-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathgrad_cam_vis.py
149 lines (127 loc) · 5.04 KB
/
grad_cam_vis.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
import torchvision.transforms as transforms
import torch
import yaml
from function import *
from test_config import parse_args
import time
from models import *
import os
import torch.backends.cudnn as cudnn
import json
from tqdm import tqdm
import cv2
import pandas as pd
import matplotlib.pyplot as plt
from text_reid_dataset import CUHKPEDES_BERT_Token, RSTPReid_BERT_Token, ICFGPEDES_BERT_Token
import warnings
warnings.filterwarnings('ignore')
warnings.simplefilter('ignore')
from torchvision.models.segmentation import deeplabv3_resnet50
import torch.functional as F
import numpy as np
import requests
import torchvision
from PIL import Image
from pytorch_grad_cam.utils.image import show_cam_on_image, preprocess_image
import numpy as np
from pytorch_grad_cam.base_cam import BaseCAM
class GradCAM(BaseCAM):
def __init__(self, model, target_layers, use_cuda=False,
reshape_transform=None):
super(
GradCAM,
self).__init__(
model,
target_layers,
use_cuda,
reshape_transform)
def get_cam_weights(self,
input_tensor,
target_layer,
target_category,
activations,
grads):
print(grads.shape)
return np.mean(grads, axis=(2))
def reshape_transform(tensor, height=24, width=8):
result = tensor[:, 1:, :].reshape(tensor.size(0),
height, width, tensor.size(2))
# Bring the channels to the first dimension,
# like in CNNs.
result = result.transpose(2, 3).transpose(1, 2)
return result
if __name__ == '__main__':
args = parse_args()
# load GPU
str_ids = args.gpus.split(',')
gpu_ids = []
for str_id in str_ids:
gid = int(str_id)
if gid >= 0:
gpu_ids.append(gid)
# set gpu ids
if len(gpu_ids) > 0:
torch.cuda.set_device(gpu_ids[0])
cudnn.benchmark = True
with open('%s/opts_test.yaml' % args.checkpoint_dir, 'w') as fp:
yaml.dump(vars(args), fp, default_flow_style=False)
network = eval(args.model) # 从参数传入模型的名字
model = network(args).cuda()
model = torch.nn.DataParallel(model, device_ids=gpu_ids)
model.eval()
dst_best = os.path.join(args.checkpoint_dir , "best.pth.tar")
model_file = dst_best
print(model_file)
if os.path.isfile(model_file):
checkpoint = torch.load(model_file)
start_epoch = checkpoint['epoch']
model.load_state_dict(checkpoint['state_dict'])
print('Load checkpoint at epoch %d.' % (start_epoch))
test_transform = transforms.Compose([
transforms.Resize((args.height, args.width), interpolation=3),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
])
if args.dataset == 'CUHKPEDES':
data_split = CUHKPEDES_BERT_Token(args, 'train', annotation_path='CUHK-PEDES/reid_raw.json', transform=test_transform)
loader = data.DataLoader(data_split, 4, shuffle=False, num_workers=1)
# inference(loader, network, args)
class SimilarityToConceptTarget:
def __init__(self, features):
self.features = features
def __call__(self, model_output):
cos = torch.nn.CosineSimilarity(dim=0)
return cos(model_output, self.features)
with torch.no_grad():
for images, captions, labels, mask, img_paths in tqdm(loader):
print(images.shape, img_paths)
images = images.cuda()
captions = captions.cuda()
mask = mask.cuda()
image_embeddings, text_embeddings = model(images, captions, mask)
image_embeddings /= (image_embeddings.norm(dim=1, keepdim=True) + 1e-12)
text_embeddings /= (text_embeddings.norm(dim=1, keepdim=True) + 1e-12)
score = torch.mm(text_embeddings, image_embeddings.T)
print("====>score: ",score)
image_concept_features = image_embeddings[0, :]
text_concept_features = text_embeddings[0, :]
print(text_concept_features.shape, text_concept_features.shape)
break
target_layers = [model.module.model_img.vit.blocks[-1].norm1]
img_targets = [SimilarityToConceptTarget(image_concept_features)]
txt_targets = [SimilarityToConceptTarget(text_concept_features)]
with GradCAM(model=model.module.model_img,
target_layers=target_layers,
# reshape_transform=reshape_transform,
use_cuda=False) as cam:
grayscale_cam = cam(input_tensor=images,
targets=txt_targets,
)[0, :]
print(grayscale_cam.shape)
rgb_img = cv2.imread(img_paths[0], 1)[:, :, ::-1]
# print(rgb_img.shape)
rgb_img = cv2.resize( rgb_img, (128,384))
rgb_img = np.float32(rgb_img) / 255
print(rgb_img.shape)
cam_image = show_cam_on_image(rgb_img, grayscale_cam)
cv2.imwrite('cam_img.png', cam_image)