-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
588 lines (448 loc) · 21.3 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
import argparse
import time
import os
import torch
import torch.nn
import torch.nn.functional as F
import torch.nn as nn
import numpy as np
import pandas as pd
import json
import datetime as dt
from torch.optim.lr_scheduler import StepLR, MultiStepLR
#Progress bar to visualize training progress
import progressbar
#Plotting
from tools.viz import learning_curve_slr
#Visualize GPU resources
import GPUtil
from transformer import make_model as TRANSFORMER
from dataloader import loader
from tools.utils import Batch, NoamOpt
##############
# Arg parsing
##############
parser = argparse.ArgumentParser(description='Training the transformer-like network')
parser.add_argument('--data', help='location of the dataset')
parser.add_argument('--fixed_padding', type=int, default=None, help='None/64')
parser.add_argument('--num_classes', type=int, help='Number of classes')
parser.add_argument('--classifier_hidden_size', type=int, default=512)
parser.add_argument('--recognition', type=str, default='sentiment')
parser.add_argument('--lookup_table', type=str, default=os.path.join('data','slr_lookup.txt'),
help='location of the words lookup table')
parser.add_argument('--rescale', type=int, default=224, help='rescale data images.')
parser.add_argument('--random_drop_probability', type=float, default=False, help='probability of frame random drop/0-1 or None')
parser.add_argument('--uniform_drop_probability', type=float, default=True,
help='probability of frame random drop/0-1 or None')
#Put to 0 to avoid memory segementation fault
parser.add_argument('--num_workers', type=int, default=10,
help='NOTE: put num of workers to 0 to avoid memory saturation.')
parser.add_argument('--show_sample', action='store_true',
help='Show a sample a preprocessed data (sequence of image of sign + translation).')
parser.add_argument('--optimizer', type=str, default='ADAM',
help='optimization algo to use; SGD, SGD_LR_SCHEDULE, ADAM / NOAM')
parser.add_argument('--scheduler', type=str, default='multi-step',
help='Type of scheduler, multi-step or stepLR')
parser.add_argument('--milestones', default="10,25", type=str,
help="milestones for MultiStepLR or stepLR")
parser.add_argument('--weight_decay', type= float , default = 5e-5)
parser.add_argument('--batch_size', type=int, default=16,
help='size of one minibatch')
parser.add_argument('--initial_lr', type=float, default=0.0001,
help='initial learning rate')
parser.add_argument('--hidden_size', type=int, default=1280,
help='size of hidden layers. NOTE: This must be a multiple of n_heads.')
parser.add_argument('--num_layers', type=int, default=2,
help='number of transformer blocks')
parser.add_argument('--n_heads', type=int, default=8,
help='number of self attention heads')
parser.add_argument('--window_size', type=int, default=10,
help='number of self attention heads')
#Pretrained weights
parser.add_argument('--pretrained', type=bool, default=True,
help='embedding layers are pretrained using imagenet')
parser.add_argument('--full_pretrained', type=str, default=False,
help='Full frame CNN pretrained')
parser.add_argument('--hand_pretrained', type=str, default=None,
help='Hand regions CNN pretrained')
parser.add_argument('--hand_query', action='store_true',
help='Set hand as a query for transformer network.')
parser.add_argument('--emb_type', type=str, default='2d',
help='Type of image embeddings 2d or 3d.')
parser.add_argument('--emb_network', type=str, default='mb2',
help='Image embeddings network: mb2/i3d/m3d')
parser.add_argument('--image_type', type=str, default='rgb',
help='Train on rgb/grayscale images')
parser.add_argument('--num_epochs', type=int, default=30,
help='number of epochs to stop after')
parser.add_argument('--dp_keep_prob', type=float, default=0.8,
help='dropout *keep* probability. drop_prob = 1-dp_keep_prob \
(dp_keep_prob=1 means no dropout)')
parser.add_argument('--valid_steps', type=int, default=2, help='Do validation each valid_step')
parser.add_argument('--save_steps', type=int, default=10, help='Save model after each N epoch')
parser.add_argument('--debug', action='store_true')
parser.add_argument('--save_dir', type=str, default='EXPERIMENTATIONS',
help='path to save the experimental config, logs, model')
parser.add_argument('--evaluate', action='store_true',
help="Evaluate dev set using bleu metric each epoch.")
