx0MqleLMmTOQy+Wwt7dHeXk5Vq1axY4JLZaRkYG4uDhERUXh8uXLyM7OhoGBAQwNDdG1a1d8/vnnQpdI//C07j+VSoXIyEhs374dERERuHv3LioqKrB69WqMHj1aoEq1E4MMvVBJSQmSkpJQv379Jy4pFBYW4vjx4zh06BDOnj2LzMxMmJqaIjQ0FPPnz4ejo6NAVdPLyMnJwfLly7FhwwaYmppiwoQJGDVqFIBHy9/r6OjwspIWUk+qz8vLe+LO8wkJCTh//jz279+Pjh074r333hOoSnqRiooKnDx5Ej4+Pk98d+bn52Pr1q1o1aoVGjRoIFCF2olBhl5ow4YN+N///odOnTqhYcOGcHNzg6urKxwcHJ6YNHjv3j1ERERg4cKFCAsLw9q1azmULULqyYdXrlyBu7s73nvvvScmepN2KSsrQ48ePTB48GCMHDkSenp6nCAqEurbfJw4cQJTp07F5MmT0a9fP1RUVGj2Ib9Hn419sfRCDRo0QFhYGM6ePYs///wT1tbWcHBwQGBgIIKDg+Hh4QFHR0fY2trCyckJo0ePhrGxMb799lt++ETmzJkz0NHRQUBAAPr374/S0lL8+OOP+O677zBixAjMmTOHl5W0jPogeODAAaSmpqJz587Q19eH+hy1rKwMx44dQ/369eHr6ytwtfQ06n24bt06eHt7o1+/fgAe3WxXR0cHd+/exdq1a9G2bVu0bt1a4Gq1D0dkqFp27dqF//znP7C0tER+fj5KS0thbm6Otm3bwsXFBaNHj4abmxuuXr2K+/fv86ZmIqCebBgbG4sPPvgAEokEcXFxsLCwQFhYGCQSCXbs2AHg0UgNuye0i3p+xfvvv4+SkhJs3LgRCoUCOjo6kEgkKC8vx/jx46FQKLBq1Sqhy6WnUH8GAwMD8fHHH+ODDz7QbFf/b48ePdCvXz+8//77QpaqlTgiQy9UXl4OfX19pKSk4LvvvsOCBQs0k83i4uLw888/45dffoGpqSnGjh0LALyPiwglJyejTZs26NChA+zs7JCdnY3k5GQYGhpi3Lhx0NXVhb6+Pu92rWXUo54mJiaQyWSVtqlUKujr6yM5OZln8lpMHTgbNWqEEydOYMyYMdDV1dVcVpLJZDh37hzmz58vcKXaiUGGXkh90NqzZw9KSkowevRozZlCYGAg5s+fj/z8fAwfPpyTe0VIfTa4aNEifP3118894D3r7sokvGHDhiE0NBSBgYEYNmwYHB0dIZVKcfDgQVy8eBHfffed0CXSc+jr62Po0KEYOXIkfvzxRwwcOBAWFha4e/cuNmzYAEtLSzRq1EjoMrUSgwy9kPrsrry8HIWFhbh27Rr8/f2hVCqhVCphbm6OunXrYu/evejevTtXoRQZHR0dlJSUIDs7u1LLvEKhAFB5kiH3q3bKzc2Fv78/lixZgp9++gkXL15EvXr1cPPmTcTFxWHUqFEcJdVS6u/L+Ph4+Pj4YMyYMfjvf/+LuXPnwtfXF3l5eQCARYsWCVyp9uIcGaqy/Px8dO7cGba2tpg9ezaaNGkCANi/fz/Gjh2LuXPnYsSIEbwjsoioLxPl5uZi4cKFMDMzw4wZM4Qui6ro8fkxISEhePfdd7F//37s3bsXmZmZ8Pb2RmhoKIYOHcp7nmk5Pz8/bNq0CY0aNcL9+/dx5MgRnDt3Dr6+vujVqxfq1asndIlai0GGquXs2bOYMmUKLly4AKlUCkdHRxQVFSE8PByrV6/mipMiow4yH3zwAVavXg2JRILp06eje/fucHNzg6WlJZe4FwEvLy/8/PPPaN++faXtPKkQh7S0NLRs2RLnzp3j5fmXwCBDL+XMmTO4efMmsrKy4OHhgUGDBgldEr2CtLQ07N+/H3v27MGxY8dQVlYGb29vtGvXDo0bN0bfvn1haWkpdJn0FIWFhZg6dSoaNWr0xGJ3KpWK85q0mPpEIicnBwsXLoSvr69mH3LfVR2DDFVLcnIydHR04OjoyDbcWuz8+fPYsWMHIiIiEBcXp7lJKGkP9WjL3r17MWXKFBQWFmLu3LkICwtDvXr1YGRkJHSJ9ALqINOzZ0/s27cPDg4OmDdvHjp27AhHR0eGmCpikKEq+euvvzBhwgTY2trCzMwM7u7uCAgIgK+vL1xdXeHp6Sl0ifSKbty4gcLCQjRt2rTSpF5entBua9aswapVq3D37l0olUr4+fkhODgYQUFBqF+/PoKCgmBubi50mfQc586dQ1RUFPbv34/z589DV1cXjRo1QteuXdGiRQu0bt2ac5yeg0GGnkl9thAVFYX3338f//rXvyCVSjF16lSEhITg6tWr8PLygo+PD7Zv3y50uVRN6v0bFxeHWbNmITk5GYWFhVCpVAgLC8Nnn32Gxo0bC10mVVFBQQGOHTuGiIgInDt3Dg8ePEBRUREOHz7Mtl0RycnJwenTp7Fv3z5ERkYiKSkJxcXFT9wOhv4Pgww9k/pGdO+99x6Ki4vx+++/45dffsHWrVtx5MgRfPvtt/jpp5/wwQcfYPr06VwoTaRCQkLg6OiI7t27w87ODsnJydi3bx+kUilWr14NJycnoUukl5CcnIzDhw9j9OjRPJsXiactXZGRkQEHBweBKhIH/tdNz6S+nHD16lXNktnqu68CjxbgunHjBt555x0AXGNETNRfmBcvXkRSUhIOHToEa2trAI8uJbVt2xb9+/fHb7/9hilTpnDfarELFy7g7t27yM3NhaOjI7y9veHm5gY3Nzd88MEH4LmqdissLMTixYtx48YNNGrUCA0aNIC3tzdsbGxgamrKEFMFDDL0TBKJBGVlZQgJCdGMtOjp6WmGOOvVq4e//voLn3zyiZBl0ktQKpXQ1dVFbGwsfHx8YGJionlOV1cXISEhGDt2LPbu3YupU6dykUMtox79XLJkCb7//ntIpVIUFhbC3t4elpaWCA4Ohr29PQYOHAgPDw+hy6VnkMvlGDp0KNLS0uDv74+pU6dCIpHAxsYGnTt3hru7OyZPnlxpoUp6Eq8D0HMZGBjgyy+/RMuWLQEAHTp0wOrVqzVLaBsZGWmuv/NAJx7q0baQkBCkpqZi1qxZyM/PR3l5ueY1ly5dgo+PD4D/W+WXtIOOjg6Kioowd+5cfPPNN0hMTMTDhw/RrVs36OvrY+3atVi9ejX3m5ZSKpUAgAMHDiAhIQEHDhzA//73P9jb2+PmzZsYMGAANm3apLmHHT0fR2ToCcnJyXBzcwPw6AP3+AJNAwcOxPnz57F48WL4+flh6dKlANjZIhYFBQXYt28fBg8erOmMmDFjBpYvX460tDS0bt0aEokEW7duxf3797Fy5UoA4NwnLaIejYmIiIC9vT2GDRuG6OhomJiYYOHChVAoFOjatSt69uwJb29voculp1Bf7tu7dy/atGkDR0dHzJo1Cw0bNoSXlxc+/fRTAMC0adOELFM0GGToCb169cLMmTMxcODASgcwpVIJV1dXbN++Henp6ZBKpZp5FQwx4rBu3Tps27YNw4YNQ3JyMsrKyjBq1CgYGhrit99+w6xZs2Bvbw9XV1dMnToVLVq0AMAgo43i4uLg5+cHADhx4gQaNWqkmaAfHh6O9PR0gSukZ3n8/nXqe2D9/fffCA4Ohkqlgre3NxISErBr1y58/PHHQpYqCgwy9IT58+fj008/xd69ezFhwgQEBARAT0+v0sGMy2iL07Vr1zSTBydNmgQjIyNs2rQJo0aNwqhRowAAd+7cgZOTEztdtJT6c9i5c2c4OjqivLwcpqamyMzMRHR0NLy8vBAREYHu3bsLXCm9yIcffoi7d+8CAIKCgrB7924kJSXh1q1bOHv2LJYsWSJsgSLB9mt6qnPnzuGbb75BRUUF2rRpg9atW8PFxQVSqVSzVH1FRQXu3r0LV1dXYYulKtuxYwdGjx6Nzp0748SJE/jqq6/w4YcfPvE6Tu7VbiUlJcjPzwcAODg4ICcnB71794apqSkyMjJQXFyMI0eO8LOphdSXBpOTk+Hg4ACJRAKpVIrr16+jY8eOyM/Ph4mJCbp164Zff/1V6HJFgUGGnik+Ph4///wzduzYgcLCQjRs2BA+Pj4oLS3F3bt3YW1tDSMjIwwbNkzTgk3aTaVSYf/+/fjhhx9w5MgR6OjowMPDAx06dECPHj3QvHlzzeVC0j7quWgrVqxAdHQ01qxZo3nuxIkT+P3332FiYoIxY8bA19dXwErpWdT70N/fH+Hh4Vi5cqXmxEEul+Po0aMoKytD586deZuJKmKQoRdSqVSaFUMzMzNhb2+PunXrQk9PD7179+ZZnwjt2bMH8+fPx7Jly7Bnzx4cPnwYsbGxUKlU8PX1xYABAzB9+nShy6R/UB/whgwZAnt7e156ELGhQ4fi3XffRY8ePaBQKKBUKnn/upfEIEPPpG4R/OdET3YoidPj3WgpKSkoLS3VnLUrFApkZmbiypUr+PPPP2FqaoqlS5dyX2up06dPY8uWLZgzZw4sLS2hUCigUCigo6PDuU1aTB1E8/LysHDhQqSmpmLLli2VXlNWVsb9WE0MMlQlSqVSc0t5iUQCpVIJiUTCeRQiEhAQoOlGexEGGO11/fp1+Pv7AwBmzpyJ999/n7eREAl1kNm2bRv+85//oLS0FB06dMCgQYPQtm1bODs7C12iKDHIkAYneNZue/bswYQJE9CyZUt8+umnCAoKeuKsj/fL0n737t3DqlWrcPPmTRw6dAgFBQXw9fVFt27d0K1bN7Rp04Zn81ouLi4OJ06cQHJyMqKjo5GXl4eKigrUq1cPnp6eGD9+vKa1nl6MQYaeiiMutRO70WoHdeDMyspCdHQ0jh8/jqioKERHR+O///0vvvnmG6FLpCpQKpXIzc1FbGws4uPjkZCQgNOnT2PlypUICwsTujzRYJAhAI+Wyr506RIGDRr0xGqgKpVKM1rDYCN+7EYTv/z8fFy/fh3u7u6wt7fXzJFJTEyEjY0N6tatK3SJ9BxZWVm4e/cubt++DVdXVzRr1gwAUFxcjOTkZDRs2JDftdXAIEMAgMWLF+Orr75CaWkpLCws0KZNG/Tq1QudOnWCnZ1dpdfyElTtwG408VB/5goKCrBy5Ups2LABBgYG0NfXx7Fjx2BsbIz09HQuVKnF1PPOzpw5gwULFuDMmTMoLS3F8OHD8csvvyA/Px8PHz7kPnwJDDIE4NHlhAcPHiA5ORmnTp3CkSNHcOHCBeTl5cHDwwOdOnVCnz590LJlSxgbGwtdLr0CdqOJj/rWAzNnzsSpU6fw3nvv4cCBA8jKysKhQ4eQkpKC9evXo0+fPggODha6XHoK9eXAsLAwBAUFYeXKlWjevDm6du2Kr776ChEREdixYwc+/fRTzo+pJs7qIwCAnp4ebG1t0axZM0yaNAnbtm3D5cuXcejQIQwcOBCXL19G//79YWpqitTUVKHLpVego6OjCTFKpRIKhQIqlQq6urqa7jTSLur9tXHjRrz77rsYNmwYMjMz0apVKwCAvr4+Tp8+jatXrwpZJj2Hjo4OCgsLcfXqVcyePRsAkJiYiK5duwIAPDw8cPLkSX7+XgKnttNTGRsbw9jYGC4uLujYsSOKi4uRnp6OGzduwMXFRejyqBqedynwn6My7FjSTjo6OigqKoKOjg6aNGkCALh48SLmzZsHALCyskJ8fDzP5LXc9evX4eLiAl1dXZw/fx66urpo0KABgEd3pr937x4aNmwocJXiwyBDTzhy5AiuX7+OoKAguLq6wtnZGcbGxvDy8oKXl5fQ5VE1PR5i2I0mXiqVCk2aNMGGDRswbNgwmJiYICgoCABw8uRJFBUVISQkROAq6Xn8/f3h7e2N3bt3Izc3F+Hh4TA3N0dBQQG2bNmCRo0aCV2iKDHIUCXTp0/H9u3bYWhoiKtXr8LExAQNGjRA3759ERQUhA4dOsDAwEDoMqmK/tmN9viIC7vRxMXU1BTjx4/Hp59+iq1bt8Le3h5ZWVnYsmWL5magpN2MjY0xdOhQTJw4EZmZmWjevDnWr1+Pv/76C3fu3NFccqLq4WRf0hzMbty4gU6dOmHJkiVo37493Nzc8P3332PHjh04ePAggEdtg7a2tgJXTFXFbrTaRaVS4eDBg1i/fj0iIyORm5sLLy8vjBw5Eh988AFsbGyELpEeU1BQgMLCQtSrV6/S9oSEBGzevBmnTp1CUlISnJ2dsXTpUgQFBfEz+BIYZEjTrTJ//nwcOXIEkZGR+OOPPzB79mxcv34dMTExmD17Nr788ksOXYsMu9HEKzo6GsuXL8e6detQWlqK3NzcSrciyMzMRGFhIcrLyzk3Rkt99dVXmv9NSkpCRkaGZu0f9WJ45ubmkEqlwhYqcry0RJrLDcnJyQgNDQXw6KZ0zZs3BwAEBwfD2toaBw4cQEhICM/cRUTdjabuSPvPf/6D3Nxc3Lp1C5GRkYiMjMRvv/2G4uJipKSkcCK3FklPT9dM/Dxw4ABmzpyJpk2bws/PD82bN0dgYCDs7e0FrpKep3HjxjAzMwMAzJs3D4cOHUJ4eDgCAwMRFBQELy8v6OvrM8i8IgYZ0oSSzp07IyMjAwBQt25d3Lp1C6WlpZDJZIiIiMCSJUsA8BKEmLEbTTx69eqFiooKAI/2W4sWLZCTk4Ndu3Zh27ZtsLS01EzA79ev3xOXL0h4vXr10vz/zz//HA0bNsSJEyewZs0alJaWwtHREcHBwXB3d8fo0aO5IvNL4qUlqiQ7Oxu2traIi4tDaGgo3NzcoFAoYGJigtOnT6NOnTpCl0gv6WndaGy31l5PO2HIzs5GfHw84uLicOPGDdy9exc3b97EmjVr0Lp1a4EqpWfJzc1FYWHhE6tkq1QqnD59GhERETh58iSuX7+OxMREzegNVQ+DzFtO/WUpk8k0HyL1CpQ3b97Exo0bIZfLMWbMGPj6+nI0RqTYjSY+58+fx6effooePXogPDwcYWFhT5xIpKSkIDY2Ft26deP+0yLq79Bly5Zh27ZtaN68OTw8PODn5wcvL68nLgkWFxdzjtorYJB5y6k/cP/6179gYWGBWbNmwcbGhoGlFmA3mrgdO3YMS5cuxYMHD5CdnQ09PT0EBgYiJCQE7dq106whQ9pr27Zt2LlzJ+7evYuSkhIAgLu7O7y9veHj4wM/Pz+4ubnB0tKS37mvgEGGUFRUBGdnZxw4cEAzwVctMjISRkZGT2wn7cduNPHLzc1FUlIS8vPz8cEHH8DIyAgmJiYoKCiAtbU17O3tMX36dO4/LVdcXIz4+HiEhYWhVatWKC0tRXl5OaytrWFiYoIlS5Zwjtor4GTft5h6NObw4cOwsrJCaGjoEzcO/Pvvv7Fu3TqcO3dOwErpZbAbTfysra1hbW0NAMjPz8cPP/wAW1tbXL9+HQkJCTh9+jTnOWmxxydrW1paws7ODpGRkcjJycHFixdx+vRpxMXFcaL2K2KQeYupvwAfPnwIBwcHpKenV1qnAng0WqO+9s67I4sLu9HEr7y8HPr6+jh79izq1KmD7t27Q09PD2FhYZDL5bh37x7c3d2FLpOeQU9PDwqFAgCwfv16BAYGQkdHB3Xr1kWPHj3Qo0cPgSusHRjlCR06dEBKSgqmTp2KpKQkFBUVAXg0GrN582Z+2ERu4MCBGDp0KIBH7aBRUVFo3LgxWrVqpflCBXjDSG1SXl4O4NFdrQFgz549CAkJgZ6eHioqKqBSqSCVShlitJh61ob65CAiIgLdunUD8Gg0vKKiQhNy6NVwjgwBAP766y9MnjwZZmZmCA8PR2lpKX7//Xd06tQJP/74I+zt7XnGLiLsRhO3uXPnwsXFBd7e3ggNDUXjxo3x4Ycf4sMPP9S8hjcA1V5paWno27cv+vfvj44dO8LNzQ3e3t44ffq05m7XVHMYZN5CiYmJ8PDwgEqlqnQWfvLkSWzcuBGXL1+Go6Mj2rdvj6FDh3KRJhFiN5p45eTkoFmzZqioqIC5uTk8PT2xb98+fP/992jbti2cnJxgaWnJ/ajFUlJSMGnSJMTHxyMxMRGGhoZ4+PAhli1bhnbt2sHV1RVGRkZCl1lrMMi8hRo3boxPP/0UI0eOxM6dO+Hm5obg4OBKryktLeXidyLHbjRxS0pKwqFDhxAVFYUrV66gqKgIDg4O8Pf3h7+/P4KDg9GhQwehy6QXSExMxJkzZ3Dw4EFEREQgPz8f3t7eCA4Oxvjx49GiRQuhSxQ9Bpm30MmTJ9G4cWPNsudXrlyBtbU1GjVqhB49eqB79+5sBRQx9WjMzp07MXnyZCQmJkKpVFaaqP3zzz+zG01LqfffP128eBGHDh3CyZMncfr0abz77rtYsWKFABXSy1IoFIiJicGRI0ewfv16TJs2DSNGjBC6LNFjkHmLqVQqXL9+HWlpaYiJicHZs2cRGxuLvLw8ODg4IDQ0FGvWrNFMOCRx2bRpE1asWIE//vjjiW6077//Hrt378aJEyfYjaalVCoVKioqoK+vj5ycHNjY2GieKy4uhkwmg4ODg4AVUlWVlZUhIiICPXr04KT614BBhgA8Wu9AJpMhPT0dt27dwqlTp5CTk4MNGzZwXoVIZWZmokmTJmjXrh1mz56NunXrwsTEBH///TeGDBmCQYMGYcqUKQwyWk4mk8HDwwNXrlyBg4MDJBIJD4YioR5d2759O6ZNm4aEhATuu9eAQeYtplAoEBsbCyMjI1hYWMDGxgZ6eo+WFiorK4NcLoepqSmDjIixG01cHt8X6oC5detWzJgxAzdu3OBBUGQqKiqgp6eHd999F3Xq1MHq1auFLqlW4oJ4b7Fp06Zh7dq1yMvLg4mJCRo1aoQOHTqgXbt2lW5sxoOcODytG61Xr16wtLTExo0bcfr0aTg6OmLOnDmVutG4f7XH4/tCPa9p7969aNOmDUOMCKlPDK9cuYI5c+YIXE3txRGZt4x6qPPIkSMYMGAAFi9ejE6dOiE6Ohq7d+9GZGQk0tLSYGtri/T0dF5yEBF2o4mXXC7Hjh074O/vD3d390p3Ql6/fj2CgoLQqFEjjp6J1KFDh9CmTRtIpdInFsqjV8cg85aaMWMG7t69i3Xr1j3xXGpqKmJiYtCrV69ndlCQ9mE3mngdP34cI0aMgJ+fH5ycnODr6ws/Pz/N3ZFJHNRBUy6X4+bNm8jLy0NZWRm8vb1haWkJCwsLoUuslRhk3iKjR49Gs2bN0LZtW+Tk5GDr1q2YNm0aHBwc8Ph/BjxTEDd2o4mP+r5XMTExuHLlCrKysqCrqwsbGxu4u7vDz88PDRs2hKen5xMdaKQ91Cd+8+bNw7Jly5CXlwcXFxc4ODjAx8cH/v7+cHFxQevWrSt1odGrYZB5S8hkMvTp0wfx8fHIzc2Fq6srkpKSMG3aNIwePRr169fXXM+l2oPdaOJ069YtnDlzBufOnUNCQgIKCgpgYmICXV1dTJs2DZ07dxa6RHoGdZPEqlWr0KtXL8TExODYsWM4d+4cMjIykJOTgyNHjqBhw4ZCl1prMMi8ZeRyOeLi4nD48GGcPXsWx48fR0VFBfz9/dGpUyd06NABwcHBsLa2FrpUeknsRhMnpVIJ4Mmbd5aXl+Py5cs4d+4cDh8+jG+//RZ+fn5ClEjPof48nT9/HpMmTcLx48efGPXMysrCmTNn0LdvX4GqrJ0YZN4iTztw5efn4/z58zhw4AAiIyNx7do1DB48GL///jsPdCL1+eefV6kbjbRTRUUF7ty5g7t378Lb25uL3omE+vvy0qVLWLx4MT744AO0bt36ua+lmsEg8xZRf3i2bt0KS0tLtG3b9okzhtTUVJSVlcHT05MLpYkIu9HETb3/rly5gqlTpyI9PR116tSBsbEx3N3d0bRpU/j6+qJp06YwMTERulx6CvX366BBg7B9+3Y0a9YMH3/8MQICAlCvXj1YWVkxvLwmDDJvCfWHLDU1Fd27d8e8efPQu3fvSq/Jzs6Gra2tQBVSTWA3mjipP59hYWHw8vLC6NGjMXLkSLi6uiI3NxdpaWmwtrbGkiVL0KtXL6HLpWdQqVRYsWIFLl++jFOnTqGwsBAODg7w8/ND48aN4e7ujm7dunGifQ1jkHlLqEdXFi1ahK1btz5xs8CHDx9i6dKlsLGxwXvvvSdQlfQy2I1WO6Snp8PHxweJiYmws7ODlZUVzpw5A0tLS/Tp0wdeXl5YvHgx56+JyIULFxAREYGTJ0/i2rVrqFu3LmJiYoQuq9Zhm8pbQn0Qu3z5Mpo1a1bpOZVKBSMjI6SmpiI1NRXAs+/AS9pFJpMhJSUF+/btq9SNZmpqym40kVB/1k6dOoWGDRvCzs4OR44cgZWVFezs7GBpaYnhw4cjNTWVIUYESkpKkJGRAXd3dzRr1kzzfVtSUoLExESBq6udeKR6S6hDSdOmTXHo0CHcvHkTwKMvUYlEAoVCgcjISISFhQEAOFAnDmZmZoiMjERqairOnj2L0aNHo0ePHli6dCn8/f0RFhaG6dOn4+jRo8jNzRW6XHoK9WfTwMAADRo0QHZ2NvLz82Fvbw+ZTAYAuHfvHq5evSpkmVQFp0+fxqhRo9CzZ0+YmZkhNDQUy5YtQ35+PgwNDREQECB0ibUSLy29ZbKystCtWzc4Ozvjs88+Q3BwMO7cuYMff/wRkZGRiI6Ohrm5udBlUjWwG632yMjIgLW1teZz2rBhQ5iammL//v345ptv8K9//UvoEukf1J+npKQk9OvXDxYWFvjXv/4FPT09HD9+HGfOnMHQoUPx1VdfCV1qrcUg8xZQD11HR0fD1NQUd+7cwaxZs3D58mUAgJ2dHezt7fHFF1+gd+/ePNCJDLvRxE+pVKK0tBRGRkaabVu2bMH69etRXFyM3r17Y9y4cZWeJ+2g/jzNmzcPBw8eRFRUFHR0dKBQKCCXy7F69WrMnj0bW7ZsQadOnYQut1ZikHkLqD9onp6emDp1qmYy7/Xr15GZmQmZTIYWLVpo7oZM4sFuNHFTfzaPHTuG2NhYdO7cudJidyUlJSgpKYGVlZWAVdLzqE8UBw0aBBsbG/z0008AKo+U9uzZE40bN8bs2bOFLLXW4hyZt4Curi5UKhVcXFzg4+Oj2e7n54f27dujT58+DDEipV4Ndvv27TAxMXkixDx8+BBr1qzB6tWrhSiPquirr75CRkYGnJ2dATwKOADw4MEDZGZmorS0VMjyqAreeecd7Ny5E5GRkQD+r8Hi4cOHiI+P5y0JXiO2M9Ry6rOFnJwcdO7cGatWrUJYWJimk6WiogIA2NkiUuxGEzf1Jb7o6GgsX74cpqamlbbfv38fixcvxldffcW7YGsp9eepa9eu2LFjB/773//inXfegaenJ+RyOfbv3486deqgZ8+eAldae/HoVcupD3Q//PAD5s+fD+DRvVveffddtGvXjtfcRe7xbrQVK1bg5s2b8PX11QQWdTfaF198AYDdaNooPj4eDg4OmlGXiooK6OjoQEdHB1KpFLt27cIvv/wicJX0OPUlwd9++w1GRkbo2bMn6tati127dmHmzJn466+/8PDhQ+jp6cHW1hYbNmyAoaGh0GXXWpwj85bIzMxEbGwsoqOjsX//fsTExKCiogKNGzdG8+bNMXXqVNjZ2QldJr0kdqOJl0wmQ79+/eDp6YmVK1dqtpeXl2PZsmVYs2YN4uPjBayQnmXIkCHYtm0bdHR04OPjg8GDB2Po0KHw9PRETk4O6tSpw1tKvAEMMm+Z8vJylJWVISMjA7GxsTh27Bh27NiBI0eOwM/Pjx1LIsJutNrj559/xvjx4xESEoI+ffqgadOm+Ouvv7B//35MmDAB48aNE7pEeoq8vDxkZmYiPj4eUVFROHr0KBISElCnTh20bdsWAwYMQNu2beHu7i50qbUag8xb4lktt0qlEoWFhTxbFyF2o4mTXC5HcXHxE51IkZGRWL16Nf7++2/cunULDg4O+Prrr9GjRw9eltByKpUKFRUVUCqVuHbtGuLj4/Hrr7/i2LFjAP5vUj69HpwjU4upz9jT0tKwatUqbNq0Ce7u7mjdujVatGiBgIAA2NraMsSI1PO60R5v4SXtsmHDBmRmZmLGjBnIzs7G/fv3Ua9ePbRv3x7NmjVDbm4ujIyMYGlpyUn4IlBRUQE9PT1kZGTg4sWLSElJwYYNG5Cfnw9nZ2eEh4cLXWKtxxGZt0C3bt2QnZ2NTz/9FGPGjIGZmRkePHgANzc32NjYYPXq1fD39xe6TKoGdUjNzs7GmjVrcP36daxdu5bdaCKwevVqGBkZYdiwYfjvf/+L/fv3o1OnTggICEBAQADq168Pc3Nz1KlTR+hS6TnUoSU2Nha///47lEolKioqYGNjg6FDh8LJyQktW7aEq6ur0KXWegwytZR6PsStW7fQsmVLxMTEwMrKCo6Ojjh//jzi4+Pxr3/9C82bN8fvv//OBdNERr1/v/zyS0032uDBg9mNJjI3btzA6tWrcfr0ady9exeGhobw8vJCkyZN4Orqil69esHGxkboMukfbt26hcaNG+Phw4do0qQJPvroI3h4eKBp06aQSqVCl/fW4elaLaU+0B08eBC+vr5wcnLCrl274OTkBHd3d7i6umLixInw9/dniBEh9aTdjz/+GK1atdJ0ow0aNIjdaFquvLwc+vr6SE1NxY4dO/D9998DeNRZGBkZiUOHDmHXrl1ITk5Gly5dBK6WniYuLg4A0KxZMzg7OyM2NhbW1tZITEyEn58fJ9W/YRyRqeW+//573L17F4sXL8bChQsRFRWFP/74A2ZmZvj4449RVFSE9evXc6E0kWM3mnioP2vLli3DihUrEBcXB11d3Sf2T2JiIjw9PQWqkp5HoVDg3r17uHjxIo4cOYLExETk5+dDKpXCzs4O/v7+aNiwITp06ABra2uhy631GGRqOZlMhqNHj6JHjx64cOECRowYgW+++QZSqRRjxozBTz/9hIEDB/JGgiLFbjTxUYfK7du348SJE1i8eDF0dXU1XS8SiURz008GUHEoKSlBSkoKTp8+jaioKGRmZuL27dtYvXo12rdvL3R5tR6DTC2k/vK7ceMGbt26pbn/TnFxMcaNG4etW7eirKwMH330Eb777jsYGBgIXDFVR1W70XgA1G7jx4/Hvn378N1336Ffv35Cl0M1RKVSQSaT4fr16wgODmbr/BvAIFMLqc/Sx40bh1u3buHIkSOVnr937x5KS0vh6OjID5mIsRtNvNLT0zFo0CDcu3cPubm5CA8PR0hICJo2bYpGjRppbh5JRC/Gyb61kPpSQ/369TVfiEqlUhNwnJychCyPXsHj3WjR0dGabrRPPvkEZ86c0XSjubq6cpKvFnN0dMTq1atx584dxMbGIjY2FqdOncLRo0dRUVGBdu3a4ZtvvhG6TCJRYJCppdST0c6ePYtRo0bBwcGh0mRezokRJ3aj1R6+vr7w9fVFly5dUF5ejps3b+LatWs4ceIEFzQkqgYGmVrq2rVrOHr0KNLT09GsWTP07t0bYWFhCAkJga+vL0OMSKnDaHl5OZo0aQIAuHnzJpydnfHw4UPN5aUDBw5g8ODB7EbTUvfv38ecOXMgk8ng5OSE//73v5oF8YYOHQqFQiF0iUSiwTkytZRMJsOJEyeQmpqKy5cvIyUlBUVFRZBKpTA0NMSwYcMwYsQIocukl8RuNPFRh8rY2FhMnDgREokECoUCcXFxSEpKgqGhIQ4fPozQ0FCOphFVA0dkaikzMzO88847mp9TUlJw5coVxMfH49SpUzA2NgYAnrGLyD+70fr27QsAaNSoEVq1aoURI0ZoutHUnWoMMdpD/VlbuXIlzMzMsGvXLmzatAkrV66EhYUFMjIysGbNGsTHx2PKlClCl0skGgwytVR2djY2bdoEuVwOe3t7jBw5Eq6urujbty9KSko0BziGGPFQKpXQ1dXFsmXLKrXVGxsb49dff8X8+fM13Whsqdc+6s/cqVOnNEFl2bJl6NWrFwDAwcEBFRUV/EwSVRODTC2iPuM7e/Ys5s+fj5SUFNy5cwfe3t4YNmwYSkpKkJycjKCgIKFLpZfAbjRxk0gkKC8vR4MGDXDnzh0Aj+7Z07lzZwDAw4cPcfbsWcycOVPIMolEh9G/FlFPd/ruu+9gamqKq1evYtKkSXB3d4e+vj5SUlIwbdo0/PnnnwJXSi9L3Y22Y8cOZGRkQEdHB/r6+pqzeE4S1W76+voYPHgwVq1ahc8++wwAEBISApVKhblz58LKygpNmzYVuEoiceGITC2iPmM/efIkdu/eDQDYtGkTZsyYAeBRu2d+fr7m9ZwfIz7sRhM3pVKJ/v37Iz09HWvWrIGpqSlatGiB9PR02NjYaO5kTkRVx66lWiY7Oxs9e/bEjBkz0KNHD5iamiI2Nhaurq7Izc2Fq6srEhMT4eDgIHSp9BLYjVY7KBQKREdH4+jRo8jNzYWDgwO6dOmCgIAAoUsjEh2OyNQytra26Nq1KxYvXoyrV6/C0dER7u7uKC8vx9KlS+Hq6goHBwfejE6k2I0mbsXFxSgrK0N+fj4aNGiA0NBQoUsiEj2OyNRCmZmZ+Pzzz3HkyBEYGRkhNDQUiYmJUCqV+OyzzzBkyBCuLyJST+tGU1N3o7FjSbuoP2vR0dGYPXs29u3bB3d3d/j5+aFRo0YICgqCs7MzPDw8YGVlJXS5RKLDICNycrkciYmJaNiwYaXtubm52LdvH6KiopCfnw9LS0uMGzcOjRs3FqhSelnP60Y7e/Ysu9G0nDrItG/fHsbGxhg3bhzu37+PQ4cO4dKlSygtLYVKpcKMGTPw3nvvCV0ukegwyIjcqlWrsHz5csTExCAtLQ2XLl2Cv78/6tevD319fSgUCsjlchgZGQldKr0k9YGwf//+kEql2Lx5M7766itcv34dW7duRVxcHKZOnYoxY8agf//+QpdLz+Dv749Vq1YhLCys0va4uDjs2LEDXbt2RfPmzQWqjki8OEdGxFQqFUaPHo0WLVoAADZu3IgvvvgCDg4OCAoKQvv27dGiRQu4ubmhoqICZmZmAldML4PdaOKnUqkwbtw4xMTEPBFkAgMDERgYKFBlROLHbzsRk0gk0NXV1VxWmjZtGjIyMvD1119DR0cHX3/9NcLDw9G2bVsMHz4csbGxAldMLys7Oxvu7u7Iy8sD8GgeVHh4OJRKJQoKChAbG6sJtAwx2uPxAW+pVIqVK1di3rx5OHXqFLKzswWsjKj24KUlkXv48CEuX74MNzc3WFlZwdDQsNLzN2/exF9//YV169Zh06ZNaNy4MTuWROqrr77CqVOn0LFjR6xbtw4JCQkoLy/HnDlzsGPHDsTHx3Pfahn16NjHH3+MHTt2oLi4GPb29rCzs4ODgwN8fX3h4uKC7t27c0kEopfEICNy27Ztw4cffoj27dvD398ffn5+miXs69aty86kWoTdaOIkl8thaGiIv/76C23btsXVq1dx6tQpXLx4Effu3cPdu3exb98++Pv7C10qkSgxyIhcdnY2tm7dilOnTuHq1avIyclB/fr14ePjg+DgYPj6+sLR0REeHh4wNTUVulyqInaj1R4JCQmYMmUK1q9fDwsLi0rP5eTkIDo6Gl27dhWmOKJagEGmlnF2dkaTJk1QVlaG+Ph46OnpQU9PD6tWrUKrVq2ELo+qiN1o4qe+rHTw4EF8//33GDZsGP79738LXRZRrcOuJZFTqVRQKBTQ09NDYWEhZDIZNmzYAFNTU8jlcpw5cwa7du2Cp6en5vWcQ6Hd2I1WO6gnXatb5KOjoxEVFYVWrVqhadOm8PPzg54ev4KJXhVHZEROqVSioqICBgYG2Lp1K2bNmoXY2Fjo6upyrkQtkpWVhf379+PPP//EqVOnIJPJ4OXlBW9vb3z99ddcDE9LqVQqHDp0CLdv38a1a9eQlJSEgoIC6OjowM7ODk5OTpg/fz4v+xK9AgYZEVKPqpSXl0NfX1+zfejQoTA1NcUvv/yi2aZQKCCRSNiSKzLsRqudkpOTERcXh2vXruH69esoLi7Grl27hC6LSNQYZERKpVLBxMQE/v7+6NmzJ4YPH4527dph3bp1aNeuneY1KpWKIUaE2I0mburusYULF6KwsBB9+/ZFkyZNKr2mrKwMmZmZcHFxEahKotqBQUakSktLsWXLFpw7dw5Hjx5FSkoKFAoF2rVrh8GDB6Nr1678ghQxdqPVDuPHj8fx48dRUFCAOnXqICgoCF26dEHnzp01n0+OpBG9GgYZkVMoFJDJZEhOTkZMTAz++usvXLhwAdnZ2TA1NcWHH36I+fPnC10mvSJ2o4lTdnY20tPTkZiYiPj4eFy8eBFnzpxBRUUF6tati0uXLnGyNtErYpCphTIyMnD79m3s378fzs7OGDt2LCoqKtghISL/7EarV68e7t69+0Q32tSpU+Hg4MCzehEoKytDdnY21q9fj/Xr12P8+PH45JNPhC6LSPR4ZKsF1AexWbNmYfz48XBwcICDgwPCw8M193phiBEXlUoFpVIJADhw4AAcHR0hlUqhUCgglUrRrl07zVwoAAwxImBgYAAnJydMmjQJd+7cgbOzs9AlEdUKnAUqcuoQk5CQgBUrVjwxsZcHOPFQh87y8nLo6OjAwMAAALBz5060atUKBgYGmkm+CoVCE3RIu6j3S8+ePTFjxgwcO3YMDx8+1DxvYGCA48ePc8I2UQ3habrIqS8/7N69Gw0aNICVlZXQJdFLkkgkUKlUsLCwqNSNdvbsWaxbt07zOnV4ZTeadtLR0UFubi709PRw7Ngx/PHHH6hTpw48PT3h4+OD27dvo7S0FB07dhS6VKJagXNkaokePXqgZcuWmD59utCl0CtgN5o4qdutf/vtN9SpUwd9+vSBvr4+8vLycOnSJZw9exZXr17F7du3YWJigunTp/P+SkQ1hEFGRJKTkzF9+nT0798fTZs2hZOTk2buy4MHD6Crq8sOiFqC3WjiNGTIEGzbtg06OjoIDAxE79690bdvXwQEBAhdGlGtxSAjIhcvXsSIESOQmZmJkpIS+Pv7o2PHjujYsSOaNm0Kc3NzoUuk14jdaNovLy8PmZmZiI+Px/HjxxEZGYlbt27BwMAALVu2xJAhQ9C+fXu4u7sLXSpRrcEgI0IymQwXLlzAgQMHcOjQIdy8eROGhoZo1qwZunbtivDwcAQFBT2xrD2Jyz+70WxsbJ54jrSTSqVCRUUFlEolrl27hvj4eGzYsAGRkZEAwInaRDWIQaYWyMjIQFRUFPbt24czZ84gOTkZGzduxLBhw4QujV7S491orVq1ws2bNzmRWyTUo2Spqam4ePEiUlJSsGHDBuTn5wMAwsPDsWnTJmGLJKpFGGRqoRs3bsDFxQXGxsY8cxcp9cHw22+/xb59+xAVFSV0SfQC6tASGxuL33//XXNnehsbGwwdOhROTk5o2bIlXF1dhS6VqFbhxXUReTyUREVFISIiAvXq1YOnpyc8PDxgbW0NY2NjNGjQQPM7DDHipJ73EhUVhS5dughcDb3IrVu30K5dOzx8+BBNmjTBzJkz4eHhgaZNm0IqlQpdHlGtxiAjIkqlErq6uvj222+xYcMG2NjY4MSJEzAwMIClpSW6dOmCBg0aoH///vD09BS6XKqi53Wjbdy4kQuniUBcXBwAoFmzZnB2dkZsbCysra2RmJgIPz8/nlAQvUa8tCRCTk5O+OKLLzBu3Dj4+Phg4sSJePDgAb788kuoVCrs3LkTvXv35mUlkWA3mvgpFArcu3cPFy9exJEjR5CYmIj8/HxIpVLY2dnB398fDRs2RIcOHWBtbS10uUS1CoOMSKhDSXR0NHr16oX09HTcvXsXAQEBmomg48ePx8CBA9G+fXsGGBFiN1rtUVJSgpSUFJw+fRpRUVHIzMzE7du3sXr1arRv317o8ohqFQYZkVAHmV9//RXbtm3D3r17sWvXLixYsAAHDx6EpaUlfv31V/z22284cuSI0OVSDWA3Wu2gUqkgk8lw/fp1BAcHM4gS1TDOkREJ9QhL48aNUVRUhPz8fJiZmUEul+Py5cvw9/fH5s2b4eXlBQBcKK0WcHBwwJAhQzBkyBAA/9eNBnAdGTGRSCQwNzdHWFiY0KUQ1UockRGhoqIiGBsbo6KiAh07dkRsbCyMjY1ha2uL1atXo0mTJlAqlbypoEhUtRtNX19f4EqJiLQPg4wIqA90MpkMcrkcNjY2mgNfRUUFtm/fjoSEBAwaNKhS6zWJg/qGg+xGIyKqPgYZEVAf6ObMmYNr165hzpw58PX15ahLLcNuNCKi6uMkChFQH7R+/fVXzJgxA97e3pWej4mJwd9//42uXbvC1NRUiBLpJT3ejaZSqTBu3DjcvXsX9+/fR9++fWFlZYU7d+5outEALnJIRPQ4ns6LgI6ODnJycpCdnY3WrVtDpVJBpVJpRmNUKhWmTZuG7OxsgSullxUfH4/GjRsDAKKjo+Ht7Q0DAwPo6+sjLCwMCxYsYIAhInoKjsiIRG5uLnx9fREbGwt3d/dKz5WVlSEvL++J7aT92I1GRPRq+I0oEj4+PvDw8MD48eOhr6+PoKAgODs7Iz09Hf/73/8QHh4O4P/m05C4BAQEwM3NDcbGxmjVqhXMzc3Rv39/TTfavHnzAIBzooiI/oGTfUUkMzMTY8eOxa1btxAQEICysjIcOnQI4eHhmD17NkJDQxlkRITdaEREr45BRkulpaVBR0cHTk5OlbbfuXMHu3fvxoULF6Cnp4fw8HB06dIFzs7OAlVKL4vdaEREr45BRkt9+umnSE9Px7Zt23DkyBHcv38fPXr0qHQDQbbhips6sHh4eGDGjBkYMWIEdHR0NNvZjUZE9GKcI6OlvvjiC01IOXjwIBYtWgQDAwN4eHigS5cu6N27N8LDw3kZScSq2o0WEhLCIENE9Awcv9ZSdevWha2tLQDgm2++we3bt7F9+3Z06dIFkZGR6Ny5M6ysrODn54fk5GSBq6WX9Xg3mq6ubqURNnajERG9GEdktJT68sKVK1dw/PhxTJw4EW5ubujevTuKiopw9+5dXLp0CREREXBwcBC6XHpJ7EYjIno1nCOjpYqKimBiYoIPPvgAt2/fxtGjR5+YBMpJobUDu9GIiF4eg4yWUU/gnTx5MhwdHbF48WKMHz8en3/++ROvnTBhApo2bYrhw4cLUCm9DHajERHVLAYZLVRcXIx+/fohJycHV65cQevWrdGgQQP4+PigYcOG8PHxgZ2dHRwcHPD777+jS5cuHJ0RCXajERHVLAYZLfbnn39i0aJFaNKkCeLj45GXlwepVAorKytkZWWhqKgIN2/eFLpMqob79+9DIpHA1tYWkydPZjcaEdErYpDRQur76Zw+fRo2Njbw8fGBUqnEtWvXcO7cOVy9ehV2dnZ45513EBwczNEYkVIoFEhNTUV8fDwiIyMRGRmJGzduoE6dOnBycsK+ffvg5uYmdJlERFqNQUYLqS8ttGvXDp6enpg+ffoTBzRefhCnp3Wjqbf/sxtt9erVqFOnjsAVExFpNwYZLbZ9+3YsWLAATk5OmDNnDoKDgwEwxIgZu9GIiGoWvy212IABA7Bq1SqUlZWhRYsW+OKLL5CZmQmJRALmT3FR76+vvvoKixYtwoEDB9ClSxcAT97RetKkSdi0adMbr5GISIw4IqOlVCoVlEqlZtLn+vXrsX79erRs2RKTJk2CtbW15nUcnREHdqMREdU8Bhktl52dDVNTU5SUlGD+/Pn4/vvv4e7ujv/973/o27ev0OXRS2A3GhFRzWGQ0SLq1VvT09Mxfvx4lJaWQiqVIjY2Fg8fPkSrVq1w+/Zt5OXloaSkBB988AGmTZsGQ0NDoUunKmA3GhFRzeO9lrSI+jJSTEwMysvL4erqChMTE4wZMwbGxsaoqKhAcHAwbGxssGnTJsyZMweBgYEYMGCAwJVTVaj375dfflmpGy0wMBCBgYEAKl8qZIghInoxjshoiWPHjsHW1haOjo6wsrJ65r11Hj/Q9e3bF6WlpThw4MCbLpdeAbvRiIhqDkdktEB+fj4GDRoELy8v+Pv7Izg4GA0aNICjoyMcHR1hamqqee3jB7qGDRvC3t5eiJLpFQwYMADu7u6YPn06WrRogYkTJ2L8+PGwt7dnmCEiqiaOyGiJyMhInDx5EpGRkUhKSoKBgYHmskNQUBC8vb3h4uICW1tbGBgYaH6PBz5xYTcaEVHNYpDRQvn5+Th+/DgiIiJw7tw5ZGdnw9LSEvb29hg8eDDee+89oUukV8RuNCKimsEgoyWUSiVUKhV0dHSeOBNPSUlBZGQk/vjjD/Tp0wdjx4595hwa0j7sRiMien0YZLSMUqmEXC7HjRs3YGZmhvr160NfX1/osqgG7N+/HytXroSzszNMTEzQunXrZ3ajzZs3j91oRERVwCCjBdTrhdy/fx9Lly7FL7/8Ajc3N9jY2MDd3R3+/v7w9PSEt7c3nJ2dhS6XqoHdaERErxe7lrSAOsjMmTMHMTExWLduHX766SfExsYiJSUF69evh7OzM0aOHIkpU6YIXS5VEbvRiIheP47IaAH12biTkxOWLl2K/v37o2XLlhg9ejTGjBmDPn36ICsrCwsWLEDbtm254quIsBuNiOj1YpDREunp6QgNDcWFCxdgaWkJV1dX7N27F02aNMHhw4exY8cOfPfddzA2Nha6VHpJ7EYjIqp5PK3XEvn5+ejYsSOysrJw9+5dODg4oKCgAABgaGiIrVu3MsSIkFKphEKhgEqlgoWFBfr06YMVK1bgypUrOHXqFCZOnAgdHR2Ul5cDeNThREREVccRGS2hVCqRlJQEc3NzmJubY+jQoSgqKkLr1q3xxx9/ICgoCL/99pvmxoMkLuxGIyJ6PRhktIx6/suhQ4cwd+5c3L9/H927d8fYsWPh7e3N+TEiwm40IqLXj0FGS5SWlqK8vLxSJwsA3Lt3D/b29lz8ToTUo2cff/wxYmJiMG3aNE03mrm5OVJTU9mNRkT0inhqLyD1fIiYmBhMnDgRLi4usLe3R79+/fDLL78gKSkJTk5ODDEipd5vO3fuxMSJE9GjRw/k5+dj9uzZiI+PR4cOHWBubo7Q0FAAj0ZwiIioehhktMCECRMQGxuLr7/+GjNmzIBCocCXX34JPz8/mJqaYvv27UKXSC9BIpEgPT0dOjo6aNGiBUpLS3H79m0EBQUBAD766CMEBwejadOmAMBLhkREL4GzRgWkq6sLpVKJy5cvIyYmBu7u7gAeHeAePHiAhIQE7N69G56engDA+TEi9Hg3WnFx8VO70VasWCFwlURE4sU5MgJ7+PAhFixYgM6dO6NVq1ZQKpWQSCRcDK2WYDcaEdHrxdN7gVRUVAAA1qxZg40bN2LBggXIz89/4u7XzJnipqOjA09PT1hbW8PAwAD/+c9/8PDhQ2zYsAEdOnTAjBkzNK8jIqLq44iMwObNm4fdu3fj1q1bqKioQPPmzfHOO++gR48e8PLyEro8ekXsRiMier0YZASmUCiQn5+P9PR0REdH4/Dhwzh16hQyMjKgUqmQnJzMNUZERn2H65iYGPz888/YsmULpFIpWrRoga5du6Jjx46a+VBERPRqGGS0iFKpRHl5uWYF2IsXL+Ljjz8WuiyqJnWQadu2LcrKyjB8+HAAwKFDh3D27FnIZDLo6+tj3bp1GDBggMDVEhGJG4OMlnj8bsc5OTmQSCSoU6cO768kUkqlEhYWFpW60QBU6kYbPHgwgoOD2Y1GRPQKGGQEkJiYCCMjI1y6dAkJCQkwNDREamoqrl+/jjp16iAnJwdRUVHYvHkzhgwZInS59BLYjUZE9Gaw3/MNUY+4XLlyBc2bN4eJiQnatm2L0tJSPHjwAEFBQdi3bx9Gjx6Nli1bYvLkyWjTpk2l3yXtp26jVnejXbp0CQEBAbCwsKj0Ou5TIqKawSDzhqgPWikpKfDy8sKMGTPQvXt3TTfLrl27cODAAaxevfqZv0vaT70WjEwmg62tLc6cOYN69eo90Y3GfUpEVDN4aUkAa9euxdy5cxESEoJPPvkErVu3xujRo5GXl4ddu3YJXR7VAHajERG9GQwyAklLS8PXX3+NrKwsfPvtt+jatStmzpyJUaNGCV0a1TB2oxERvT4MMgJQz49ISUnB//73P/zyyy9QKBSIiopCq1athC6PahC70YiIXi8GGS1w5swZTJ06FQqFArNmzUKnTp04h0KE2I1GRPTmMcgISP2vXiKRIDExEXPmzMGOHTuwdu1aDBo0SODqqCqq0o32888/Y/To0fD394eXlxfatGkDExMTdi4REdUAdi0J6PGDmKenJ9avX4+QkBD4+PgAABdKEwF2oxERCYsjMkQ1hN1oRERvHk/3iWrI6NGjceLECVhbW2PRokW4desWjh8/jj59+ghdGhFRrcUgQ1RDVCoVnJ2dMW3aNDg5OaFhw4ZISUmBh4eH0KUREdVavLRE9JqwG42I6PXjiAxRDVOpVFCpVGjRogXWrl0LDw8P9OvXD9u2bRO6NCKiWoddS0Q1jN1oRERvDi8tERERkWjxtJCIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIROv/AbkLxw3mn+6aAAAAAElFTkSuQmCC\n",
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjIAAAJsCAYAAADnSEneAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjYuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy89olMNAAAACXBIWXMAAA9hAAAPYQGoP6dpAABueUlEQVR4nO3dd1RU19oG8GfovSNNkA4iCPYGir33ronmamKiiUaNiSWxR40mUaMxmtiI0cQWe8OCioINFVSsCAgKKEUYepmZ7w/XzCexgaJnDj6/tVj3MgXfdc+dOc/ZZ797SxQKhQJEREREIqQhdAFEREREr4tBhoiIiESLQYaIiIhEi0GGiIiIRItBhoiIiESLQYaIiIhEi0GGiIiIREtL6ALeNrlcjpSUFBgbG0MikQhdDhEREVWAQqFAbm4u7O3toaHx4nGXah9kUlJS4OjoKHQZRERE9BqSk5NRs2bNFz5f7YOMsbExgCf/Q5iYmAhcDREREVWEVCqFo6Oj6jz+ItU+yChvJ5mYmDDIEBERicyrpoVwsi8RERGJFoMMERERiRaDDBEREYkWgwwRERGJFoMMERERiRaDDBEREYkWgwwRERGJFoMMERERiRaDDBEREYkWgwwRERGJlqBBJjw8HN27d4e9vT0kEgl27dr1wtd+9tlnkEgkWLp06Turj4iIiNSboEEmPz8f/v7+WLFixUtft3PnTpw9exb29vbvqDIiIiISA0E3jezcuTM6d+780tc8ePAAY8eORWhoKLp27fqOKiMiIiIxUOvdr+VyOT788EN8/fXXqFOnToXeU1xcjOLiYtXvUqn0bZVHREREAlPryb4LFy6ElpYWxo0bV+H3LFiwAKampqofR0fHt1ghERERCUltR2QuXryIX375BZcuXYJEIqnw+6ZOnYqJEyeqfpdKpQwzRETV3d8VP09QFRuiEPSfV9sRmVOnTuHRo0dwcnKClpYWtLS0cO/ePXz11VdwdnZ+4ft0dXVhYmJS7oeIiIiqJ7Udkfnwww/Rrl27co917NgRH374If73v/8JVBURERGpE0GDTF5eHuLi4lS/JyQkIDo6GhYWFnBycoKlpWW512tra8PW1hZeXl7vulQiIiJSQ4IGmaioKLRu3Vr1u3Juy/DhwxESEiJQVURERCQWggaZ4OBgKBQVnySUmJj49oohIiIi0VHbyb5EREREr8IgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREosUgQ0RERKLFIENERESixSBDREREoiVokAkPD0f37t1hb28PiUSCXbt2qZ4rLS3F5MmT4efnB0NDQ9jb22PYsGFISUkRrmAiIiJSK4IGmfz8fPj7+2PFihXPPFdQUIBLly5h+vTpuHTpEnbs2IFbt26hR48eAlRKRERE6khLyH+8c+fO6Ny583OfMzU1xZEjR8o99uuvv6Jx48ZISkqCk5PTuyiRiIiI1JigQaaycnJyIJFIYGZm9sLXFBcXo7i4WPW7VCp9B5URERGREEQz2beoqAiTJ0/G4MGDYWJi8sLXLViwAKampqofR0fHd1glERERvUuiCDKlpaUYMGAAFAoFVq5c+dLXTp06FTk5Oaqf5OTkd1QlERERvWtqf2tJGWLu3buHsLCwl47GAICuri50dXXfUXVEREQkJLUOMsoQc+fOHRw/fhyWlpZCl0RERERqRNAgk5eXh7i4ONXvCQkJiI6OhoWFBezs7NCvXz9cunQJ+/btg0wmQ1paGgDAwsICOjo6QpVNREREakKiUCgUQv3jJ06cQOvWrZ95fPjw4Zg1axZcXFye+77jx48jODi4Qv+GVCqFqakpcnJyXnlbioiIROpvidAVvL+GvJ0YUdHzt6AjMsHBwXhZjhIwYxEREZEIiKJriYiIiOh5GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQEDTLh4eHo3r077O3tIZFIsGvXrnLPKxQKzJgxA3Z2dtDX10e7du1w584dYYolIiIitSNokMnPz4e/vz9WrFjx3OcXLVqEZcuWYdWqVTh37hwMDQ3RsWNHFBUVveNKiYiISB1pCfmPd+7cGZ07d37ucwqFAkuXLsV3332Hnj17AgA2bNgAGxsb7Nq1C4MGDXqXpRIREZEaUts5MgkJCUhLS0O7du1Uj5mamqJJkyY4c+bMC99XXFwMqVRa7oeIiIiqJ7UNMmlpaQAAGxubco/b2NionnueBQsWwNTUVPXj6Oj4VuskIiIi4ahtkHldU6dORU5OjuonOTlZ6JKIiIjoLVHbIGNrawsAePjwYbnHHz58qHrueXR1dWFiYlLuh4iIiKontQ0yLi4usLW1xbFjx1SPSaVSnDt3Ds2aNROwMiIiIlIXgnYt5eXlIS4uTvV7QkICoqOjYWFhAScnJ4wfPx7ff/89PDw84OLigunTp8Pe3h69evUSrmgiIiJSG4IGmaioKLRu3Vr1+8SJEwEAw4cPR0hICL755hvk5+dj1KhRyM7ORmBgIA4dOgQ9PT2hSiYiIiI1IlEoFAqhi3ibpFIpTE1NkZOTw/kyRETV1d8SoSt4fw15OzGioudvtZ0jQ0RERPQqDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaWhV50Z49eyr9h9u3bw99ff1Kv4+IiIiooioUZHr16lWpPyqRSHDnzh24urq+Tk1EREREFVLhW0tpaWmQy+UV+jEwMHibNRMREREBqGCQGT58eKVuE33wwQcwMTF57aKIiIiIKkKiUCgUQhfxNkmlUpiamiInJ4fhioiouvpbInQF768hbydGVPT8/cZdS1KpFLt27cKNGzfe9E8RERERVUqlg8yAAQPw66+/AgAKCwvRsGFDDBgwAHXr1sW///5bpcXJZDJMnz4dLi4u0NfXh5ubG+bOnYtqPohEREREFVTpIBMeHo6goCAAwM6dO6FQKJCdnY1ly5bh+++/r9LiFi5ciJUrV+LXX3/FjRs3sHDhQixatAjLly+v0n+HiIiIxKnSQSYnJwcWFhYAgEOHDqFv374wMDBA165dcefOnSotLjIyEj179kTXrl3h7OyMfv36oUOHDjh//nyV/jtEREQkTpUOMo6Ojjhz5gzy8/Nx6NAhdOjQAQDw+PFj6OnpVWlxzZs3x7Fjx3D79m0AQExMDE6fPo3OnTu/8D3FxcWQSqXlfoiIiKh6qtCCeE8bP348hg4dCiMjI9SqVQvBwcEAntxy8vPzq9LipkyZAqlUCm9vb2hqakImk2HevHkYOnToC9+zYMECzJ49u0rrICIiIvX0Wu3XFy9eRFJSEtq3bw8jIyMAwP79+2FmZoYWLVpUWXGbN2/G119/jR9//BF16tRBdHQ0xo8fj8WLF2P48OHPfU9xcTGKi4tVv0ulUjg6OrL9moioOmP7tXAEbr9W63VkHB0dMWXKFHz++eeqx77//nts3LgRN2/erNDf4DoyRETvAQYZ4YhhHZmJEyciPz+/wv/41KlTkZWVVeHXv0hBQQE0NMqXqKmpCblc/sZ/m4iIiMSvQkHml19+QUFBQYX/6IoVK5Cdnf26Nal0794d8+bNw/79+5GYmIidO3di8eLF6N279xv/bSIiIhK/Ck32VSgU8PT0hERSsaG7yozevMzy5csxffp0jBkzBo8ePYK9vT0+/fRTzJgxo0r+PhEREYlbhYLM+vXrK/2HbWxsKv2e/zI2NsbSpUuxdOnSN/5bREREVP1UKMi8qEOIiIiISEhvvGkkERERkVAYZIiIiEi0GGSIiIhItBhkiIiISLReO8jExcUhNDQUhYWFAJ60aBMRERG9S5UOMpmZmWjXrh08PT3RpUsXpKamAgBGjhyJr776qsoLJCIiInqRSgeZCRMmQEtLC0lJSTAwMFA9PnDgQBw6dKhKiyMiIiJ6mQqtI/O0w4cPIzQ0FDVr1iz3uIeHB+7du1dlhRERERG9SqVHZPLz88uNxChlZWVBV1e3SooiIiIiqohKB5mgoCBs2LBB9btEIoFcLseiRYvQunXrKi2OiIiI6GUqfWtp0aJFaNu2LaKiolBSUoJvvvkGsbGxyMrKQkRExNuokYiIiOi5Kj0i4+vri9u3byMwMBA9e/ZEfn4++vTpg8uXL8PNze1t1EhERET0XJUekQEAU1NTfPvtt1VdCxEREVGlvFaQKSoqwpUrV/Do0SPI5fJyz/Xo0aNKCiMiIiJ6lUoHmUOHDmHYsGHIyMh45jmJRAKZTFYlhRERERG9SqXnyIwdOxb9+/dHamoq5HJ5uR+GGCIiInqXKh1kHj58iIkTJ8LGxuZt1ENERERUYZUOMv369cOJEyfeQilERERElVPpOTK//vor+vfvj1OnTsHPzw/a2trlnh83blyVFUdERET0MpUOMv/88w8OHz4MPT09nDhxAhKJRPWcRCJhkCEiIqJ3ptJB5ttvv8Xs2bMxZcoUaGhU+s4UERERUZWpdBIpKSnBwIEDGWKIiIhIcJVOI8OHD8eWLVveRi1ERERElVLpW0symQyLFi1CaGgo6tat+8xk38WLF1dZcUREREQvU+kgc/XqVdSrVw8AcO3atXLPPT3xl4iIiOhtq3SQOX78+Nuog4iIiKjSOGOXiIiIRKtCIzJ9+vRBSEgITExM0KdPn5e+dseOHVVSGBEREdGrVCjImJqaqua/mJqavtWCiIiIiCpKolAoFBV54Zw5czBp0iQYGBi87ZqqlFQqhampKXJycmBiYiJ0OURE9Db8zWYTwQypUIyotIqevys8R2b27NnIy8urkuKIiIiIqkKFg0wFB26IiIiI3plKdS1xnRgiIiJSJ5VaR8bT0/OVYSYrK+uNCiIiIiKqqEoFmdmzZ7NriYiIiNRGpYLMoEGDUKNGjbdVCxEREVGlVHiODOfHEBERkbph1xIRERGJVoWDjFwuF+S20oMHD/DBBx/A0tIS+vr68PPzQ1RU1Duvg4iIiNRPpXe/fpceP36MFi1aoHXr1jh48CCsra1x584dmJubC10aERERqQG1DjILFy6Eo6Mj1q9fr3rMxcVFwIqIiIhInVRqQbx3bc+ePWjYsCH69++PGjVqoF69eli9evVL31NcXAypVFruh4iIiKontQ4y8fHxWLlyJTw8PBAaGorRo0dj3Lhx+PPPP1/4ngULFsDU1FT14+jo+A4rJiIionepwrtfC0FHRwcNGzZEZGSk6rFx48bhwoULOHPmzHPfU1xcjOLiYtXvUqkUjo6O3P2aiKg64+7XwhHL7tdCsLOzg4+PT7nHateujaSkpBe+R1dXFyYmJuV+iIiIqHpS6yDTokUL3Lp1q9xjt2/fRq1atQSqiIiIiNSJWgeZCRMm4OzZs5g/fz7i4uLw999/448//sDnn38udGlERESkBtQ6yDRq1Ag7d+7EP//8A19fX8ydOxdLly7F0KFDhS6NiIiI1IBaryMDAN26dUO3bt2ELoOIiIjUkFqPyBARERG9DIMMERERiRaDDBEREYkWgwwRERGJFoMMERERiRaDDBEREYkWgwwRERGJFoMMERERiRaDDBEREYmW2q/sS0RUlSSzJUKX8N5SzFQIXQJVQxyRISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLR0hK6ADGbLZktdAnvrZmKmUKXQEREaoAjMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWgwyREREJFoMMkRERCRaDDJEREQkWqIKMj/88AMkEgnGjx8vdClUzUkk/BHqh4ioMkQTZC5cuIDff/8ddevWFboUIiIiUhOiCDJ5eXkYOnQoVq9eDXNzc6HLISIiIjUhiiDz+eefo2vXrmjXrt0rX1tcXAypVFruh4iIiKonLaELeJXNmzfj0qVLuHDhQoVev2DBAsyePfstV0VERETqQK1HZJKTk/Hll19i06ZN0NPTq9B7pk6dipycHNVPcnLyW66SiIiIhKLWIzIXL17Eo0ePUL9+fdVjMpkM4eHh+PXXX1FcXAxNTc1y79HV1YWuru67LpWIiIgEoNZBpm3btrh69Wq5x/73v//B29sbkydPfibEEBER0ftFrYOMsbExfH19yz1maGgIS0vLZx4nIiKi949az5EhIiIiehm1HpF5nhMnTghdAhEREakJjsgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaDHIEBERkWgxyBAREZFoMcgQERGRaKl1kFmwYAEaNWoEY2Nj1KhRA7169cKtW7eELouIiIjUhFoHmZMnT+Lzzz/H2bNnceTIEZSWlqJDhw7Iz88XujQiIiJSA1pCF/Ayhw4dKvd7SEgIatSogYsXL6Jly5YCVUVERETqQq2DzH/l5OQAACwsLF74muLiYhQXF6t+l0qlb70uIiIiEoZa31p6mlwux/jx49GiRQv4+vq+8HULFiyAqamp6sfR0fEdVklERETvkmiCzOeff45r165h8+bNL33d1KlTkZOTo/pJTk5+RxUSERHRuyaKW0tffPEF9u3bh/DwcNSsWfOlr9XV1YWuru47qoyIiIiEpNZBRqFQYOzYsdi5cydOnDgBFxcXoUsiIiIiNaLWQebzzz/H33//jd27d8PY2BhpaWkAAFNTU+jr6wtcHREREQlNrefIrFy5Ejk5OQgODoadnZ3qZ8uWLUKXRkRERGpArUdkFAqF0CUQERGRGlPrERkiIiKil2GQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLRYpAhIiIi0WKQISIiItFikCEiIiLREkWQWbFiBZydnaGnp4cmTZrg/PnzQpdEREREakDtg8yWLVswceJEzJw5E5cuXYK/vz86duyIR48eCV0aERERCUztg8zixYvxySef4H//+x98fHywatUqGBgYYN26dUKXRkRERALTErqAlykpKcHFixcxdepU1WMaGhpo164dzpw589z3FBcXo7i4WPV7Tk4OAEAqlVZ5fUUoqvK/SRXzNo4nqYe3fmj5sRXMW/3cFry9P02v8JaOq/L/LwqF4qWvU+sgk5GRAZlMBhsbm3KP29jY4ObNm899z4IFCzB79uxnHnd0dHwrNZIwfjD9QegS6C0xNRW6AnpbTH/gwa2WPnm7xzU3NxemL/liUOsg8zqmTp2KiRMnqn6Xy+XIysqCpaUlJBKJgJWpF6lUCkdHRyQnJ8PExETocqgK8dhWTzyu1ReP7fMpFArk5ubC3t7+pa9T6yBjZWUFTU1NPHz4sNzjDx8+hK2t7XPfo6urC11d3XKPmZmZva0SRc/ExIQfnGqKx7Z64nGtvnhsn/WykRgltZ7sq6OjgwYNGuDYsWOqx+RyOY4dO4ZmzZoJWBkRERGpA7UekQGAiRMnYvjw4WjYsCEaN26MpUuXIj8/H//73/+ELo2IiIgEpvZBZuDAgUhPT8eMGTOQlpaGgIAAHDp06JkJwFQ5urq6mDlz5jO34Uj8eGyrJx7X6ovH9s1IFK/qayIiIiJSU2o9R4aIiIjoZRhkiIiISLQYZIiIiEi0GGSIiIhItBhkqMoo540rFIpX7o1BRERUFRhkqMoot4CQSCSQSCQoLCwUuCKqav8NqHK5nKGViASl9uvIkDgkJCQgOjoa165dw6lTp2BoaAgHBwfY2trCxcUFTZo0gbu7O4AnJ0PueyUucrkcGhoakMlkuH79OszMzODk5AQNDV4LiRE/g1SdcB0ZqhIrV67EypUr0bhxY9SqVQvx8fFITk5GTk4OSkpKYG9vj48++ggDBw4UulR6DcuXL8eff/6JoqIi2NraIiEhATk5OQgICMDAgQPRt29fWFhYAOBJUt08fPgQiYmJcHFxgZWV1TPhU3kK4DFTX+Hh4dDX10ft2rVhZGQkdDlqh0GGqkRGRgasrKyeeTw3Nxdnz57Fxo0bsXXrVjRr1gyrVq2Cp6enAFXS67h79y4mTJiAMWPGIC8vD6WlpdDT08ODBw8QERGBiIgI2NraYsSIEfjss8+ELpf+Y8aMGVi3bh1at24NPz8/+Pj4wNXVFfb29txQVyRatWqFU6dOoVatWmjevDk6d+6Mpk2bwsnJCTo6OkKXJzgGGaoyytsPwPOv8u7du4effvoJ165dw5IlSxAQECBEmVQJLxtdUSgUKC4uxo0bN7Bt2zbs3bsXDRo0wNy5c+Ho6PiOK6UXuXPnDnbu3ImIiAhcvXoVMpkMDg4O8PPzg7+/P7y9veHi4oIaNWrA0NBQ6HLpOWQyGW7evImjR4/iwIEDOHfuHPLz8+Hl5YU2bdqgY8eOqF+/PmrUqAFNTU2hy33nGGSoSihDzIEDB3D48GEsXbq03HMKhQKamppISUnB8uXL4e3tjWHDhnE4WwTi4+Ph4ODwyn1gzp07h++//x5NmjTBt99+y2OrhmQyGSIjI3Hw4EGcOnUKiYmJ0NXVhbu7O5ycnDBnzhzY2toKXSa9Ql5eHqKjo3Hw4EEcOnQIsbGx0NTUhL+/P06dOvXehRkGGaoSyltLAwYMgEQiwZYtWwD8fyu2hoZGuav7e/fuoVatWkKWTBVQWFiIHj16wNPTE97e3vD29oaPjw8cHBye+/rY2Fjs3LkT/fv3h5eX1zuulp5HoVBALpdDIpE8Mz8mKysLJ06cQGhoKM6fP48LFy5AS4s9IOrq6VHvp2VkZODEiRO4ffs2pk2bJkBlwmKQoSoxcuRI1K5dGwsWLMDs2bMxcuRI6OrqlvvQdezYEb169cLo0aMFrJQqIyUlBVOnTkVqaioeP34MQ0NDGBkZoXbt2vDx8UGdOnXg4eEBc3NzoUulCnr48CEeP34MBwcHGBsbC10OVVJsbCwkEgk0NTVhZmYGc3Pz936eDIMMvbGcnBwMHjwYt2/fRnx8POrVq4e6desiICAAtWvXhrOzM7S1tVG/fn0cOXIEDRs2fOGVBamvgwcPYt68ebh27Rq0tLRga2sLLS0tuLu7w8PDA0FBQejSpYvQZdJ/KEdCo6KiMG7cOJSUlMDCwgJOTk7w9vaGn58fatasidq1a6vWgCL1U1pail9++QVLlixBWloanJycULNmTQQGBqJFixZwdnaGj4/Pe/m9yiBDVWbPnj1YtGgRunTpgiNHjiA+Ph6amppwcHBAUVERNDQ0cO7cOaHLpEqQy+UoKyuDjo4OPvvsM2hra+PTTz+Fh4cHTp06hb179yIkJAS6urqYN28ePvnkE4ZUNSSVStG0aVM0a9YMrVu3xrBhw1C/fn3cuHEDTk5OsLW1xcaNG194y5CEo/w87d27F+PGjcPixYtha2uLNm3aYMCAAdi7dy+ys7Ph4OCA5ORkocsVBIMMvTGFQoHS0lJoaWkhLy8PJiYmAJ60Xp88eRKnT5+GlZUV+vbtCxcXF57oRKi4uBj6+vpISEh4Zm7T5MmTIZVKMXPmTNja2nIdGTUik8mgqamJv//+G3PnzsWNGzcQFxeHVq1aISkpCfv27cOYMWPQqVMnrF27Vuhy6TmUx3Do0KEwMzPDihUrMGPGDMTExGD37t1Yv349Nm/ejEmTJqF9+/ZClysInk3ojUkkEujo6EBDQwOpqakIDw9HamoqjI2N0a1bN/zwww+YNGkSXFxcAIAhRoTu3r0LBwcHhIeHA3jy5SqTyQAAgwYNwvnz51XdLgwx6ic8PBwtW7YEAKxbtw716tWDpqYmOnTogN69e6N3794CV0gvouxAunv3LurXrw8AiIyMRGBgIABgyJAhMDIyeq/nO3F6Or0R5dV3RkYGpkyZgqNHj8LOzg4A4ODggHr16qF58+Zo1KgRV6QUKYVCAR8fH/Tr1w+LFy+Gq6srWrRoAQBITEzEX3/9pQo1yqtHUg/KY2FnZwe5XA7gSeuujY0NSkpKoK+vj5iYGLi5uQlZJr1CSUkJevXqpRrtNjIyQkpKCsrKypCVlYUjR45g3rx5AlcpHAYZeiNyuRyamppYt24dzp8/j/Hjx8PS0hJxcXG4ffs2Dh8+jI0bN8LPzw9bt24Vulx6DRKJBMnJyRg+fDhu3ryJoKAg1KxZE97e3khLS0NpaSnmzp0rdJn0EuPGjVPNn2jbti3Gjh2LFStWIDExEVevXkVISIiwBdJL6ejo4KOPPkJubi4AoFevXpgwYQLKysoQExODWrVqwdvbW+AqhcM5MvRGlCMyPXv2RFBQECZNmqR6LiMjA3fv3sWFCxdgb2+PPn368IpdhFJTUxEcHIyYmBjo6enh6tWrCAsLw9WrV+Hg4ICRI0fC0dGRt5TUlHIkRnlLNz8/H5MmTcKRI0dgaWmJoUOHYty4cUKWSJWUl5eHX375BVu3boWfnx8mT54MPz8/ocsSDIMMVYlff/0V6enpmD17ttClUBXbvXs3vvvuO8TExHB+k4goJ9Xv2LEDEokEwcHB5db7SU9PR2lpKezt7QWskiriiy++QIsWLdC/f38uWPgc/Fai16bMwHFxcfjzzz+xZs0a/Pbbb7hz547AlVFVUF7JN2jQAEFBQTh16hSAJ8ddJpOhtLQUvA5SX8rQOWHCBGRkZKgmgyrnMyk3/+QxVE/K4xITE4MdO3bA0dGxXIhRKBS4du2a6nbT+4zRjt7YgwcPYG9vDy0tLSxevBhbtmyBnZ0d6tatC39/fzRv3pwrv4qQ8kTYtGlTpKSk4ObNm5g+fTpat24NTU1N3iJUY8pbvhcuXEBRURE++OAD1UlQedzOnDmD8+fPY968ebzKV0PK+Yc7duyAr68vAgMDyy1dUVxcjD///BN5eXlYuXKlwNUKiyMy9NokEgnkcjlatWqFf//9FyEhIZg3bx4CAwOhUChw7NgxjBs3Drt37wYAXvmJUFlZGRYuXIgpU6YgMzMTHTp0gJmZGTp37oyVK1fi7t27QpdIz6H8rF2+fBnOzs6q0bOysjLVSNvjx49x6NAhhhg1pQwsWVlZsLCwUD2mPI56enrIzMzk3DRwjgy9hsTERAwZMgQRERGQy+VISkpSrRGjJJVKcePGDZw7dw69e/eGo6MjF0oTKYVCgcLCQhQWFiI5ORnnzp1DWFgYjhw5AnNzc4YZNXbp0iUMGDAAy5YtK7d9RGlpKYYNGwZDQ0OsWbNGwArpVU6dOoXOnTvj999/R+/evWFgYAAAuHPnDlq3bo1Vq1ahW7duAlcpLAYZqrSYmBgcP34c48ePx6lTp9CrVy/Uq1cP/v7+CA4ORosWLVRXEFQ9lZaWIiMjA4WFhXB1dWU3mpqSy+UYMGAAQkNDMWzYMLRq1Qo+Pj5Yvnw5jh07hg0bNqB58+ZCl0n/8fRFX1FREb755hscOXIE7du3h6urK9LT07F3717Y29tj//797/1nj0GGXovyxHXjxg3s3r0bycnJuH79Oh4+fAiJRAI3Nzf4+flh8ODB8PX1Fbpcek3p6elYvHgxUlJSEBwcDH9/f3h6enJxQzVVUlLy3PlLc+bMwYkTJ5CdnY27d+/C2toaK1asQMeOHQWqlF7l6TCTlpaGFStW4PDhwyguLoaZmRlq166N2bNno0aNGgJXKjwGGaoSubm5SEtLw61bt3Dt2jXcunULERERmDlzJoYOHcr9lUREeaxu3ryJTz75BDKZDAYGBggLC4NEIoGLiws6dOiABg0aYOTIkUKXS08ZN24cevXqhTZt2iArKwsaGhowNTWFXC7H3bt3kZqaCltbWzg6OqpuUZB6sba2xvHjx+Hr64t79+49s7dZUlIS9PX1YW1tLVCF6oezvOiNKDeMlMlksLS0RLdu3dCtWzc8fPgQ8fHxqkWaGGLEQxlk1q5dC2NjY+zatQubNm1CQUEBfvnlF0ycOBGrVq1C69atMXLkSIZUNSKVSmFmZgbgyeqvRkZG6Ny5M5o0aQIvLy94enoKWyC9VHFxMX766Sf4+vpCKpXCxcUFNjY2CAwMRPfu3dGpUyc4OTkJXaba4YgMVZryxJWeno6NGzfi559/Rl5eHmrXro3AwECMHj0arq6uQpdJr0l5fAMCAjB69Gh8+umn6NKlC/z9/bFgwQIcOnQIBw4cwPTp02Ftbc0go4YUCgVWrFiBvXv3IjIyEvn5+XBzc0NQUBDatGkDb29v1K9fn8dNjZWUlODs2bO4ePEiQkNDceHCBWRnZ8PNzQ1t2rRB//790bZtW6HLVAsMMlRpyvkxo0ePRnh4OP73v/+hdu3aOHHiBP79919kZ2dj06ZN6Ny5s9Cl0msqKSlB586dMXnyZHTo0AH16tXDV199hQ8++AAymQze3t7YsmWLajdeEp5CoYBCoXhuOFEuqrZv3z5cvnwZNWrUQFpamgBV0uuQy+V4+PAhrl69ipMnT2L79u3w8/PD9u3bhS5NLTDI0GszNjbG3r17ERwcXO7xnj17Ql9fH2vXroWhoaEwxdEbKSgowM6dO2FmZoYuXbrgo48+gkQiwZo1a7Bp0yZ89tlnKCwsFLpMegmZTIbMzExYWlo+M/n36tWr7/XePGJQVlYGhUKhWrnXxMREteZPcXExSkpKVKs1v+84R4ZeS0JCAoyMjFT344uLiwEAurq6mDRpEgYNGoTS0lIBK6Q3YWBggKFDh6KoqAgSiQRdunTB0KFDsWXLFlhbW2PChAkAwLZrNbV//35s2LABEokExsbGcHV1Rd26deHn5wcnJyf4+flxXSc1pDwmubm5WLZsGX744QcYGxvD398fTZo0QcOGDeHh4QEbGxvVdy9xRIZeU1ZWFoYMGQIHBwesXbu23HNbt27F+PHjkZKSwi9LkVEer+XLl2PgwIHlWjvj4+Nx/vx5WFhYICgoCPr6+jy+aqSsrAxaWlqIj49H+/bt4ejoCCcnJzx+/BiZmZkAAEtLS9SoUQPLly9n15IaUh7DX375BT///DMmTpyIGjVqYP/+/YiIiEB2djaMjY3RrVu3935bgqcxyNBr27hxI0aNGgU3Nzd0794dzZs3R3R0NDZu3Ij+/ftj7ty5qg8miUdeXh68vb2hpaWFYcOG4cMPP4SHh4fQZVEF/fzzz/j3338RGRkJ4MmCatevX0dUVBTOnj2L0tJS/PXXXwJXSf/19EVBz5490bhxY3z77bflXnP37l1s27YNurq6qlFRYpChCiorK0NGRgZsbW3LPX758mWEhIQgOjoaN27cgI6ODmbMmIGBAwfC1NSUV+wiVVhYiDVr1mD79u3Q0tLC6NGj0a9fP6HLohfYvXs3rK2t0aBBA2zcuBFxcXFYsGDBc19bWFgIfX39d1whvUxxcTH++OMPNGrUCM7Ozvjzzz+hq6uL8ePHAwC/R1+BQYYqZOvWrYiMjMTSpUuRlZWFxMREODk5wcrKCqWlpXj06BG0tbW5yqTI/fcLMzk5GatXr8bKlSvh4+ODsWPHolOnTlzZV40UFBSgcePGsLS0RM2aNVGrVi3s378fc+fORceOHaGrqyt0ifQK586dQ7NmzaCjowMPDw94enoiIiICK1euRIsWLWBubg5tbW2hy1RbDDJUITt37kRWVhZGjhyJ+fPnY+3atWjbti38/PxQt25duLm5wdzcnF1K1cDSpUthamqKzMxM5Ofnw97eHvfu3cO6deuQlpaG06dPc38eNSKTyXD06FFcvnwZ58+fx4MHD3Dr1i1YWlqq9laqU6cOvLy8UKtWLU7OVjNPXzzExMRg69atOHLkCKKjoyGXy9GwYUMEBwcjKCgI7u7uqFmzJr9n/4NBhiotOjoaW7ZswYULF3D79m1oaGigVq1aCAgIQN26deHj4wNfX1+2BopQfHw83N3dYWxsjLFjx0JXVxeRkZEoLi6Gra0tSktLsXr1anZMqLHU1FRcuXIFJ0+exKVLl5Ceng4dHR3o6+ujU6dO+Oabb4Qukf7jed1/CoUCYWFh2L59O0JDQ3H//n2UlZVhzZo1GDFihECVqicGGXqlwsJCxMfHo1atWs/cUsjNzcWJEydw+PBhnDlzBmlpaTA2NkaTJk0wf/582NvbC1Q1vY6MjAysWLECGzZsgLGxMcaPH4+PPvoIwJPl7zU0NHhbSQ0pJ9VnZWU9s/P8rVu3cO7cORw4cADt2rXDxx9/LFCV9CplZWU4deoUvLy8nvnuzM7OxtatWxEUFITatWsLVKF6YpChV9qwYQN+/PFHtG/fHnXq1IGLiwucnZ1hZ2f3zKTBBw8eIDQ0FD/88AOaNWuGdevWcShbhJSTDy9fvgxXV1d8/PHHz0z0JvVSUlKCrl27YuDAgRg+fDi0tLQ4QVQklNt8hIeHY8qUKZg0aRL69OmDsrIy1THk9+iLsS+WXql27dpo1qwZzpw5g3///ReWlpaws7ND3bp1ERAQADc3N9jb28Pa2hoODg4YMWIEDA0NsWjRIn74RCYyMhIaGhrw8/ND3759UVRUhF9//RU//fQThg0bhjlz5vC2kppRngQPHjyIpKQkdOjQAdra2lBeo5aUlOD48eOoVasWvL29Ba6Wnkd5DNevXw9PT0/06dMHwJPNdjU0NHD//n2sW7cOwcHBaNmypcDVqh+OyFCl7Nq1C59++inMzc2RnZ2NoqIimJqaIjg4GE5OThgxYgRcXFxw9epVPHr0iJuaiYBysmFMTAxGjRoFiUSCK1euwMzMDM2aNYNEIsGOHTsAPBmpYfeEelHOr/jkk09QWFiIjRs3QiaTQUNDAxKJBKWlpRg7dixkMhlWr14tdLn0HMrPYN26dfHFF19g1KhRqseV/9m1a1f06dMHn3zyiZClqiWOyNArlZaWQltbG4mJifjpp5+wYMEC1WSzK1eu4Pfff8cff/wBY2NjjB49GgC4j4sIJSQkoFWrVmjbti1sbGyQnp6OhIQE6OvrY8yYMdDU1IS2tjZ3u1YzylFPIyMjSKXSco8pFApoa2sjISGBV/JqTBk469Wrh/DwcIwcORKampqq20pSqRRnz57F/PnzBa5UPTHI0CspT1p79+5FYWEhRowYobpSqFu3LubPn4/s7GwMHTqUk3tFSHk1uHjxYnz//fcvPeG9aHdlEt6QIUPQpEkT1K1bF0OGDIG9vT10dXVx6NAhXLhwAT/99JPQJdJLaGtrY/DgwRg+fDh+/fVX9O/fH2ZmZrh//z42bNgAc3Nz1KtXT+gy1RKDDL2S8uqutLQUubm5uHbtGnx9fSGXyyGXy2FqaooaNWpg37596NKlC1ehFBkNDQ0UFhYiPT29XMu8TCYDUH6SIY+resrMzISvry+WLl2K3377DRcuXEDNmjVx8+ZNXLlyBR999BFHSdWU8vsyNjYWXl5eGDlyJL7++mvMnTsX3t7eyMrKAgAsXrxY4ErVF+fIUIVlZ2ejQ4cOsLa2xuzZs9GwYUMAwIEDBzB69GjMnTsXw4YN447IIqK8TZSZmYkffvgBJiYmmD59utBlUQU9PT+mQYMG+OCDD3DgwAHs27cPaWlp8PT0RJMmTTB48GDueabmfHx8sGnTJtSrVw+PHj3