Skip to content

Latest commit

 

History

History

Risk_identification_tool

Folders and files

NameName
Last commit message
Last commit date

parent directory

..
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Setup

  1. Download RiskBench_Dataset here.

  2. Download metadata.zip here.

  3. Unzip model.zip, metadata.zip, RiskBench_Dataset

  4. Install dependencies in your favorite environment.

    e.g. start by creating a new conda environment:

    conda create -n analysis_tool python=3.7
    conda activate analysis_tool
    cd ${TOOL_ROOT}
    
    conda  install pyqt
    pip3 install -r requirements.txt

Quantitative Results For Risk Object Identification (ROI)

  1. Execute

    python ROI_tool.py --method ${MODEL} --data_type ${DATA_TYPE} --metadata_root ${METADATA_ROOT} --save_result --result_path ${ROI_PATH}
  2. The results will be saved to ${ROI_PATH}/${MODEL}/${DATA_TYPE}.josn

Fine-grained Scenario-based Analysis

  1. Execute

    python ROI_vis_tool.py --data_root ${DATASET_ROOT} --metadata_root ${METADATA_ROOT} --vis_result_path ${VIS_PATH}
  2. Choose Model and Scenario Type

  3. Check interest attributes

  4. Click Filter Scenario

  5. Choose one scenario

    • Click Generate Video to save the qualitative result in gif file
    • Click Generate JSON to save the quantitative result in JSON file
    • The results will be saved to ${VIS_PATH}/gif/${MODEL}/${DATA_TYPE} or {VIS_PATH}/json/${MODEL}/${DATA_TYPE}

    Fine-grained Scenario-based Analysis