parser.add_argument('--d_ff', type=int,default=2048)
parser.add_argument('--resume', default=False,
help="Resume training from a checkpoint.")
parser.add_argument('--checkpoint',type=str, default=None,
help="resume training from a previous checkpoint.")
parser.add_argument('--rel_window', type=int, default=None,
help="Use local masking window.")
#Training settings
parser.add_argument('--parallel', action='store_true',
help='Training on multiple GPUs if available by splitting batches!')
parser.add_argument('--distributed', action='store_true',
help='Training on multiple GPUs if available by splitting submodules!')
parser.add_argument('--freeze_cnn', default= False,
help='freeze the feature extractor (CNN)!')
parser.add_argument('--data_stats', type=str, default=None,
help="Normalize images using the dataset stats (mean/std).")
parser.add_argument('--hand_stats', type=str, default=None,
help="Normalize images using the dataset stats (mean/std).")
#----------------------------------------------------------------------------------------
## SET EXPERIMENTATION AND SAVE CONFIGURATION
#Same seed for reproducibility)
parser.add_argument('--seed', type=int, default=1111, help='random seed')
#Save folder with the date
start_date = dt.datetime.now().strftime("%Y-%m-%d-%H.%M")
print ("Start Time: "+start_date)
args = parser.parse_args()
#Set the random seed manually for reproducibility.
torch.manual_seed(args.seed)
experiment_path = os.path.join(args.save_dir,start_date)
# Creates an experimental directory and dumps all the args to a text file
if(os.path.exists(experiment_path)):
print('Experiment already exists..')
quit(0)
else:
os.makedirs(experiment_path)
print ("\nPutting log in EXPERIMENTATIONS/%s"%start_date)
args.save_dir = os.path.join(args.save_dir, start_date)
#Dump all configurations/hyperparameters in txt
with open (os.path.join(experiment_path,'exp_config.txt'), 'w') as f:
f.write('Experimentation done at: '+ str(start_date)+' with current configurations:\n')
for arg in vars(args):
f.write(arg+' : '+str(getattr(args, arg))+'\n')
#-------------------------------------------------------------------------------
#Run on GPU
if torch.cuda.is_available():
print('Nmber of GPUs={}',torch.cuda.device_count())
print('Device name:{}',torch.cuda.get_device_name(0))
device = torch.device("cuda:0")
else:
#Run on CPU
print("WARNING: Training on CPU, this will likely run out of memory, Go buy yourself a GPU!")
device = torch.device("cpu")
#--------------------------------------------------------------------------------
#Computation for one epoch
def run_epoch(model, data, is_train=False, device='cuda:0', n_devices=1):
if is_train:
model.train() # Set model to training mode
print ("Training..")
phase='train'
else:
model.eval() # Set model to evaluate mode
print ("Evaluating..")