C0aNHcfbsWXh7e6NHjx6oWbOm0CWqLQYZqpQzZ85g8uTJOH/+PHR1dWFvb4+8vDwEBgZizZo1XHFSZJRBZtSoUVizZg0kEgmmTZuGLl26wMXFBebm5lziXgQ8PDzw+++/o02bNuUe50WFOCQnJ6NFixY4e/Ysb8+/BgYZei2RkZG4efMmHj58CDc3NwwYMEDokugNJCcn48CBA9i7dy+OHz+OkpISeHp6onXr1qhfvz569+4Nc3Nzocuk58jNzcWUKVNQr169Zxa7UygUnNekxpQXEhkZGfjhhx/g7e2tOoY8dhXHIEOVkpCQAA0NDdjb27MNtxo7d+4cduzYgdDQUFy5ckW1SSipD+Voy759+zB58mTk5uZi7ty5aNasGWrWrAkDAwOhS6RXUAaZ7t27Y//+/bCzs8O8efPQrl072NvbM8RUEIMMVciePXswfvx4WFtbw8TEBK6urvDz84O3tzecnZ3h7u4udIn0hm7cuIHc3Fw0atSo3KRe3p5Qb2vXrsXq1atx//59yOVy+Pj4ICAgAP7+/qhVqxb8/f1hamoqdJn0EmfPnsXJkydx4MABnDt3DpqamqhXrx46deqE5s2bo2XLlpzj9BIMMvRCyquFkydP4pNPPsGHH34IXV1dTJkyBQ0aNMDVq1fh4eEBLy8vbN++XehyqZKUx/fKlSuYOXMmEhISkJubC4VCgWbNmuGrr75C/fr1hS6TKignJwfHjx9HaGgozp49i8ePHyMvLw9Hjhxh266IZGRkICIiAvv370dYWBji4+ORn5//zHYw9P8YZOiFlBvRffzxx8jPz8c///yDP/74A1u3bsXRo0exaNEi/Pbbbxg1ahSmTZvGhdJEqkGDBrC3t0eXLl1gY2ODhIQE7N+/H7q6ulizZg0cHByELpFeQ0JCAo4cOYIRI0bwal4knrd0RWpqKuzs7ASqSBz4/256IeXthKtXr6qWzFbuvgo8WYDrxo0b6NatGwCuMSImyi/MCxcuID4+HocPH4alpSWAJ7eSgoOD0bdvX/z111+YPHkyj60aO3/+PO7fv4/MzEzY29vD09MTLi4ucHFxwahRo8BrVfWWm5uLJUuW4MaNG6hXrx5q164NT09PWFlZwdjYmCGmAhhk6IUkEglKSkrQoEED1UiLlpaWaoizZs2a2LNnD8aNGydkmfQa5HI5NDU1ERMTAy8vLxgZGame09TURIMGDTB69Gjs27cPU6ZM4SKHakY5+rl06VL8/PPP0NXVRW5uLmxtbWFubo6AgADY2tqif//+cHNzE7pceoHi4mIMHjwYycnJ8PX1xZQpUyCRSGBlZYUOHTrA1dUVkyZNKrdQJT2L9wHopXR0dPDdd9+hRYsWAIC2bdtizZo1qiW0DQwMVPffeaITD+VoW4MGDZCUlISZM2ciOzsbpaWlqtdcvHgRXl5eAP5/lV9SDxoaGsjLy8PcuXOxcOFCxMXFoaCgAJ07d4a2tjbWrVuHNWvW8LipKblcDgA4ePAgbt26hYMHD+LHH3+Era0tbt68iX79+mHTpk2qPezo5TgiQ89ISEiAi4sLgCcfuKcXaOrfvz/OnTuHJUuWwMfHB8uWLQPAzhaxyMnJwf79+zFw4EBVZ8T06dOxYsUKJCcno2XLlpBIJNi6dSsePXqEVatWAQDnPqkR5WhMaGgobG1tMWTIEERFRcHIyAg//PADZDIZOnXqhO7du8PT01Pocuk5lLf79u3bh1atWsHe3h4zZ85EnTp14OHhgS+//BIAMHXqVCHLFA0GGXpGjx49MGPGDPTv37/cCUwul8PZ2Rnbt29HSkoKdHV1VfMqGGLEYf369di2bRuGDBmChIQElJSU4KOPPoK+vj7++usvzJw5E7a2tnB2dsaUKVPQvHlzAAwy6ujKlSvw8fEBAISHh6NevXqqCfqBgYFISUkRuEJ6kaf3r1PugXXnzh0EBARAoVDA09MTt27dwq5du/DFF18IWaooMMjQM+bPn48vv/wS+/btw/jx4+Hn5wctLa1yJzMuoy1O165dU00enDhxIgwMDLBp0yZ89NFH+OijjwAA9+7dg4ODAztd1JTyc9ihQwfY29ujtLQUxsbGSEtLQ1RUFDw8PBAaGoouXboIXCm9ymeffYb79+8DAPz9/bF7927Ex8fj9u3bOHPmDJYuXSpsgSLB9mt6rrNnz2LhwoUoKytDq1at0LJlSzg5OUFXV1e1VH1ZWRnu378PZ2dnYYulCtuxYwdGjBiBDh06IDw8HLNmzcJnn332zOs4uVe9FRYWIjs7GwBgZ2eHjIwM9OzZE8bGxkhNTUV+fj6OHj3Kz6YaUt4aTEhIgJ2dHSQSCXR1dXH9+nW0a9cO2dnZMDIyQufOnfHnn38KXa4oMMjQC8XGxuL333/Hjh07kJubizp16sDLywtFRUW4f/8+LC0tYWBggCFDhqhasEm9KRQKHDhwAL/88guOHj0KDQ0NuLm5oW3btujatSuaNm2qul1I6kc5F23lypWIiorC2rVrVc+Fh4fjn3/+gZGREUaOHAlvb28BK6UXUR5DX19fBAYGYtWqVaoLh+LiYhw7dgwlJSXo0KEDt5moIAYZeiWFQqFaMTQtLQ22traoUaMGtLS00LNnT171idDevXsxf/58LF++HHv37sWRI0cQExMDhUIBb29v9OvXD9OmTRO6TPoP5Qlv0KBBsLW15a0HERs8eDA++OADdO3aFTKZDHK5nPvXvSYGGXohZYvgfyd6skNJnJ7uRktMTERRUZHqql0mkyEtLQ2XL1/Gv//+C2NjYyxbtozHWk1FRERg8+bNmDNnDszNzSGTySCTyaChocG5TWpMGUSzsrLwww8/ICkpCZs3by73mpKSEh7HSmKQoQqRy+WqLeUlEgnkcjkkEgnnUYiIn5+fqhvtVRhg1Nf169fh6+sLAJgxYwY++eQTbiMhEsogs23bNnz66acoKipC27ZtMWDAAAQHB8PR0VHoEkWJQYZUOMGzetu7dy/Gjx+PFi1a4Msvv4S/v/8zV33cL0v9PXjwAKtXr8bNmzdx+PBh5OTkwNvbG507d0bnzp3RqlUrXs2ruStXriA8PBwJCQmIiopCVlYWysrKULNmTbi7u2Ps2LGq1np6NQYZei6OuFRP7EarHpSB8+HDh4iKisKJEydw8uRJREVF4euvv8bChQuFLpEqQC6XIzMzEzExMYiNjcWtW7cQERGBVatWoVmzZkKXJxoMMgTgyVLZFy9exIABA55ZDVShUKhGaxhsxI/daOKXnZ2N69evw9XVFba2tqo5MnFxcbCyskKNGjWELpFe4uHDh7h//z7u3r0LZ2dnNG7cGACQn5+PhIQE1KlTh9+1lcAgQwCAJUuWYNasWSgqKoKZmRlatWqFHj16oH379rCxsSn3Wt6Cqh7YjSYeys9cTk4OVq1ahQ0bNkBHRwfa2to4fvw4DA0NkZKSwoUq1Zhy3llkZCQWLFiAyMhIFBUVYejQofjjjz+QnZ2NgoICHsPXwCBDAJ7cTnj8+DESEhJw+vRpHD16FOfPn0dWVhbc3NzQvn179OrVCy1atIChoaHQ5dIbYDea+Ci3HpgxYwZOnz6Njz/+GAcPHsTDhw9x+PBhJCYmIiQkBL169UJAQIDQ5dJzKG8HNmvWDP7+/li1ahWaNm2KTp06YdasWQgNDcWOHTvw5Zdfcn5MJXFWHwEAtLS0YG1tjcaNG2PixInYtm0bLl26hMOHD6N///64dOkS+vbtC2NjYyQlJQldLr0BDQ0NVYiRy+WQyWRQKBTQ1NRUdaeRelEer40bN+KDDz7AkCFDkJaWhqCgIACAtrY2IiIicPXqVSHLpJfQ0NBAbm4url69itmzZwMA4uLi0KlTJwCAm5sbTp06xc/fa+DUdnouQ0NDGBoawsnJCe3atUN+fj5SUlJw48YNODk5CV0eVcLLbgX+d1SGHUvqSUNDA3l5edDQ0EDDhg0BABcuXMC8efMAABYWFoiNjeWVvJq7fv06nJycoKmpiXPnzkFTUxO1a9cG8GRn+gcPHqBOnToCVyk+DDL0jKNHj+L69evw9/eHs7MzHB0dYWhoCA8PD3h4eAhdHlXS0yGG3WjipVAo0LBhQ2zYsAFDhgyBkZER/P39AQCnTp1CXl4eGjRoIHCV9DK+vr7w9PTE7t27kZmZicDAQJiamiInJwebN29GvXr1hC5RlBhkqJxp06Zh+/bt0NfXx9WrV2FkZITatWujd+/e8Pf3R9u2baGjoyN0mVRB/+1Ge3rEhd1o4mJsbIyxY8fiyy+/xNatW2Fra4uHDx9i8+bNqs1ASb0ZGhpi8ODBmDBhAtLS0tC0aVOEhIRgz549uHfvnuqWE1UOJ/uS6mR248YNtG/fHkuXLkWbNm3g4uKCn3/+GTt27MChQ4cAPGkbtLa2Frhiqih2o1UvCoUChw4dQkhICMLCwpCZmQkPDw8MHz4co0aNgpWVldAl0lNycnKQm5uLmjVrlnv81q1b+Pvvv3H69GnEx8fD0dERy5Ytg7+/Pz+Dr4FBhlTdKvPnz8fRo0cRFhaGLVu2YPbs2bh+/Tqio6Mxe/ZsfPfddxy6Fhl2o4lXVFQUVqxYgfXr16OoqAiZmZnltiJIS0tDbm4uSktLOTdGTc2aNUv1n/Hx8UhNTVWt/aNcDM/U1BS6urrCFipyvLVEqtsNCQkJaNKkCYAnm9I1bdoUABAQEABLS0scPHgQDRo04JW7iCi70ZQdaZ9++ikyMzNx+/ZthIWFISwsDH/99Rfy8/ORmJjIidxqJCUlRTXx8+DBg5gxYwYaNWoEHx8fNG3aFHXr1oWtra3AVdLL1K9fHyYmJgCAefPm4fDhwwgMDETdunXh7+8PDw8PaGtrM8i8IQYZUoWSDh06IDU1FQBQo0YN3L59G0VFRZBKpQgNDcXSpUsB8BaEmLEbTTx69OiBsrIyAE+OW/PmzZGRkYFdu3Zh27ZtMDc3V03A79OnzzO3L0h4PXr0UP33b775BnXq1EF4eDjWrl2LoqIi2NvbIyAgAK6urhgxYgRXZH5NvLVE5aSnp8Pa2hpXrlxBkyZN4OLiAplMBiMjI0REREBPT0/oEuk1Pa8bje3W6ut5Fwzp6emIjY3FlStXcOPGDdy/fx83b97E2rVr0bJlS4EqpRfJzMxEbm7uM6tkKxQKREREIDQ0FKdOncL169cRFxenGr2hymGQec8pvyylUqnqQ6RcgfLmzZvYuHEjiouLMXLkSHh7e3M0RqTYjSY+586dw5dffomuXbsiMDAQzZo1e+ZCIjExETExMejcuTOPnxpRfocuX74c27ZtQ9OmTeHm5gYfHx94eHg8c0swPz+fc9TeAIPMe075gfvwww9hZmaGmTNnwsrKioGlGmA3mrgdP34cy5Ytw+PHj5Geng4tLS3UrVsXDRo0QOvWrVVryJD62rZtG3bu3In79++jsLAQAODq6gpPT094eXnBx8cHLi4uMDc353fuG2CQIeTl5cHR0REHDx5UTfBVCgsLg4GBwTOPk/pjN5r4ZWZmIj4+HtnZ2Rg1ahQMDAxgZGSEnJwcWFpawtbWFtOmTePxU3P5+fmIjY1Fs2bNEBQUhKKiIpSWlsLS0hJGRkZYunQp56i9AU72fY8pR2OOHDkCCwsLNGnS5JmNA+/cuYP169fj7NmzAlZKr4PdaOJnaWkJS0tLAEB2djZ++eUXWFtb4/r167h16xYiIiI4z0mNPT1Z29zcHDY2NggLC0NGRgYuXLiAiIgIXLlyhRO13xCDzHtM+QVYUFAAOzs7pKSklFunAngyWqO8987dkcWF3WjiV1paCm1tbZw5cwZ6enro0qULtLS00KxZMxQXF+PBgwdwdXUVukx6AS0tLchkMgBASEgI6tatCw0NDdSoUQNdu3ZF165dBa6wemCUJ7Rt2xaJiYmYMmUK4uPjkZeXB+DJaMzff//ND5vI9e/fH4MHDwbwpB305MmTqF+/PoKCglRfqAA3jFQnpaWlAJ7sag0Ae/fuRYMGDaClpYWysjIoFAro6uoyxKgx5awN5cVBaGgoOnfuDODJaHhZWZkq5NCb4RwZAgDs2bMHkyZNgomJCQIDA1FUVIR//vkH7du3x6+//gpbW1tesYsIu9HEbe7cuXBycoKnpyeaNGmC+vXr47PPPsNnn32meg03AFVfycnJ6N27N/r27Yt27drBxcUFnp6eiIiIUO12TVWHQeY9FBcXBzc3NygUinJX4adOncLGjRtx6dIl2Nvbo02bNhg8eDAXaRIhdqOJV0ZGBho3boyysjKYmprC3d0d+/fvx88//4zg4GA4ODjA3Nycx1GNJSYmYuLEiYiNjUVcXBz09fVRUFCA5cuXo3Xr1nB2doaBgYHQZVYbDDLvofr16+PLL7/E8OHDsXPnTri4uCAgIKDca4qKirj4ncixG03c4uPjcfjwYZw8eRKXL19GXl4e7Ozs4OvrC19fXwQEBKBt27ZCl0mvEBcXh8jISBw6dAihoaHIzs6Gp6cnAgICMHbsWDRv3lzoEkWPQeY9dOrUKdSvX1+17Pnly5dhaWmJevXqoWvXrujSpQtbAUVMORqzc+dOTJo0CXFxcZDL5eUmav/+++/sRlNTyuP3XxcuXMDhw4dx6tQpRERE4IMPPsDKlSsFqJBel0wmQ3R0NI4ePYqQkBBMnToVw4YNE7os0WOQeY8pFApcv34dycnJiI6OxpkzZxATE4OsrCzY2dmhSZMmWLt2rWrCIYnLpk2bsHLlSmzZsuWZbrSff/4Zu3fvRnh4OLvR1JRCoUBZWRm0tbWRkZEBKysr1XP5+fmQSqWws7MTsEKqqJKSEoSGhqJr166cVP8WMMgQgCfrHUilUqSkpOD27ds4ffo0MjIysGHDBs6rEKm0tDQ0bNgQrVu3xuzZs1GjRg0YGRnhzp07GDRoEAYMGIDJkyczyKg5qVQKNzc3XL58GXZ2dpBIJDwZioRydG379u2YOnUqbt26xWP3FjDIvMdkMhliYmJgYGAAMzMzWFlZQUvrydJCJSUlKC4uhrGxMYOMiLEbTVyePhbKgLl161ZMnz4dN27c4ElQZMrKyqClpYUPPvgAenp6WLNmjdAlVUtcEO89NnXqVKxbtw5ZWVkwMjJCvXr10LZtW7Ru3brcxmY8yYnD87rRevToAXNzc2zcuBERERGwt7fHnDlzynWj8fiqj6ePhXJe0759+9CqVSuGGBFSXhhevnwZc+bMEbia6osjMu8Z5VDn0aNH0a9fPyxZsgTt27dHVFQUdu/ejbCwMCQnJ8Pa2hopKSm85SAi7EYTr+LiYuzYsQO+vr5wdXUttxNySEgI/P39Ua9ePY6eidThw4fRqlUr6OrqPrNQHr05Bpn31PTp03H//n2sX7/+meeSkpIQHR2NHj16vLCDgtQPu9HE68SJExg2bBh8fHzg4OAAb29v+Pj4qHZHJnFQBs3i4mLcvHkTWVlZKCkpgaenJ8zNzWFmZiZ0idUSg8x7ZMSIEWjcuDGCg4ORkZGBrVu3YurUqbCzs8PT/zfglYK4sRtNfJT7XkVHR+Py5ct4+PAhNDU1YWVlBVdXV/j4+KBOnTpwd3d/pgON1Ifywm/evHlYvnw5srKy4OTkBDs7O3h5ecHX1xdOTk5o2bJluS40ejMMMu8JqVSKXr16ITY2FpmZmXB2dkZ8fDymTp2KESNGoFatWqr7uVR9sBtNnG7fvo3IyEicPXsWt27dQk5ODoyMjKCpqYmpU6eiQ4cOQpdIL6Bskli9ejV69OiB6OhoHD9+HGfPnkVqaioyMjJw9OhR1KlTR+hSqw0GmfdMcXExrly5giNHjuDMmTM4ceIEysrK4Ovri/bt26Nt27YICAiApaWl0KXSa2I3mjjJ5XIAz27eWVpaikuXLuHs2bM4cuQIFi1aBB8fHyFKpJdQfp7OnTuHiRMn4sSJE8+Mej58+BCRkZHo3bu3QFVWTwwy75Hnnbiys7Nx7tw5HDx4EGFhYbh27RoGDhyIf/75hyc6kfrmm28q1I1G6qmsrAz37t3D/fv34enpyUXvREL5fXnx4kUsWbIEo0aNQsuWLV/6WqoaDDLvEeWHZ+vWrTA3N0dwcPAzVwxJSUkoKSmBu7s7F0oTEXajiZvy+F2+fBlTpkxBSkoK9PT0YGhoCFdXVzRq1Aje3t5o1KgRjIyMhC6XnkP5/TpgwABs374djRs3xhdffAE/Pz/UrFkTFhYWDC9vCYPMe0L5IUtKSkKXLl0wb9489OzZs9xr0tPTYW1tLVCFVBXYjSZOys9ns2bN4OHhgREjRmD48OFwdnZGZmYmkpOTYWlpiaVLl6JHjx5Cl0svoFAosHLlSly6dAmnT59Gbm4u7Ozs4OPjg/r168PV1RWdO3fmRPsqxiDznlCOrixevBhbt259ZrPAgoICLFu2DFZWVvj4448FqpJeB7vRqoeUlBR4eXkhLi4ONjY2sLCwQGRkJMzNzdGrVy94eHhgyZIlnL8mIufPn0doaChOnTqFa9euoUaNGoiOjha6rGqHbSrvCeVJ7NKlS2jcuHG55xQKBQwMDJCUlISkpCQAL96Bl9SLVCpFYmIi9u/fX64bzdjYmN1oIqH8rJ0+fRp16tSBjY0Njh49CgsLC9jY2MDc3BxDhw5FUlISQ4wIFBYWIjU1Fa6urmjcuLHq+7awsBBxcXECV1c98Uz1nlCGkkaNGuHw4cO4efMmgCdfohKJBDKZDGFhYWjWrBkAgAN14mBiYoKwsDAkJSXhzJkzGDFiBLp27Yply5bB19cXzZo1w7Rp03Ds2DFkZmYKXS49h/KzqaOjg9q1ayM9PR3Z2dmwtbWFVCoFADx48ABXr14VskyqgIiICHz00Ufo3r07TExM0KRJEyxfvhzZ2dnQ19eHn5+f0CVWS7y19J55+PAhOnfuDEdHR3z11VcICAjAvXv38OuvvyIsLAxRUVEwNTUVukyqBHajVR+pqamwtLRUfU7r1KkDY2NjHDhwAAsXLsSHH34odIn0H8rPU3x8PPr06QMzMzN8+OGH0NLSwokTJxAZGYnBgwdj1qxZQpdabTHIvAeUQ9dRUVEwNjbGvXv3MHPmTFy6dAkAYGNjA1tbW3z77bfo2bMnT3Qiw2408ZPL5SgqKoKBgYHqsc2bNyMkJAT5+fno2bMnxowZU+55Ug/Kz9O8efNw6NAhnDx5EhoaGpDJZCguLsaaNWswe/ZsbN68Ge3btxe63GqJQeY9oPygubu7Y8qUKarJvNevX0daWhqkUimaN2+u2g2ZxIPdaOKm/GweP34cMTEx6NChQ7nF7goLC1FYWAgLCwsBq6SXUV4oDhgwAFZWVvjtt98AlB8p7d69O+rXr4/Zs2cLWWq1xTky7wFNTU0oFAo4OTnBy8tL9biPjw/atGmDXr16McSIlHI12O3bt8PIyOiZEFNQUIC1a9dizZo1QpRHFTRr1iykpqbC0dERwJOAAwCPHz9GWloaioqKhCyPKqBbt27YuXMnwsLCAPx/g0VBQQFiY2O5JcFbxHaGak55tZCRkYEOHTpg9erVaNasmaqTpaysDADY2SJS7EYTN+UtvqioKKxYsQLGxsblHn/06BGWLFmCWbNmcRdsNaX8PHXq1Ak7duzA119/jW7dusHd3R3FxcU4cOAA9PT00L17d4Errb549qrmlCe6X375BfPnzwfwZO+WDz74AK1bt+Y9d5F7uhtt5cqVuHnzJry9vVWBRdmN9u233wJgN5o6io2NhZ2dnWrUpaysDBoaGtDQ0ICuri527dqFP/74Q+Aq6WnKW4J//fUXDAwM0L17d9SoUQO7du3CjBkzsGfPHhQUFEBLSwvW1tbYsGED9PX1hS672uIcmfdEWloaYmJiEBUVhQMHDiA6OhplZWWoX78+mjZtiilTpsDGxkboMuk1sRtNvKRSKfr06QN3d3esWrVK9XhpaSmWL1+OtWvXIjY2VsAK6UUGDRqEbdu2QUNDA15eXhg4cCAGDx4Md3d3ZGRkQE9Pj1tKvAMMMu+Z0tJSlJSUIDU1FTExMTh+/Dh27NiBo0ePwsfHhx1LIsJutOrj999/x9ixY9GgQQP06tULjRo1wp49e3DgwAGMHz8eY8aMEbpEeo6srCykpaUhNjYWJ0+exLFjx3Dr1i3o6ekhODgY/fr1Q3BwMFxdXYUutVpjkHlPvKjlVi6XIzc3l1frIsRuNHEqLi5Gfn7+M51IYWFhWLNmDe7cuYPbt2/Dzs4O33//Pbp27crbEmpOoVCgrKwMcrkc165dQ2xsLP78808cP34cwP9Pyqe3g3NkqjHlFXtycjJWr16NTZs2wdXVFS1btkTz5s3h5+cHa2trhhiRelk32tMtvKReNmzYgLS0NEyfPh3p6el49OgRatasiTZt2qBx48bIzMyEgYEBzM3NOQlfBMrKyqClpYXU1FRcuHABiYmJ2LBhA7Kzs+Ho6IjAwEChS6z2OCLzHujcuTPS09Px5ZdfYuTIkTAxMcHjx4/h4uICKysrrFmzBr6+vkKXSZWgDKnp6elYu3Ytrl+/jnXr1rEbTQTWrFkDAwMDDBkyBF9//TUOHDiA9u3bw8/PD35+fqhVqxZMTU2hp6cndKn0EsrQEhMTg3/++QdyuRxlZWWwsrLC4MGD4eDggBYtWsDZ2VnoUqs9BplqSjkf4vbt22jRogWio6NhYWEBe3t7nDt3DrGxsfjwww/RtGlT/PPPP1wwTWSUx/e7775TdaMNHDiQ3Wgic+PGDaxZswYRERG4f/8+9PX14eHhgYYNG8LZ2Rk9evSAlZWV0GXSf9y+fRv169dHQUEBGjZsiM8//xxubm5o1KgRdHV1hS7vvcPLtWpKeaI7dOgQvL294eDggF27dsHBwQGurq5wdnbGhAkT4OvryxAjQspJu1988QWCgoJU3WgDBgxgN5qaKy0thba2NpKSkrBjxw78/PPPAJ50FoaFheHw4cPYtWsXEhIS0LFjR4Grpee5cuUKAKBx48ZwdHRETEwMLC0tERcXBx8fH06qf8c4IlPN/fzzz7h//z6WLFmCH374ASdPnsSWLVtgYmKCL774Anl5eQgJCeFCaSLHbjTxUH7Wli9fjpUrV+LKlSvQ1NR85vjExcXB3d1doCrpZWQyGR48eIALFy7g6NGjiIuLQ3Z2NnR1dWFjYwNfX1/UqVMHbdu2haWlpdDlVnsMMtWcVCrFsWPH0LVrV5w/fx7Dhg3DwoULoauri5EjR+K3335D//79uZGgSLEbTXyUoXL79u0IDw/HkiVLoKmpqep6kUgkqk0/GUDFobCwEImJiYiIiMDJkyeRlpaGu3fvYs2aNWjTpo3Q5VV7DDLVkPLL78aNG7h9+7Zq/538/HyMGTMGW7duRUlJCT7//HP89NNP0NHREbhiqoyKdqPxBKjexo4di/379+Onn35Cnz59hC6HqohCoYBUKsX169cREBDA1vl3gEGmGlJepY8ZMwa3b9/G0aNHyz3/4MEDFBUVwd7enh8yEWM3mnilpKRgwIABePDgATIzMxEYGIgGDRqgUaNGqFevnmrzSCJ6NU72rYaUtxpq1aql+kKUy+WqgOPg4CBkefQGnu5Gi4qKUnWjjRs3DpGRkapuNGdnZ07yVWP29vZYs2YN7t27h5iYGMTExOD06dM4duwYysrK0Lp1ayxcuFDoMolEgUGmmlJORjtz5gw++ugj2NnZlZvMyzkx4sRutOrD29sb3t7e6NixI0pLS3Hz5k1cu3YN4eHhXNCQqBIYZKqpa9eu4dixY0hJSUHjxo3Rs2dPNGvWDA0aNIC3tzdDjEgpw2hpaSkaNmwIALh58yYcHR1RUFCgur108OBBDBw4kN1oaurRo0eYM2cOpFIpHBwc8PXXX6sWxBs8eDBkMpnQJRKJBufIVFNSqRTh4eFISkrCpUuXkJiYiLy8POjq6kJfXx9DhgzBsGHDhC6TXhO70cRHGSpjYmIwYcIESCQSyGQyXLlyBfHx8dDX18eRI0fQpEkTjqYRVQJHZKopExMTdOvWTfV7YmIiLl++jNjYWJw+fRqGhoYAwCt2EflvN1rv3r0BAPXq1UNQUBCGDRum6kZTdqoxxKgP5Wdt1apVMDExwa5du7Bp0yasWrUKZmZmSE1Nxdq1axEbG4vJkycLXS6RaDDIVFPp6enYtGkTiouLYWtri+HDh8PZ2Rm9e/dGYWGh6gTHECMecrkcmpqaWL58ebm2ekNDQ/z555+YP3++qhuNLfXqR/mZO336tCqoLF++HD169AAA2NnZoaysjJ9JokpikKlGlFd8Z86cwfz585GYmIh79+7B09MTQ4YMQWFhIRISEuDv7y90qfQa2I0mbhKJBKWlpahduzbu3bsH4MmePR06dAAAFBQU4MyZM5gxY4aQZRKJDqN/NaKc7vTTTz/B2NgYV69excSJE+Hq6gptbW0kJiZi6tSp+PfffwWulF6Xshttx44dSE1NhYaGBrS1tVVX8Zwkqt60tbUxcOBArF69Gl999RUAoEGDBlAoFJg7dy4sLCzQqFEjgaskEheOyFQjyiv2U6dOYffu3QCATZs2Yfr06QCetHtmZ2erXs/5MeLDbjRxk8vl6Nu3L1JSUrB27VoYGxujefPmSElJgZWVlWoncyKqOHYtVTPp6eno3r07pk+fjq5du8LY2BgxMTFwdnZGZmYmnJ2dERcXBzs7O6FLpdfAbrTqQSaTISoqCseOHUNmZibs7OzQsWNH+Pn5CV0akehwRKaasba2RqdOnbBkyRJcvXoV9vb2cHV1RWlpKZYtWwZnZ2fY2dlxMzqRYjeauOXn56OkpATZ2dmoXbs2mjRpInRJRKLHEZlqKC0tDd988w2OHj0KAwMDNGnSBHFxcZDL5fjqq68waNAgri8iUs/rRlNSdqOxY0m9KD9rUVFRmD17Nvbv3w9XV1f4+PigXr168Pf3h6OjI9zc3GBhYSF0uUSiwyAjcsXFxYiLi0OdOnXKPZ6ZmYn9+/fj5MmTyM7Ohrm5OcaMGYP69esLVCm9rpd1o505c4bdaGpOGWTatGkDQ0NDjBkzBo8ePcLhw4dx8eJFFBUVQaFQYPr06fj444+FLpdIdBhkRG716tVYsWIFoqOjkZycjIsXL8LX1xe1atWCtrY2ZDIZiouLYWBgIHSp9JqUJ8K+fftCV1cXf//9N2bNmoXr169j69atuHLlCqZMmYKRI0eib9++QpdLL+Dr64vVq1ejWbNm5R6/cuUKduzYgU6dOqFp06YCVUckXpwjI2IKhQIjRoxA8+bNAQAbN27Et99+Czs7O/j7+6NNmzZo3rw5XFxcUFZWBhMTE4ErptfBbjTxUygUGDNmDKKjo58JMnXr1kXdunUFqoxI/PhtJ2ISiQSampqq20pTp05Famoqvv/+e2hoaOD7779HYGAggoODMXToUMTExAhcMb2u9PR0uLq6IisrC8CTeVCBgYGQy+XIyclBTEyMKtAyxKiPpwe8dXV1sWrVKsybNw+nT59Genq6gJURVR+8tSRyBQUFuHTpElxcXGBhYQF9ff1yz9+8eRN79uzB+vXrsWnTJtSvX58dSyI1a9YsnD59Gu3atcP69etx69YtlJaWYs6cOdixYwdiY2N5bNWMcnTsiy++wI4dO5Cfnw9bW1vY2NjAzs4O3t7ecHJyQpcuXbgkAtFrYpARuW3btuGzzz5DmzZt4OvrCx8fH9US9jVq1GBnUjXCbjRxKi4uhr6+Pvbs2YPg4GBcvXoVp0+fxoULF/DgwQPcv38f+/fvh6+vr9ClEokSg4zIpaenY+vWrTh9+jSuXr2KjIwM1KpVC15eXggICIC3tzfs7e3h5uYGY2NjoculCmI3WvVx69YtTJ48GSEhITAzMyv3XEZGBqKiotCpUydhiiOqBhhkqhlHR0c0bNgQJSUliI2NhZaWFrS0tLB69WoEBQUJXR5VELvRxE95W+nQoUP4+eefMWTIEPzvf/8TuiyiaoddSyKnUCggk8mgpaWF3NxcSKVSbNiwAcbGxiguLkZkZCR27doFd3d31es5h0K9sRutelBOula2yEdFReHkyZMICgpCo0aN4OPjAy0tfgUTvSmOyIicXC5HWVkZdHR0sHXrVsycORMxMTHQ1NTkXIlq5OHDhzhw4AD+/fdfnD59GlKpFB4eHvD09MT333/PxfDUlEKhwOHDh3H37l1cu3YN8fHxyMnJgYaGBmxsbODg4ID58+fzti/RG2CQESHlqEppaSm0tbVVjw8ePBjGxsb4448/VI/JZDJIJBK25IoMu9Gqp4SEBFy5cgXXrl3D9evXkZ+fj127dgldFpGoMciIlEKhgJGREXx9fdG9e3cMHToUrVu3xvr169G6dWvVaxQKBUOMCLEbTdyU3WM//PADcnNz0bt3bzRs2LDca0pKSpCWlgYnJyeBqiSqHhhkRKqoqAibN2/G2bNncezYMSQmJkImk6F169YYOHAgOnXqxC9IEWM3WvUwduxYnDhxAjk5OdDT04O/vz86duyIDh06qD6fHEkjejMMMiInk8kglUqRkJCA6Oho7NmzB+fPn0d6ejqMjY3x2WefYf78+UKXSW+I3WjilJ6ejpSUFMTFxSE2NhYXLlxAZGQkysrKUKNGDVy8eJGTtYneEINMNZSamoq7d+/iwIEDcHR0xOjRo1FWVsYOCRH5bzdazZo1cf/+/We60aZMmQI7Ozte1YtASUkJ0tPTERISgpCQEIwdOxbjxo0Tuiwi0eOZrRpQnsRmzpyJsWPHws7ODnZ2dggMDFTt9cIQIy4KhQJyuRwAcPDgQdjb20NXVxcymQy6urpo3bq1ai4UAIYYEdDR0YGDgwMmTpyIe/fuwdHRUeiSiKoFzgIVOWWIuXXrFlauXPnMxF6e4MRDGTpLS0uhoaEBHR0dAMDOnTsRFBQEHR0d1SRfmUymCjqkXpTHpXv37pg+fTqOHz+OgoIC1fM6Ojo4ceIEJ2wTVRFepouc8vbD7t27Ubt2bVhYWAhdEr0miUQChUIBMzOzct1oZ86cwfr161WvU4ZXdqOpJw0NDWRmZkJLSwvHjx/Hli1boKenB3d3d3h5eeHu3bsoKipCu3bthC6VqFrgHJlqomvXrmjRogWmTZsmdCn0BtiNJk7Kduu//voLenp66NWrF7S1tZGVlYWLFy/izJkzuHr1Ku7evQsjIyNMmzaN+ysRVREGGRFJSEjAtGnT0LdvXzRq1AgODg6quS+PHz+GpqYmOyCqCXajidOgQYOwbds2aGhooG7duujZsyd69+4NPz8/oUsjqrYYZETkwoULGDZsGNLS0lBYWAhfX1+0a9cO7dq1Q6NGjWBqaip0ifQWsRtN/WVlZSEtLQ2xsbE4ceIEwsLCcPv2bejo6KBFixYYNGgQ2rRpA1dXV6FLJao2GGRESCqV4vz58zh48CAOHz6MmzdvQl9fH40bN0anTp0QGBgIf3//Z5a1J3H5bzealZXVM8+RelIoFCgrK4NcLse1a9cQGxuLDRs2ICwsDAA4UZuoCjHIVAOpqak4efIk9u/fj8jISCQkJGDjxo0YMmSI0KXRa3q6Gy0oKAg3b97kRG6RUI6SJSUl4cKFC0hMTMSGDRuQnZ0NAAgMDMSmTZuELZKoGmGQqYZu3LgBJycnGBoa8spdpJQnw0WLFmH//v04efKk0CXRKyhDS0xMDP755x/VzvRWVlYYPHgwHBwc0KJFCzg7OwtdKlG1wpvrIvJ0KDl58iRCQ0NRs2ZNuLu7w83NDZaWljA0NETt2rVV72GIESflvJeTJ0+iY8eOAldDr3L79m20bt0aBQUFaNiwIWbMmAE3Nzc0atQIurq6QpdHVK0xyIiIXC6HpqYmFi1ahA0bNsDKygrh4eHQ0dGBubk5OnbsiNq1a6Nv375wd3cXulyqoJd1o23cuJELp4nAlStXAACNGzeGo6MjYmJiYGlpibi4OPj4+PCCgugt4q0lEXJwcMC3336LMWPGwMvLCxMmTMDjx4/x3XffQaFQYOfOnejZsydvK4kEu9HETyaT4cGDB7hw4QKOHj2KuLg4ZGdnQ1dXFzY2NvD19UWdOnXQtm1bWFpaCl0uUbXCICMSylASFRWFHj16ICUlBffv34efn59qIujYsWPRv39/tGnThgFGhNiNVn0UFhYiMTEREREROHnyJNLS0nD37l2sWbMGbdq0Ebo8omqFQUYklEHmzz//xLZt27Bv3z7s2rULCxYswKFDh2Bubo4///wTf/31F44ePSp0uVQF2I1WPSgUCkilUly/fh0BAQEMokRVjHNkREI5wlK/fn3k5eUhOzsbJiYmKC4uxqVLl+Dr64u///4bHh4eAMCF0qoBOzs7DBo0CIMGDQLw/91oANeREROJRAJTU1M0a9ZM6FKIqiWOyIhQXl4eDA0NUVZWhnbt2iEmJgaGhoawtrbGmjVr0LBhQ8jlcm4qKBIV7UbT1tYWuFIiIvXDICMCyhOdVCpFcXExrKysVCe+srIybN++Hbdu3cKAAQPKtV6TOCg3HGQ3GhFR5THIiIDyRDdnzhxcu3YNc+bMgbe3N0ddqhl2oxERVR4nUYiA8qT1559/Yvr06fD09Cz3fHR0NO7cuYNOnTrB2NhYiBLpNT3djaZQKDBmzBjcv38fjx49Qu/evWFhYYF79+6putEALnJIRPQ0Xs6LgIaGBjIyMpCeno6WLVtCoVBAoVCoRmMUCgWmTp2K9PR0gSul1xUbG4v69esDAKKiouDp6QkdHR1oa2ujWbNmWLBgAQMMEdFzcERGJDIzM+Ht7Y2YmBi4urqWe66kpARZWVnPPE7qj91oRERvht+IIuHl5QU3NzeMHTsW2tra8Pf3h6OjI1JSUvDjjz8iMDAQwP/PpyFx8fPzg4uLCwwNDREUFARTU1P07dtX1Y02b948AOCcKCKi/+BkXxFJS0vD6NGjcfv2bfj5+aGkpASHDx9GYGAgZs+ejSZNmjDIiAi70YiI3hyDjJpKTk6GhoYGHBwcyj1+79497N69G+fPn4eWlhYCAwPRsWNHODo6ClQpvS52oxERvTkGGTX15ZdfIiUlBdu2bcPRo0fx6NEjdO3atdwGgmzDFTdlYHFzc8P06dMxbNgwaGhoqB5nNxoR0atxjoya+vbbb1Uh5dChQ1i8eDF0dHTg5uaGjh07omfPnggMDORtJBGraDdagwYNGGSIiF6A49dqqkaNGrC2tgYALFy4EHfv3sX27dvRsWNHhIWFoUOHDrCwsICPjw8SEhIErpZe19PdaJqamuVG2NiNRkT0ahyRUVPK2wuXL1/GiRMnMGHCBLi4uKBLly7Iy8vD/fv3cfHiRYSGhsLOzk7ocuk1sRuNiOjNcI6MmsrLy4ORkRFGjRqFu3fv4tixY89MAuWk0OqB3WhERK+PQUbNKCfwTpo0Cfb29liyZAnGjh2Lb7755pnXjh8/Ho0aNcLQoUMFqJReB7vRiIiqFoOMGsrPz0efPn2QkZGBy5cvo2XLlqhduza8vLxQp04deHl5wcbGBnZ2dvjnn3/QsWNHjs6IBLvRiIiqFoOMGvv333+xePFiNGzYELGxscjKyoKuri4sLCzw8OFD5OXl4ebNm0KXSZXw6NEjSCQSWFtbY9KkSexGIyJ6Qwwyaki5n05ERASsrKzg5eUFuVyOa9eu4ezZs7h69SpsbGzQrVs3BAQEcDRGpGQyGZKSkhAbG4uwsDCEhYXhxo0b0NPTg4ODA/bv3w8XFxehyyQiUmsMMmpIeWuhdevWcHd3x7Rp0545ofH2gzg9rxtN+fh/u9HWrFkDPT09gSsmIlJvDDJqbPv27ViwYAEcHBwwZ84cBAQEAGCIETN2oxERVS1+W6qxfv36YfXq1SgpKUHz5s3x7bffIi0tDRKJBMyf4qI8XrNmzcLixYtx8OBBdOzYEcCzO1pPnDgRmzZteuc1EhGJEUdk1JRCoYBcLldN+gwJCUFISAhatGiBiRMnwtLSUvU6js6IA7vRiIiqHoOMmktPT4exsTEKCwsxf/58/Pzzz3B1dcWPP/6I3r17C10evQZ2oxERVR0GGTWiXL01JSUFY8eORVFREXR1dRETE4OCggIEBQXh7t27yMrKQmFhIUaNGoWpU6dCX19f6NKpAtiNRkRU9bjXkhpR3kaKjo5GaWkpnJ2dYWRkhJEjR8LQ0BBlZWUICAiAlZUVNm3ahDlz5qBu3bro16+fwJVTRSiP73fffVeuG61u3bqoW7cugPK3ChliiIhejSMyauL48eOwtraGvb09LCwsXri3ztMnut69e6OoqAgHDx581+XSG2A3GhFR1eGIjBrIzs7GgAED4OHhAV9fXwQEBKB27dqwt7eHvb09jI2NVa99+kRXp04d2NraClEyvYF+/frB1dUV06ZNQ/PmzTFhwgSMHTsWtra2DDNERJXEERk1ERYWhlOnTiEsLAzx8fHQ0dFR3Xbw9/eHp6cnnJycYG1tDR0dHdX7eOITF3ajERFVLQYZNZSdnY0TJ04gNDQUZ8+eRXp6OszNzWFra4uBAwfi448/FrpEekPsRiMiqhoMMmpCLpdDoVBAQ0PjmSvxxMREhIWFYcuWLejVqxdGjx79wjk0pH7YjUZE9PYwyKgZuVyO4uJi3LhxAyYmJqhVqxa0tbWFLouqwIEDB7Bq1So4OjrCyMgILVu2fGE32rx589iNRkRUAQwyakC5XsijR4+wbNky/PHHH3BxcYGVlRVcXV3h6+sLd3d3eHp6wtHRUehyqRLYjUZE9Haxa0kNKIPMnDlzEB0djfXr1+O3335DTEwMEhMTERISAkdHRwwfPhyTJ08WulyqIHajERG9fRyRUQPKq3EHBwcsW7YMffv2RYsWLTBixAiMHDkSvXr1wsOHD7FgwQIEBwdzxVcRYTcaEdHbxSCjJlJSUtCkSROcP38e5ubmcHZ2xr59+9CwYUMcOXIEO3bswE8//QRDQ0OhS6XXxG40IqKqx8t6NZGdnY127drh4cOHuH//Puzs7JCTkwMA0NfXx9atWxliREgul0Mmk0GhUMDMzAy9evXCypUrcfnyZZw+fRoTJkyAhoYGSktLATzpcCIioorjiIyakMvliI+