-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
183 lines (145 loc) · 6.22 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
import os
import argparse
import torch
import torch.nn as nn
import torch.nn.functional as F
from torchtext import data
parser = argparse.ArgumentParser()
parser.add_argument('--lr', type=float, default=0.0001, help='learning rate')
parser.add_argument('--epochs', type=int, default=10, help='training epochs')
parser.add_argument('--batch_size', type=int, default=32, help='batch size')
parser.add_argument('--emb_size', type=int, default=64, help='embedding size')
parser.add_argument('--class_num', type=int, default=10, help='class num')
parser.add_argument('--kernel_num', type=int, default=5, help='conv kernel num')
parser.add_argument('--kernel_sizes', type=list, default=[3,5,7], help='kernel size')
parser.add_argument('--log_interval', type=int, default=50, help='print steps')
parser.add_argument('--eval_interval', type=int, default=300, help='eval steps')
parser.add_argument('--save_interval', type=int, default=500, help='save steps')
parser.add_argument('--save_dir', default='model/', help='save dir')
parser.add_argument('--save_best', type=bool, default=True, help='save with best acc')
args = parser.parse_args()
# print(type(args.kernel_sizes))
label2id = {'体育': '0', '娱乐': '1', '家居': '2', '房产': '3', '教育': '4',
'时尚': '5', '时政': '6', '游戏': '7', '科技': '8', '财经': '9'}
# 定义字段处理方式
tokenize = lambda x: x.split()
print('building stop words...')
stop_words = []
with open('data/stopwords.txt') as f:
for l in f:
stop_words.append(l.strip())
TEXT = data.Field(sequential=True, tokenize=tokenize, lower=True, stop_words=stop_words, batch_first=True)
LABEL = data.Field(sequential=False, use_vocab=False, preprocessing=lambda x: int(x))
print('building dataset...')
# 生成数据集
trn, vld = data.TabularDataset.splits(
path='data',
train='train.tsv', validation='valid.tsv',
format='tsv',
skip_header=True,
fields=[('label', LABEL), ('text', TEXT)])
# exm = trn[0]
# print(exm.text)
# print(exm.label)
# print(type(exm.label))
# 建立词汇表
print('building vocab...')
TEXT.build_vocab(vld)
# print(len(TEXT.vocab))
# print(TEXT.vocab.freqs.most_common(5))
# 生成迭代器
trn_iter, vld_iter = data.BucketIterator.splits(
(trn, vld),
batch_sizes=(args.batch_size, args.batch_size),
device=torch.device('cpu'),
sort_key=lambda x: len(x.text),
sort_within_batch=False,
repeat=False
)
# batch = next(iter(trn_iter))
# print(batch.label)
# print(batch.text.shape)
# print(batch.__dict__.keys())
class TextCNN(nn.Module):
def __init__(self, vocab_size, args):
super().__init__()
self.vocab_size = vocab_size
self.emb_size = args.emb_size
self.class_num = args.class_num
self.kernel_num = args.kernel_num
self.kernel_sizes = args.kernel_sizes
self.embed = nn.Embedding(self.vocab_size, self.emb_size)
self.convs = nn.ModuleList([nn.Conv2d(1, self.kernel_num, (ksize, self.emb_size)) for ksize in self.kernel_sizes])
self.drop = nn.Dropout(0.2)
self.fc = nn.Linear(len(self.kernel_sizes)*self.kernel_num, self.class_num)
def forward(self, x):
x = self.embed(x) # batch_size seq_len emb_size
x = x.unsqueeze(1) # batch_size 1 seq_len emb_size
x = [F.relu(conv(x)).squeeze(3) for conv in self.convs]
# batch_size, kernel_num, seq_len-kernel_size+1, (1)
x = [F.max_pool1d(line, line.shape[2]).squeeze(2) for line in x]
# batch_size, kernel_num, (1)
x = torch.cat(x, 1) # batch_size, kernel_num*len(kernel_sizes)
x = self.drop(x)
logit = self.fc(x) # batch_size, class_num
return logit
def train(optimizer, loss_func, train_iter, valid_iter, model, args):
# model = TextCNN()
# optimizer = torch.optim.Adam(model.parameters(), args.lr)
# loss_func = nn.CrossEntropyLoss()
steps = 0
best_acc = 0
last_step = 0
model.train()
print('training...')
for epoch in range(1, args.epochs+1):
for batch in train_iter:
feature, target = batch.text, batch.label
logit = model(feature)
loss = loss_func(logit, target)
loss.backward()
optimizer.step()
steps += 1
if steps % args.log_interval == 0:
result = torch.max(logit, 1)[1].view(target.size())
corrects = (result.data == target.data).sum()
accuracy = corrects*100.0/batch.batch_size
print(f"Epoch[{epoch}] - Batch[{steps}] - loss: {loss.item():.3f} - acc: {accuracy: .0f}%")
if steps % args.eval_interval == 0:
eval_acc = eval(loss_func, valid_iter, model)
if eval_acc > best_acc:
best_acc = eval_acc
last_step = steps
if args.save_best:
save_model(model,args.save_dir,'best',steps)
else:
if steps - last_step >= args.early_stop:
print(f"early stop by {args.early_stop} steps.")
elif steps % args.save_interval == 0: ##保存模型
save_model(model,args.save_dir,'snapshot',steps)
def eval(loss_func, valid_iter, model):
model.eval()
corrects, avg_loss = 0, 0
for batch in valid_iter:
feature, target = batch.text, batch.label
logit = model(feature)
loss = loss_func(logit, target)
avg_loss += loss.item()
result = torch.max(logit, 1)[1].view(target.size())
corrects += (result.data == target.data).sum()
total_size = len(valid_iter.dataset)
avg_loss /= total_size
accuracy = corrects*100.0/total_size
print(f"\nEvaluation - loss: {avg_loss:.3f} - acc: {accuracy: .0f}%")
return accuracy
def save_model(model, save_dir, save_prefix, steps):
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
save_prefix = os.path.join(save_dir, save_prefix)
save_path = f"{save_prefix}_steps_{steps}.pt"
torch.save(model.state_dict(), save_path)
if __name__ == '__main__':
model = TextCNN(len(TEXT.vocab), args)
optimizer = torch.optim.Adam(model.parameters(), args.lr)
loss_func = nn.CrossEntropyLoss()
train(optimizer, loss_func, vld_iter, vld_iter, model, args)