phase='valid'
start_time = time.time()
loss = 0.0
total_loss = 0.0
total_accuracy = 0.0
count = 0
#For progress bar
bar = progressbar.ProgressBar(maxval=dataset_sizes[phase], widgets=[progressbar.Bar('=', '[', ']'), ' ', progressbar.Percentage()])
bar.start()
j = 0
#Loop over minibatches
for step, (x, x_lengths, y, hand_regions, hand_lengths) in enumerate(data):
#Update progress bar with every iter
j += len(x)
bar.update(j)
y = y.to(device)
x = x.to(device)
#NOTE: clone y to avoid overridding it
batch = Batch(x_lengths, hand_lengths, trg=None, emb_type=args.emb_type, DEVICE=device, fixed_padding=args.fixed_padding, rel_window=args.rel_window)
if(args.distributed):
#Zeroing gradients
feature_extractor.zero_grad()
encoder.zero_grad()
position.zero_grad()
output_layer.zero_grad()
src_emb, _, _ = feature_extractor(x)
src_emb = position(src_emb)
src_emb = encoder(src_emb, None, batch.src_mask)
output_context = output_layer(src_emb)
if(args.hand_query):
hand_extractor.zero_grad()
hand_emb = hand_extractor(hand_regions)
hand_emb = position(hand_emb)
hand_emb = encoder(hand_emb, None, batch.src_mask)
output_hand = output_layer(hand_emb)
comb_emb = encoder(src_emb, hand_emb, batch.rel_mask)
output = output_layer(comb_emb)
else:
output = None
output_hand = None
else:
#Zeroing gradients
optimizer.zero_grad()
#Shape(batch_size, tgt_seq_length, tgt_vocab_size)
#NOTE: no need for trg if we dont have a decoder
comb_out, class_logits, output_hand = model.forward(x, batch.src_mask, batch.rel_mask, hand_regions)
# Calculate loss (cross-entropy loss for classification)
#loss_fn = nn.CrossEntropyLoss()
if args.recognition == 'emotion':
class_weights = torch.tensor([1.1321, 2.4096, 2.4236, 0.72026, 0.4634, 1.2771, 1.0418], dtype=torch.float32)
elif args.recognition == 'sentiment':
class_weights = torch.tensor([0.7822,1.08133,1.2551], dtype=torch.float32)
class_weights = class_weights.to(device)
loss_fn = nn.CrossEntropyLoss(weight=class_weights)
y = y.squeeze(1)
loss = loss_fn(class_logits, y)
if is_train:
# Backward pass and optimization step
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), 1) # Optional: clip gradients
optimizer.step()
optimizer.zero_grad()
# Calculate accuracy
_, preds = torch.max(class_logits, 1)
accuracy = torch.sum(preds == y.data).item() / len(y)
total_loss += loss.item()
total_accuracy += accuracy
count += 1
# Calculate average loss and accuracy for the epoch
avg_loss = total_loss / count
avg_accuracy = total_accuracy / count
if is_train:
print(f"Average Training Loss: {avg_loss:.4f}, Average Training Accuracy: {avg_accuracy:.4f}")
else:
print(f"Average Validation Loss: {avg_loss:.4f}, Average Validation Accuracy: {avg_accuracy:.4f}")
return avg_loss, avg_accuracy
#-------------------------------------------------------------------------------------------------------
### LOAD DATALOADERS
# In debug mode, try batch size of 1
if args.debug:
batch_size = 1
else:
batch_size = args.batch_size
#Train on rgb/grayscale images
if(args.image_type == 'rgb'):
channels = 3
#Not supported yet
elif(args.image_type == 'grayscale'):
channels = 1
else:
print('Image type is ot supported!')
quit(0)
loss_fn = nn.CrossEntropyLoss()
#train_path, valid_path, test_path = path_data(data_path=args.data)
train_csv = pd.read_csv(os.path.join('./tools/data','train.csv'))
test_csv = pd.read_csv(os.path.join('./tools/data','test.csv'))
val_csv = pd.read_csv(os.path.join('./tools/data','dev.csv'))
with open(args.lookup_table, 'r') as file:
lookup_table = json.load(file)
#Load stats
if(args.data_stats):
args.data_stats = torch.load(args.data_stats, map_location=torch.device('cpu'))
if(args.hand_stats):
args.hand_stats = torch.load(args.hand_stats, map_location=torch.device('cpu'))
#Pass the annotation + image sequences locations
train_dataloader, train_size = loader(csv_file=train_csv,
root_dir=args.data,
lookup_table=lookup_table,
recognition=args.recognition,
rescale = args.rescale,
batch_size = batch_size,
num_workers = args.num_workers,
random_drop= args.random_drop_probability,
uniform_drop= args.uniform_drop_probability,
show_sample = args.show_sample,
istrain=True,
fixed_padding=args.fixed_padding,
hand_dir=None,
data_stats=args.data_stats,
hand_stats=args.hand_stats,
channels=channels
)
#No data augmentation for valid data
valid_dataloader, valid_size = loader(csv_file=val_csv,
root_dir=args.data,
lookup_table=lookup_table,
recognition=args.recognition,
rescale = args.rescale,
batch_size = batch_size,
num_workers = args.num_workers,
random_drop= args.random_drop_probability,
uniform_drop= args.uniform_drop_probability,
show_sample = args.show_sample,
istrain=False,
fixed_padding=args.fixed_padding,
hand_dir=None,
data_stats=args.data_stats,
hand_stats=args.hand_stats,
channels=channels
)
print('Dataset sizes:')
dataset_sizes = {}
dataset_sizes.update({'train':train_size})
dataset_sizes.update({'valid':valid_size})
print(dataset_sizes)
#-----------------------------------------------------------------------------------------------------------------
#Load the whole model
model = TRANSFORMER(num_classes=args.num_classes, n_stacks=args.num_layers, n_units=args.hidden_size, n_heads=args.n_heads , window_size = args.window_size,d_ff=args.d_ff, dropout=1.-args.dp_keep_prob, image_size=args.rescale, pretrained=args.pretrained,
classifier_hidden_dim= args.classifier_hidden_size,emb_type=args.emb_type, emb_network=args.emb_network, full_pretrained=args.full_pretrained, hand_pretrained=args.hand_pretrained, freeze_cnn=args.freeze_cnn, channels=channels)
trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad)
print('model parameters:',trainable_params)
if torch.cuda.device_count() > 1 and args.parallel:
#How many GPUs you are using
n_devices = torch.cuda.device_count()
if(args.distributed):
#Split GPUs for both feature extraction and sequence learning (Transformer)
n_devices_split = int(n_devices/2)
print("Using ", n_devices_split, "GPUs for feature extraction and ", n_devices-n_devices_split, "GPUs for sequence learning.")
devices = list(range(0, n_devices_split))
feature_extractor = nn.DataParallel(model.src_emb, device_ids=devices).to(device)
if(args.hand_query):
hand_extractor = nn.DataParallel(model.hand_emb, device_ids=devices).to(device)
devices = list(range(n_devices_split, n_devices))
encoder = nn.DataParallel(model.encoder, device_ids=devices).to(n_devices_split)
position = nn.DataParallel(model.position, device_ids=devices).to(n_devices_split)
output_layer = nn.DataParallel(model.output_layer, device_ids=devices).to(n_devices_split)
else:
print("Using ", n_devices, "GPUs!, Let's GO!")
model = nn.DataParallel(model).to(device)
else:
print("Training using 1 device (GPU/CPU), use very small batch_size!")
#Load model into device (GPU OR CPU)
n_devices = 1
model = model.to(device)
if(args.distributed):
print("Can't use distributed training since you have a single GPU!")
quit(0)
train_ppls = []
train_losses = []
train_accuracies = []
val_ppls = []
val_losses = []
val_accuracies = []
times = []
if args.optimizer == 'ADAM':
optimizer = torch.optim.Adam(model.parameters(), lr=args.initial_lr , weight_decay = args.weight_decay)
elif args.optimizer == 'noam':
optimizer = NoamOpt(args.hidden_size, 1, 400, torch.optim.Adam(model.parameters(), lr=0, betas=(0.9, 0.98), eps=1e-9))
# In debug mode, only run one epoch
if args.debug:
num_epochs = 1
else:
num_epochs = args.num_epochs
#Load weights from previous training session
#Resume training or start from start w/ pretrained weights
if(args.checkpoint):
checkpoint = torch.load(args.checkpoint)
model.load_state_dict(checkpoint['model_state_dict'])
if(args.resume):
optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
start_epoch = checkpoint['epoch'] + 1
loss_fn = checkpoint['loss']
best_accuracy = checkpoint['best_accuracy']
#scheduler = checkpoint['scheduler']
milestones = [int(v.strip()) for v in args.milestones.split(",")]
scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
if(args.checkpoint == None or args.resume == False):
start_epoch = 0
if args.scheduler == 'multi-step':
milestones = [int(v.strip()) for v in args.milestones.split(",")]
scheduler = MultiStepLR(optimizer, milestones=milestones, gamma=0.1)
elif args.scheduler == 'stepLR':
scheduler = StepLR(optimizer, step_size=args.milestones, gamma=0.1)
else:
print('No scheduler!')