Ph6mpKUxNTTF48GDk5eWhZcuW2LJlC/z9/fHXX3+pNh4kcWE3GhHR28Ego2aU818OHz6MuXPn4tGjR+jSpQtGjx4NT09Pzo8REXajERG9fQwyaqKoqAilpaXlOlkA4MGDB7C1teXidyKkHD374osvEB0djalTp6q60UxNTZGUlMRuNCKiN8RLewEp50NER0djwoQJcHJygq2tLfr06YM//vgD8fHxcHBwYIgRKeVx27lzJyZMmICuXbsiOzsbs2fPRmxsLNq2bQtTU1M0adIEwJMRHCIiqhwGGTUwfvx4xMTE4Pvvv8f06dMhk8nw3XffwcfHB8bGxti+fbvQJdJrkEgkSElJgYaGBpo3b46ioiLcvXsX/v7+AIDPP/8cAQEBaNSoEQDwliER0WvgrFEBaWpqQi6X49KlS4iOjoarqyuAJye4x48f49atW9i9ezfc3d0BgPNjROjpbrT8/PzndqOtXLlS4CqJiMSLc2QEVlBQgAULFqBDhw4ICgqCXC6HRCLhYmjVBLvRiIjeLl7eC6SsrAwAsHbtWmzcuBELFixAdnb2M7tfM2eKm4aGBtzd3WFpaQkdHR18+umnKCgowIYNG9C2bVtMnz5d9ToiIqo8jsgIbN68edi9ezdu376NsrIyNG3aFN26dUPXrl3h4eEhdHn0htiNRkT0djHICEwmkyE7OxspKSmIiorCkSNHcPr0aaSmpkKhUCAhIYFrjIiMcofr6Oho/P7779i8eTN0dXXRvHlzdOrUCe3atVPNhyIiojfDIKNG5HI5SktLVSvAXrhwAV988YXQZVElKYNMcHAwSkpKMHToUADA4cOHcebMGUilUmhra2P9+vXo16+fwNUSEYkbg4yaeHq344yMDEgkEujp6XF/JZGSy+UwMzMr140GoFw32sCBAxEQEMBuNCKiN8AgI4C4uDgYGBjg4sWLuHXrFvT19ZGUlITr169DT08PGRkZOHnyJP7++28MGjRI6HLpNbAbjYjo3WC/5zuiHHG5fPkymjZtCiMjIwQHB6OoqAiPHz+Gv78/9u/fjxEjRqBFixaYNGkSWrVqVe69pP6UbdTKbrSLFy/Cz88PZmZm5V7HY0pEVDUYZN4R5UkrMTERHh4emD59Orp06aLqZtm1axcOHjyINWvWvPC9pP6Ua8FIpVJYW1sjMjISNWvWfKYbjceUiKhq8NaSANatW4e5c+eiQYMGGDduHFq2bIkRI0YgKysLu3btEro8qgLsRiMiejcYZASSnJyM77//Hg8fPsSiRYvQqVMnzJgxAx999JHQpVEVYzcaEdHbwyAjAOX8iMTERPz444/4448/IJPJcPLkSQQFBQldHlUhdqMREb1dDDJqIDIyElOmTIFMJsPMmTPRvn17zqEQIXajERG9ewwyAlL+Ty+RSBAXF4c5c+Zgx44dWLduHQYMGCBwdVQRFelG+/333zFixAj4+vrCw8MDrVq1gpGRETuXiIiqALuWBPT0Sczd3R0hISFo0KABvLy8AIALpYkAu9GIiITFERmiKsJuNCKid4+X+0RVZMSIEQgPD4elpSUWL16M27dv48SJE+jVq5fQpRERVVsMMkRVRKFQwNHREVOnToWDgwPq1KmDxMREuLm5CV0aEVG1xVtLRG8Ju9GIiN4+jsgQVTGFQgGFQoHmzZtj3bp1cHNzQ58+fbBt2zahSyMiqnbYtURUxdiNRkT07vDWEhEREYkWLwuJiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLQYZIiIiEi0GGSIiIhItBhkiIiISLT+D6Jmvhdcy++9AAAAAElFTkSuQmCC",
"text/plain": [
""
]
@@ -869,8 +906,7 @@
" ]\n",
")\n",
"plt.setp(ax.get_xticklabels(), fontsize=10, rotation=75)\n",
- "ax.set_ylabel('Time [s]')\n",
- "plt.savefig(\"all_time.png\")"
+ "ax.set_ylabel('Computation time [s]')"
]
}
],
@@ -890,7 +926,7 @@
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
- "version": "3.8.10"
+ "version": "3.10.10"
},
"toc": {
"base_numbering": 1,
diff --git a/pypesto/hierarchical/parameter.py b/pypesto/hierarchical/parameter.py
index e0c341bac..fe05c4709 100644
--- a/pypesto/hierarchical/parameter.py
+++ b/pypesto/hierarchical/parameter.py
@@ -1,5 +1,5 @@
import logging
-from typing import Any, Literal
+from typing import Any, Literal, Optional
import numpy as np
@@ -24,8 +24,9 @@ class InnerParameter:
Attributes
----------
coupled:
- Whether the inner parameter is part of an observable that has both
- an offset and scaling inner parameter.
+ If the inner parameter is part of an observable that has both
+ an offset and scaling inner parameter, this attribute points to
+ the other inner parameter. Otherwise, it is None.
dummy_value:
Value to be used when the optimal parameter is not yet known
(in particular to simulate unscaled observables).
@@ -62,7 +63,7 @@ def __init__(
See class attributes.
"""
self.inner_parameter_id: str = inner_parameter_id
- self.coupled = False
+ self.coupled: InnerParameter = None
self.inner_parameter_type: str = inner_parameter_type
if scale not in {LIN, LOG, LOG10}:
@@ -82,7 +83,12 @@ def __init__(
self.lb: float = lb
self.ub: float = ub
- self.check_bounds()
+ # Scaling and offset parameters can be bounded arbitrarily
+ if inner_parameter_type not in (
+ InnerParameterType.SCALING,
+ InnerParameterType.OFFSET,
+ ):
+ self.check_bounds()
self.ixs: Any = ixs
if dummy_value is None:
@@ -114,3 +120,21 @@ def check_bounds(self):
f"`[{expected_lb}, {expected_ub}]`. "
f"All expected parameter bounds:\n{INNER_PARAMETER_BOUNDS}"
)
+
+ def is_within_bounds(self, value):
+ """Check whether a value is within the bounds."""
+ if value < self.lb or value > self.ub:
+ return False
+ return True
+
+ def get_unsatisfied_bound(self, value) -> Optional[str]:
+ """Get the unsatisfied bound index, if any."""
+ if value < self.lb:
+ return LOWER_BOUND
+ elif value > self.ub:
+ return UPPER_BOUND
+ return None
+
+ def get_bounds(self) -> dict:
+ """Get the bounds."""
+ return {LOWER_BOUND: self.lb, UPPER_BOUND: self.ub}
diff --git a/pypesto/hierarchical/petab.py b/pypesto/hierarchical/petab.py
index 6403b2b48..d06c053f0 100644
--- a/pypesto/hierarchical/petab.py
+++ b/pypesto/hierarchical/petab.py
@@ -39,6 +39,11 @@ def correct_parameter_df_bounds(parameter_df: pd.DataFrame) -> pd.DataFrame:
def correct_row(row: pd.Series) -> pd.Series:
if pd.isna(row[PARAMETER_TYPE]):
return row
+ if row[PARAMETER_TYPE] in [
+ InnerParameterType.SCALING,
+ InnerParameterType.OFFSET,
+ ]:
+ return row
bounds = INNER_PARAMETER_BOUNDS[row[PARAMETER_TYPE]]
row[PETAB_LOWER_BOUND] = bounds[PYPESTO_LOWER_BOUND]
row[PETAB_UPPER_BOUND] = bounds[PYPESTO_UPPER_BOUND]
diff --git a/pypesto/hierarchical/problem.py b/pypesto/hierarchical/problem.py
index d17f49710..85c2e90e1 100644
--- a/pypesto/hierarchical/problem.py
+++ b/pypesto/hierarchical/problem.py
@@ -224,10 +224,10 @@ def inner_problem_from_petab_problem(
par.ixs = ix_matrices[par.inner_parameter_id]
par_group_types = {
- tuple(obs_pars.split(';')): {
+ tuple(obs_pars.split(';')): (
petab_problem.parameter_df.loc[obs_par, PARAMETER_TYPE]
for obs_par in obs_pars.split(';')
- }
+ )
for (obs_id, obs_pars), _ in petab_problem.measurement_df.groupby(
[petab.OBSERVABLE_ID, petab.OBSERVABLE_PARAMETERS], dropna=True
)
@@ -235,23 +235,38 @@ def inner_problem_from_petab_problem(
}
coupled_pars = {
- par
+ group
for group, types in par_group_types.items()
if (
(InnerParameterType.SCALING in types)
and (InnerParameterType.OFFSET in types)
)
- for par in group
}
+ # Check each group is of length 2
+ for group in coupled_pars:
+ if len(group) != 2:
+ raise ValueError(
+ f"Expected exactly 2 parameters in group {group}: a scaling "
+ f"and an offset parameter."
+ )
+
+ id_to_par = {par.inner_parameter_id: par for par in inner_parameters}
+
+ # assign coupling
for par in inner_parameters:
if par.inner_parameter_type not in [
InnerParameterType.SCALING,
InnerParameterType.OFFSET,
]:
continue
- if par.inner_parameter_id in coupled_pars:
- par.coupled = True
+ for group in coupled_pars:
+ if par.inner_parameter_id in group:
+ coupled_parameter_id = group[
+ group.index(par.inner_parameter_id) - 1
+ ]
+ par.coupled = id_to_par[coupled_parameter_id]
+ break
return AmiciInnerProblem(xs=inner_parameters, data=data, edatas=edatas)
diff --git a/pypesto/hierarchical/solver.py b/pypesto/hierarchical/solver.py
index d4afcb1c0..6499dec48 100644
--- a/pypesto/hierarchical/solver.py
+++ b/pypesto/hierarchical/solver.py
@@ -13,6 +13,7 @@
apply_offset,
apply_scaling,
apply_sigma,
+ compute_bounded_optimal_scaling_offset_coupled,
compute_nllh,
compute_optimal_offset,
compute_optimal_offset_coupled,
@@ -91,30 +92,78 @@ def solve(
``problem``.
"""
x_opt = {}
-
data = copy.deepcopy(problem.data)
# compute optimal offsets
for x in problem.get_xs_for_type(InnerParameterType.OFFSET):
- if x.coupled:
+ if x.coupled is not None:
x_opt[x.inner_parameter_id] = compute_optimal_offset_coupled(
data=data, sim=sim, sigma=sigma, mask=x.ixs
)
+
+ # calculate the optimal coupled scaling
+ coupled_scaling = x.coupled
+ x_opt[
+ coupled_scaling.inner_parameter_id
+ ] = compute_optimal_scaling(
+ data=data,
+ sim=sim,
+ sigma=sigma,
+ mask=coupled_scaling.ixs,
+ optimal_offset=x_opt[x.inner_parameter_id],
+ )
+
+ # check whether they both satisfy their bounds
+ if x.is_within_bounds(
+ x_opt[x.inner_parameter_id]
+ ) and coupled_scaling.is_within_bounds(
+ x_opt[coupled_scaling.inner_parameter_id]
+ ):
+ continue
+ else:
+ # if not, we need to recompute them
+ (
+ x_opt[coupled_scaling.inner_parameter_id],
+ x_opt[x.inner_parameter_id],
+ ) = compute_bounded_optimal_scaling_offset_coupled(
+ data=data,
+ sim=sim,
+ sigma=sigma,
+ s=coupled_scaling,
+ b=x,
+ s_opt_value=x_opt[coupled_scaling.inner_parameter_id],
+ b_opt_value=x_opt[x.inner_parameter_id],
+ )
+ # compute non-coupled optimal offset
else:
x_opt[x.inner_parameter_id] = compute_optimal_offset(
data=data, sim=sim, sigma=sigma, mask=x.ixs
)
+ # check if the solution is within bounds
+ # if not, we set it to the unsatisfied bound
+ if not x.is_within_bounds(x_opt[x.inner_parameter_id]):
+ x_opt[x.inner_parameter_id] = x.get_bounds()[
+ x.get_unsatisfied_bound(x_opt[x.inner_parameter_id])
+ ]
+
# apply offsets
for x in problem.get_xs_for_type(InnerParameterType.OFFSET):
apply_offset(
offset_value=x_opt[x.inner_parameter_id], data=data, mask=x.ixs
)
- # compute optimal scalings
+ # compute non-coupled optimal scalings
for x in problem.get_xs_for_type(InnerParameterType.SCALING):
- x_opt[x.inner_parameter_id] = compute_optimal_scaling(
- data=data, sim=sim, sigma=sigma, mask=x.ixs
- )
+ if x.coupled is None:
+ x_opt[x.inner_parameter_id] = compute_optimal_scaling(
+ data=data, sim=sim, sigma=sigma, mask=x.ixs
+ )
+ # check if the solution is within bounds
+ # if not, we set it to the unsatisfied bound
+ if not x.is_within_bounds(x_opt[x.inner_parameter_id]):
+ x_opt[x.inner_parameter_id] = x.get_bounds()[
+ x.get_unsatisfied_bound(x_opt[x.inner_parameter_id])
+ ]
# apply scalings
for x in problem.get_xs_for_type(InnerParameterType.SCALING):
apply_scaling(
@@ -186,6 +235,8 @@ def __init__(
self.x_guesses = None
self.dummy_lb = -1e20
self.dummy_ub = +1e20
+ self.user_specified_lb = None
+ self.user_specified_ub = None
def initialize(self):
"""(Re-)initialize the solver."""
