-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathgen_plot.py
executable file
·126 lines (120 loc) · 4.28 KB
/
gen_plot.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
#!/usr/bin/env python3
import argparse
import csv
import numpy as np
import matplotlib as mpl
import matplotlib.pyplot as plt
from matplotlib.colors import ListedColormap
# mpl.rcParams['mathtext.fontset'] = 'custom'
# mpl.rcParams['mathtext.rm'] = 'Bitstream Vera Sans'
# mpl.rcParams['mathtext.it'] = 'Bitstream Vera Sans:italic'
# mpl.rcParams['mathtext.bf'] = 'Bitstream Vera Sans:bold'
mpl.rcParams['mathtext.fontset'] = 'stix'
mpl.rcParams['axes.axisbelow'] = True
mpl.rcParams['axes.axisbelow'] = True
mpl.rcParams['axes.spines.right'] = False
mpl.rcParams['axes.spines.top'] = False
mpl.rcParams['font.family'] = 'STIXGeneral'
mpl.rcParams['font.size'] = 27
colors = [[min(1, 0.2+(i/256)*0.9), max(0.9-(i/256), 0), 0] for i in range(256)]
colourmap = ListedColormap(colors)
parser = argparse.ArgumentParser(
prog="gen_plot.py",
description="Generates a nice one-day plot from a csv")
parser.add_argument(
"csv_file",
help="filename of the csv")
parser.add_argument(
"--dotted",
"-d",
default="",
type=str,
help="second csv file for dotted lines")
parser.add_argument(
"--outfile",
"-o",
default="",
type=str,
help="filename of output")
args = parser.parse_args()
dotted_data = []
with open(args.csv_file, "r") as f:
reader = csv.reader(f, delimiter=';')
data = [[float(d[0]), float(d[1])] for d in list(reader)[1:]]
# print(data)
if args.dotted != "":
# print("with dotted")
with open(args.dotted, "r") as f:
reader = csv.reader(f, delimiter=';')
dotted_data = [[float(d[0]), float(d[1])] for d in list(reader)[1:]]
# print(dotted_data)
if args.outfile != "" and args.outfile[-4:] != ".png":
print("[!] shoulde be png")
exit(-1)
normalize = mpl.colors.Normalize(vmin=0, vmax=26)
fine_data = []
FINE = 20
for i in range(len(data)):
d = data[i]
fine_data.extend([d[1]]*FINE)
def running_mean(dataset, window_size, times):
window_size *= times
if times == 2:
dataset = dataset + [dataset[-1]]*int(window_size*1/2)
elif times == 4:
dataset = [dataset[0]]*int(window_size*1/4) + dataset + [dataset[-1]]*int(window_size*1/2)
elif times == 8:
dataset = [dataset[0]]*int(window_size*3/8) + dataset + [dataset[-1]]*int(window_size*1/2)
elif times == 16:
dataset = [dataset[0]]*int(window_size*7/16) + dataset + [dataset[-1]]*int(window_size*1/2)
elif times == 32:
dataset = [dataset[0]]*int(window_size*15/32) + dataset + [dataset[-1]]*int(window_size*1/2)
elif times == 64:
dataset = [dataset[0]]*int(window_size*31/64) + dataset + [dataset[-1]]*int(window_size*1/2)
result = []
for i in range(len(dataset) - window_size + 1):
window = dataset[i : i + window_size]
window_average = sum(window) / window_size
result.append(window_average)
return result
if len(data) < 10:
times = 2
elif len(data) < 20:
times = 4
elif len(data) < 40:
times = 8
elif len(data) < 80:
times = 16
elif len(data) < 160:
times = 32
else:
times = 64
fine_data = running_mean(fine_data, FINE, times)
x = np.linspace(0, len(data)-1, len(fine_data))
# print(len(data))
# print(len(x))
# plt.plot(x, fine_data)
plt.figure(figsize=(8,5))
plt.xlabel("#images")
plt.ylabel("#one-day exploitation flows")
plt.yticks([0,5,10,15,20,25], fontsize=20)
plt.xticks(fontsize=20)
plt.ylim(0, 27)
length = len(data)-1
plt.xlim(-length*0.05, length*1.05)
plt.grid(axis = 'y', linestyle = '--', linewidth = 0.4)
plt.step([d[0] for d in data],[d[1] for d in data], color="black", linewidth=1)
if dotted_data != []:
plt.step([d[0] for d in dotted_data],[d[1] for d in dotted_data], color="black", linewidth=1.5, linestyle=(0, (5,3)))
for i in range(len(fine_data)-1):
plt.fill_between([x[i], x[i+1]],
[data[1+int(i/FINE)][1], data[1+int(i/FINE)][1]],
color=colourmap(normalize(fine_data[i+1])),
alpha=0.8,
linewidth=0.0)
average = sum([d[1] for d in data])/len(data)
plt.annotate("{:.1f}".format(average), xy=(length*0.95,average+0.5), xytext=(length*0.95,average+0.5), fontsize=26)
plt.axhline(y=average, color='black', linestyle=(0, (7, 7, 1, 7)), linewidth=1.5)
plt.subplots_adjust(bottom=0.15, left=0.098, right=0.995, top=0.993)
plt.show()
# plt.savefig(name, dpi=100)