###
#Main Training loop
best_accuracy_so_far = 0
for epoch in range(start_epoch, num_epochs):
start = time.time()
print('\nEPOCH '+str(epoch)+' ------------------')
print(optimizer.param_groups[0]['lr'])
# RUN MODEL ON TRAINING DATA
train_loss, train_accuracy = run_epoch(model, train_dataloader, True, device=device)
print("After train epoch..")
print(GPUtil.showUtilization())
#Save perplexity
train_ppl = np.exp(train_loss)
if(args.scheduler):
scheduler.step()
if(epoch % args.valid_steps == 0):
#RUN MODEL ON VALIDATION DATA
#NOTE: Helps with avoiding memory saturation
with torch.no_grad():
val_loss, val_accuracy = run_epoch(model, valid_dataloader)
if val_accuracy > best_accuracy_so_far:
best_accuracy_so_far = val_accuracy
#if args.save_best:
print("Saving entire model with best params")
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': val_loss,
'best_accuracy': best_accuracy_so_far
},
os.path.join(args.save_dir, 'BEST.pt'))
print("Saving full-frame (CNN) with best params")
torch.save(model.src_emb.state_dict(), os.path.join(args.save_dir, 'full_cnn_best_params.pt'))
if(args.hand_query):
print("Saving hand regions (CNN) with best params")
torch.save(model.hand_emb.state_dict(), os.path.join(args.save_dir, 'hand_cnn_best_params.pt'))
val_ppl = np.exp(val_loss)
# SAVE RESULTS
train_ppls.append(train_ppl)
val_ppls.append(val_ppl)
train_losses.append(train_loss)
val_losses.append(val_loss)
train_accuracies.append(train_accuracy)
val_accuracies.append(val_accuracy)
times.append(time.time() - start)
log_str = 'epoch: ' + str(epoch) + '\t' \
+ 'train ppl: ' + str(train_ppl) + '\t' \
+ 'val ppl: ' + str(val_ppl) + '\t' \
+ 'train loss: ' + str(train_loss) + '\t' \
+ 'val loss: ' + str(val_loss) + '\t' \
+ 'accuracy: ' + str(val_accuracy) + '\t' \
+ 'BEST accuracy: ' + str(best_accuracy_so_far) + '\t' \
+ 'time (s) spent in epoch: ' + str(times[-1])
print(log_str)
with open (os.path.join(args.save_dir, 'log.txt'), 'a') as f_:
f_.write(log_str+ '\n')
#SAVE LEARNING CURVES
lc_path = os.path.join(args.save_dir, 'learning_curves.npy')
print('\nDONE\n\nSaving learning curves to '+lc_path)
np.save(lc_path, {'train_ppls':train_ppls,
'val_ppls':val_ppls,
'train_losses':train_losses,
'val_losses':val_losses,
'accuracy':val_accuracies,
})
print("Saving plots")
learning_curve_slr(args.save_dir)
#Save every model every 10 epoch
if(epoch % args.save_steps == 0):
#Save after each epoch and save optimizer state
print("Saving model parameters for epoch: "+str(epoch))
torch.save({
'epoch': epoch,
'model_state_dict': model.state_dict(),
'optimizer_state_dict': optimizer.state_dict(),
'loss': loss_fn,
'best_accuracy': best_accuracy_so_far
},
os.path.join(args.save_dir, 'epoch_'+str(epoch)+'_accuracy_'+str(val_accuracy)+'.pt'))
#We reached convergence
if(train_ppl <= 1):
print("Hello World ;)")
break