@@ -216,21 +267,19 @@ def solve(
Whether to scale the results to the parameter scale specified in
``problem``.
"""
- pars = problem.xs.values()
- # We currently cannot handle constraints on inner parameters correctly,
- # and would have to assume [-inf, inf]. However, this may not be
- # supported by all inner optimizers, so we go for some (arbitrary)
- # large value.
- lb = np.array(
- [
- 0
- if x.inner_parameter_type == InnerParameterType.SIGMA
- else self.dummy_lb
- for x in pars
+ pars = list(problem.xs.values())
+
+ # This has to be done only once
+ if self.user_specified_lb is None or self.user_specified_ub is None:
+ self.user_specified_lb = [
+ i for i in range(len(pars)) if pars[i].lb != -np.inf
+ ]
+ self.user_specified_ub = [
+ i for i in range(len(pars)) if pars[i].ub != np.inf
]
- )
- ub = np.full(shape=len(pars), fill_value=self.dummy_ub)
+ lb = [x.lb for x in pars]
+ ub = [x.ub for x in pars]
x_guesses = self.sample_startpoints(problem, pars)
@@ -265,20 +314,33 @@ def fun(x):
pypesto_problem = Problem(
objective, lb=lb, ub=ub, x_names=x_names, **self.problem_kwargs
)
-
pypesto_problem.set_x_guesses(
x_guesses[:, pypesto_problem.x_free_indices]
)
# perform the actual optimization
result = minimize(pypesto_problem, **self.minimize_kwargs)
-
best_par = result.optimize_result.list[0]['x']
- if (np.isclose(best_par, lb) | np.isclose(best_par, ub)).any():
+ # Check if the index of an optimized parameter on the dummy bound
+ # is not in the list of specified bounds. If so, raise an error.
+ if any(
+ (
+ i not in self.user_specified_lb
+ for i, x in enumerate(best_par)
+ if x == self.dummy_lb
+ )
+ ) or any(
+ (
+ i not in self.user_specified_ub
+ for i, x in enumerate(best_par)
+ if x == self.dummy_ub
+ )
+ ):
raise RuntimeError(
- "Active bounds in inner problem optimization. This can result "
- "in incorrect gradient computation for the outer parameters."
+ f"An optimal inner parameter is on the defualt dummy bound of numerical optimization. "
+ f"This means the optimal inner parameter is either extremely large (>={self.dummy_ub})"
+ f"or extremely small (<={self.dummy_lb}). Consider changing the inner parameter bounds."
)
x_opt = dict(zip(pypesto_problem.x_names, best_par))
diff --git a/pypesto/hierarchical/util.py b/pypesto/hierarchical/util.py
index ceb74f27f..55835b57d 100644
--- a/pypesto/hierarchical/util.py
+++ b/pypesto/hierarchical/util.py
@@ -1,9 +1,11 @@
+import copy
import warnings
from typing import List
import numpy as np
-from ..C import DUMMY_INNER_VALUE, InnerParameterType
+from ..C import DUMMY_INNER_VALUE, LOWER_BOUND, UPPER_BOUND, InnerParameterType
+from .parameter import InnerParameter
def get_finite_quotient(
@@ -42,6 +44,7 @@ def compute_optimal_scaling(
sim: List[np.ndarray],
sigma: List[np.ndarray],
mask: List[np.ndarray],
+ optimal_offset: float = None,
) -> float:
"""
Compute optimal scaling.
@@ -63,7 +66,11 @@ def compute_optimal_scaling(
for sim_i, data_i, sigma_i, mask_i in zip(sim, data, sigma, mask):
# extract relevant values
sim_x = sim_i[mask_i] # \tilde{h}_i
- data_x = data_i[mask_i] # \bar{y}_i
+ data_x = (
+ data_i[mask_i] - optimal_offset
+ if optimal_offset is not None
+ else data_i[mask_i]
+ ) # \bar{y}_i
sigma_x = sigma_i[mask_i] # \sigma_i
# update statistics
num += np.nansum(sim_x * data_x / sigma_x**2)
@@ -100,6 +107,7 @@ def compute_optimal_offset(
sim: List[np.ndarray],
sigma: List[np.ndarray],
mask: List[np.ndarray],
+ optimal_scaling: float = None,
) -> float:
"""Compute optimal offset.
@@ -117,13 +125,16 @@ def compute_optimal_offset(
# iterate over conditions
for sim_i, data_i, sigma_i, mask_i in zip(sim, data, sigma, mask):
# extract relevant values
- sim_x = sim_i[mask_i] # \tilde{h}_i
+ sim_x = (
+ optimal_scaling * sim_i[mask_i]
+ if optimal_scaling is not None
+ else sim_i[mask_i]
+ ) # \tilde{h}_i
data_x = data_i[mask_i] # \bar{y}_i
sigma_x = sigma_i[mask_i] # \sigma_i
# update statistics
num += np.nansum((data_x - sim_x) / sigma_x**2)
den += np.nansum(1 / sigma_x**2)
-
return get_finite_quotient(
numerator=num,
denominator=den,
@@ -271,6 +282,141 @@ def apply_sigma(
sigma[i][mask[i]] = sigma_value
+def compute_bounded_optimal_scaling_offset_coupled(
+ data: List[np.ndarray],
+ sim: List[np.ndarray],
+ sigma: List[np.ndarray],
+ s: InnerParameter,
+ b: InnerParameter,
+ s_opt_value: float,
+ b_opt_value: float,
+):
+ """Compute optimal scaling and offset of a constrained optimization problem.
+
+ Computes the optimal scaling and offset of a constrained optimization in
+ case the unconstrained optimization yields a value outside the bounds.
+ We know the optimal solution then lies on the boundary of the bounds.
+ In the 2D offset-scaling bounded (rectangular) space, after unconstrained
+ optimization, if only one parameter is outside the bounds, then there is
+ one active edge (constraint) of the rectangle. We perform optimization on
+ this edge that is unconstrained in the other parameter. If this new optimum
+ is outside the bounds of the other parameter, the nearest vertex is chosen
+ as the optimum. If both parameters are outside the bounds, then there are
+ two active edges, which are optimized independently as above, then compared.
+
+ Parameters
+ ----------
+ data:
+ The data.
+ sim:
+ The simulation.
+ sigma:
+ The noise parameters.
+ s:
+ The scaling parameter.
+ b:
+ The offset parameter.
+ s_opt_value:
+ The optimal scaling value of the unconstrained problem.
+ b_opt_value:
+ The optimal offset value of the unconstrained problem.
+
+ Returns
+ -------
+ The optimal scaling and offset of the constrained problem.
+ """
+ # Define relevant data and sim
+ # Make all non-masked data and sim nan's in the original one
+ relevant_data = copy.deepcopy(data)
+ relevant_sim = copy.deepcopy(sim)
+ for i in range(len(data)):
+ relevant_data[i][~s.ixs[i]] = np.nan
+ relevant_sim[i][~s.ixs[i]] = np.nan
+
+ # Get bounds
+ s_bounds = s.get_bounds()
+ b_bounds = b.get_bounds()
+
+ # Get unsatisfied bounds
+ s_unsatisfied = s.get_unsatisfied_bound(s_opt_value)
+ b_unsatisfied = b.get_unsatisfied_bound(b_opt_value)
+
+ # If both parameters are unsatisfied, we need to check 2
+ # unconstrained problems, clip the solutions to the bounds, and
+ # choose the one with the lowest objective value
+ if s_unsatisfied is not None and b_unsatisfied is not None:
+ # Solve the two unconstrained problems
+ candidate_points = [
+ (
+ s_bounds[s_unsatisfied],
+ np.clip(
+ compute_optimal_offset(
+ data, sim, sigma, s.ixs, s_bounds[s_unsatisfied]
+ ),
+ b_bounds[LOWER_BOUND],
+ b_bounds[UPPER_BOUND],
+ ),
+ ),
+ (
+ np.clip(
+ compute_optimal_scaling(
+ data, sim, sigma, s.ixs, b_bounds[b_unsatisfied]
+ ),
+ s_bounds[LOWER_BOUND],
+ s_bounds[UPPER_BOUND],
+ ),
+ b_bounds[b_unsatisfied],
+ ),
+ ]
+
+ # Evaluate the objective function at the candidate points
+ candidate_objective_values = [
+ compute_nllh(
+ data=relevant_data,
+ sim=[
+ sim_i * candidate_point[0] + candidate_point[1]
+ for sim_i in relevant_sim
+ ],
+ sigma=sigma,
+ )
+ for candidate_point in candidate_points
+ ]
+ # The constrained solution is the candidate point with the lowest
+ # objective value
+ constrained_solution = candidate_points[
+ np.argmin(candidate_objective_values)
+ ]
+
+ # If only one parameter is unsatisfied, we need to solve a
+ # unconstrained problem, clipped to its boundary
+ elif s_unsatisfied is not None:
+ # Solve the unconstrained problem
+ constrained_solution = (
+ s_bounds[s_unsatisfied],
+ np.clip(
+ compute_optimal_offset(
+ data, sim, sigma, s.ixs, s_bounds[s_unsatisfied]
+ ),
+ b_bounds[LOWER_BOUND],
+ b_bounds[UPPER_BOUND],
+ ),
+ )
+ elif b_unsatisfied is not None:
+ # Solve the unconstrained problem
+ constrained_solution = (
+ np.clip(
+ compute_optimal_scaling(
+ data, sim, sigma, s.ixs, b_bounds[b_unsatisfied]
+ ),
+ s_bounds[LOWER_BOUND],
+ s_bounds[UPPER_BOUND],
+ ),
+ b_bounds[b_unsatisfied],
+ )
+
+ return constrained_solution
+
+
def compute_nllh(
data: List[np.ndarray], sim: List[np.ndarray], sigma: List[np.ndarray]
) -> float:
diff --git a/pypesto/visualize/parameters.py b/pypesto/visualize/parameters.py
index eb69fff62..456d03091 100644
--- a/pypesto/visualize/parameters.py
+++ b/pypesto/visualize/parameters.py
@@ -10,7 +10,13 @@
from pypesto.util import delete_nan_inf
-from ..C import INNER_PARAMETERS, RGBA, WATERFALL_MAX_VALUE
+from ..C import (
+ INNER_PARAMETERS,
+ LOWER_BOUND,
+ RGBA,
+ UPPER_BOUND,
+ WATERFALL_MAX_VALUE,
+)
from ..result import Result
from .clust_color import assign_colors
from .misc import (
@@ -382,19 +388,37 @@ def handle_inputs(
]
if any(inner_xs):
inner_xs_names = next(
- list(inner_xs_idx.keys())
- for inner_xs_idx in inner_xs
- if inner_xs_idx is not None
+ list(inner_x.keys()) for inner_x in inner_xs if inner_x is not None
)
inner_xs = [
[np.nan for i in range(len(inner_xs_names))]
- if inner_xs_idx is None
- else list(inner_xs_idx.values())
- for inner_xs_idx in inner_xs
+ if inner_x is None
+ else list(inner_x.values())
+ for inner_x in inner_xs
]
# set bounds for inner parameters
- inner_lb = np.full(len(inner_xs_names), -np.inf)
- inner_ub = np.full(len(inner_xs_names), np.inf)
+ from ..hierarchical.calculator import HierarchicalAmiciCalculator
+
+ # Check if objective has a calculator attribute
+ if hasattr(result.problem.objective, 'calculator') and isinstance(
+ inner_calculator := result.problem.objective.calculator,
+ HierarchicalAmiciCalculator,
+ ):
+ all_inner_bounds = np.array(
+ [
+ inner_calculator.inner_problem.xs[inner_name].get_bounds()
+ for inner_name in inner_xs_names
+ ]
+ )
+ inner_lb = [
+ inner_bounds[LOWER_BOUND] for inner_bounds in all_inner_bounds
+ ]
+ inner_ub = [
+ inner_bounds[UPPER_BOUND] for inner_bounds in all_inner_bounds
+ ]
+ else:
+ inner_lb = np.full(len(inner_xs_names), -np.inf)
+ inner_ub = np.full(len(inner_xs_names), np.inf)
else:
inner_xs = None
# parse indices which should be plotted
diff --git a/test/hierarchical/test_hierarchical.py b/test/hierarchical/test_hierarchical.py
index 452d9eae3..e11cc33e2 100644
--- a/test/hierarchical/test_hierarchical.py
+++ b/test/hierarchical/test_hierarchical.py
@@ -1,4 +1,5 @@
"""Tests for hierarchical optimization."""
+import copy
import time
import amici
@@ -314,9 +315,9 @@ def test_analytical_computations():
assert np.isclose(sigma_value, expected_sigma_value, rtol=rtol)
-def inner_problem_exp():
+def inner_problem_exp(add_scaling: bool = True, add_offset: bool = True):
function = np.exp
- timepoints = np.linspace(0, 10, 101)
+ timepoints = np.linspace(0, 3, 101)
expected_values = {
'scaling_': 5,
@@ -326,9 +327,13 @@ def inner_problem_exp():
simulation = function(timepoints)
- data = (
- expected_values['scaling_'] * simulation + expected_values['offset_']
- )
+ data = copy.deepcopy(simulation)
+ if add_scaling:
+ data *= expected_values['scaling_']
+
+ if add_offset:
+ data += expected_values['offset_']
+
data[0::2] -= expected_values['sigma_']
data[1::2] += expected_values['sigma_']
@@ -344,14 +349,20 @@ def inner_problem_exp():
ixs=mask,
)
for inner_parameter_id, inner_parameter_type in [
- ('offset_', InnerParameterType.OFFSET),
- ('scaling_', InnerParameterType.SCALING),
+ ('offset_', InnerParameterType.OFFSET)
+ if add_offset
+ else (None, None),
+ ('scaling_', InnerParameterType.SCALING)
+ if add_scaling
+ else (None, None),
('sigma_', InnerParameterType.SIGMA),
]
+ if inner_parameter_id is not None
]
- inner_parameters[0].coupled = True
- inner_parameters[1].coupled = True
+ if add_scaling and add_offset:
+ inner_parameters[0].coupled = inner_parameters[1]
+ inner_parameters[1].coupled = inner_parameters[0]
inner_problem = InnerProblem(xs=inner_parameters, data=[data])
@@ -405,6 +416,181 @@ def test_numerical_inner_solver():
assert np.isclose(result['sigma_'], expected_values['sigma_'], rtol=rtol)
+def test_non_coupled_analytical_inner_solver():
+ """Test analytically-solved non-coupled hierarchical inner parameters."""
+ # Test for only offset
+ inner_problem, expected_values, simulation = inner_problem_exp(
+ add_scaling=False
+ )
+ dummy_sigma = np.ones(simulation.shape)
+
+ rtol = 1e-1
+
+ solver = AnalyticalInnerSolver()
+ result = solver.solve(
+ problem=inner_problem,
+ sim=[simulation],
+ sigma=[dummy_sigma],
+ scaled=False,
+ )
+ assert np.isclose(result['offset_'], expected_values['offset_'], rtol=rtol)
+ assert np.isclose(result['sigma_'], expected_values['sigma_'], rtol=rtol)
+
+ # Test for only scaling
+ inner_problem, expected_values, simulation = inner_problem_exp(
+ add_offset=False
+ )
+ dummy_sigma = np.ones(simulation.shape)
+
+ rtol = 1e-3
+
+ solver = AnalyticalInnerSolver()
+ result = solver.solve(
+ problem=inner_problem,
+ sim=[simulation],
+ sigma=[dummy_sigma],
+ scaled=False,
+ )
+
+ assert np.isclose(
+ result['scaling_'], expected_values['scaling_'], rtol=rtol
+ )
+ assert np.isclose(result['sigma_'], expected_values['sigma_'], rtol=rtol)
+
+
+def test_constrained_inner_solver():
+ """Test numerically- and analytically-solved box-constrained hierarchical inner parameters."""
+ inner_problem, expected_values, simulation = inner_problem_exp()
+
+ dummy_sigma = np.ones(simulation.shape)
+
+ all_lb = [(6, 3), (3, 0), (3, 1), (4, 3)]
+ all_ub = [(7, 4), (4, 1), (4, 3), (6, 4)]
+
+ all_expected_values = [
+ {'scaling_': 6, 'offset_': 3},
+ {'scaling_': 4, 'offset_': 1},
+ {
+ 'scaling_': 4, # all_lb[2][0],
+ 'offset_': np.clip(
+ compute_optimal_offset(
+ data=inner_problem.data,
+ sim=[simulation],
+ sigma=[dummy_sigma],
+ mask=[np.full(simulation.shape, True)],
+ optimal_scaling=4.0,
+ ),
+ 1, # all_lb[2][1],
+ 3, # all_ub[2][1],
+ ),
+ },
+ {
+ 'scaling_': np.clip(
+ compute_optimal_scaling(
+ data=inner_problem.data,
+ sim=[simulation],
+ sigma=[dummy_sigma],
+ mask=[np.full(simulation.shape, True)],
+ optimal_offset=3.0,
+ ),
+ 4, # all_lb[3][0],
+ 6, # all_ub[3][0],
+ ),
+ 'offset_': 3, # all_lb[3][1],
+ },
+ ]
+
+ for lb, ub, expected_values in zip(all_lb, all_ub, all_expected_values):
+ # Set seed for reproducibility
+ np.random.seed(1)
+ inner_problem.get_for_id('scaling_').lb = lb[0]
+ inner_problem.get_for_id('scaling_').ub = ub[0]
+ inner_problem.get_for_id('offset_').lb = lb[1]
+ inner_problem.get_for_id('offset_').ub = ub[1]
+
+ copied_sim = copy.deepcopy(simulation)
+ rtol = 1e-3
+
+ solver = AnalyticalInnerSolver()
+ ana_res = solver.solve(
+ problem=inner_problem,
+ sim=[copied_sim],
+ sigma=[dummy_sigma],
+ scaled=False,
+ )
+
+ copied_sim = copy.deepcopy(simulation)
+ solver = NumericalInnerSolver(minimize_kwargs={'n_starts': 10})
+ num_res = solver.solve(
+ problem=inner_problem,
+ sim=[copied_sim],
+ sigma=[dummy_sigma],
+ scaled=False,
+ )
+
+ assert np.isclose(ana_res['offset_'], num_res['offset_'], rtol=rtol)
+ assert np.isclose(ana_res['scaling_'], num_res['scaling_'], rtol=rtol)
+
+ assert np.isclose(
+ ana_res['offset_'], expected_values['offset_'], rtol=rtol
+ )
+ assert np.isclose(
+ ana_res['scaling_'], expected_values['scaling_'], rtol=rtol
+ )
+
+
+def test_non_coupled_constrained_inner_solver():
+ """Test non-coupled box-constrained hierarchical inner parameters."""
+ for current_par, add_scaling, add_offset, lb, ub in zip(
+ ['scaling_', 'scaling_', 'offset_', 'offset_'],
+ [True, True, False, False],
+ [False, False, True, True],
+ [6, None, 3, None],
+ [None, 4, None, 1],
+ ):
+ # Set seed for reproducibility
+ np.random.seed(4)
+ inner_problem, expected_values, simulation = inner_problem_exp(
+ add_scaling=add_scaling,
+ add_offset=add_offset,
+ )
+ if lb is not None:
+ inner_problem.get_for_id(current_par).lb = lb
+ expected_values = {current_par: lb}
+ if ub is not None:
+ inner_problem.get_for_id(current_par).ub = ub
+ expected_values = {current_par: ub}
+
+ dummy_sigma = np.ones(simulation.shape)
+ copied_sim = copy.deepcopy(simulation)
+ rtol = 1e-3
+
+ solver = AnalyticalInnerSolver()
+ ana_res = solver.solve(
+ problem=inner_problem,
+ sim=[copied_sim],
+ sigma=[dummy_sigma],
+ scaled=False,
+ )
+
+ copied_sim = copy.deepcopy(simulation)
+ solver = NumericalInnerSolver(minimize_kwargs={'n_starts': 10})
+ num_res = solver.solve(
+ problem=inner_problem,
+ sim=[copied_sim],
+ sigma=[dummy_sigma],
+ scaled=False,
+ )
+
+ assert np.isclose(
+ ana_res[current_par], num_res[current_par], rtol=rtol
+ )
+
+ assert np.isclose(
+ ana_res[current_par], expected_values[current_par], rtol=rtol
+ )
+
+
def at_least_as_good_as(v, v0) -> bool:
"""Check that the first vector of fvals is at least as good the second.