-
Notifications
You must be signed in to change notification settings - Fork 111
/
Copy pathtrain.py
executable file
·104 lines (78 loc) · 3.48 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
import torch.multiprocessing as multiprocessing
multiprocessing.set_start_method('spawn', force=True)
import sys
from collections import OrderedDict
from options.train_options import TrainOptions
import data
from trainers import create_trainer
from util.iter_counter import IterationCounter
from util.visualizer import Visualizer
from torch.multiprocessing import Process, Queue, Pool
from data.data_utils import init_parallel_jobs
from models.networks.render import Render
if __name__ == '__main__':
# parse options
opt = TrainOptions().parse()
# print options to help debugging
print(' '.join(sys.argv))
# load the dataset
dataloader = data.create_dataloader_test(opt)
# create tool for counting iterations
if type(dataloader) == list:
data_loader_size = len(dataloader[0]) * opt.render_thread
else:
data_loader_size = len(dataloader)
iter_counter = IterationCounter(opt, data_loader_size)
ngpus = opt.device_count
training_queue = Queue(10)
# render layers
render_gpu_ids = list(range(ngpus - opt.render_thread, ngpus))
render_layer_list = []
for gpu in render_gpu_ids:
opt.gpu_ids = gpu
render_layer = Render(opt)
render_layer_list.append(render_layer)
training_tasks = init_parallel_jobs(training_queue, dataloader, iter_counter, opt, render_layer_list)
opt.gpu_ids = list(range(0, ngpus - opt.render_thread))
print('Training gpu ', opt.gpu_ids)
# create trainer for our model
trainer = create_trainer(opt)
# create tool for visualization
visualizer = Visualizer(opt)
for epoch in iter_counter.training_epochs():
iter_counter.record_epoch_start(epoch)
for i, data_i in enumerate(range(data_loader_size), start=iter_counter.epoch_iter):
iter_counter.record_one_iteration()
# data = trainer.get_input(data_i)
data = training_queue.get(block=True)
# Training
# train generator
if i % opt.D_steps_per_G == 0:
trainer.run_generator_one_step(data)
# train discriminator
trainer.run_discriminator_one_step(data)
# Visualizations
if iter_counter.needs_printing():
losses = trainer.get_latest_losses()
visualizer.print_current_errors(epoch, iter_counter.epoch_iter,
losses, iter_counter.time_per_iter)
visualizer.plot_current_errors(losses, iter_counter.total_steps_so_far)
if iter_counter.needs_displaying():
visuals = trainer.get_current_visuals(data)
visualizer.display_current_results(visuals, epoch, iter_counter.total_steps_so_far)
if iter_counter.needs_saving():
print('saving the latest model (epoch %d, total_steps %d)' %
(epoch, iter_counter.total_steps_so_far))
trainer.save('latest')
iter_counter.record_current_iter()
trainer.update_learning_rate(epoch)
iter_counter.record_epoch_end()
if epoch % opt.save_epoch_freq == 0 or \
epoch == iter_counter.total_epochs:
print('saving the model at the end of epoch %d, iters %d' %
(epoch, iter_counter.total_steps_so_far))
trainer.save('latest')
trainer.save(epoch)
for training_task in training_tasks:
training_task.terminate()
print('Training was successfully finished.')