-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathstsTrainer.py
151 lines (100 loc) · 5.07 KB
/
stsTrainer.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import os
import csv
import sys
import math
import gzip
import torch
import random
import numpy as np
from torch.utils.data import DataLoader
from sentence_transformers import SentenceTransformer, SentencesDataset, InputExample, losses
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
sys.path.append( '../preprocessing/sentenceTransformers/' )
sys.path.append( '../preprocessing/LanguageModeling/' )
from createSampleTokenised import _load_csv as load_csv
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz'
def train_model( train_data_file, model_location, outlocation, epochs, seed, save_all, start_from=None ) :
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
train_batch_size = 4
train_data_headers, train_data = load_csv( train_data_file, ',' )
train_examples= [
InputExample( texts=[
train_data[ i ][ train_data_headers.index( 'sentence1' ) ],
train_data[ i ][ train_data_headers.index( 'sentence2' ) ]
], label=float( train_data[ i ][ train_data_headers.index( 'similarity' ) ] ) ) for i in range( len( train_data ) ) ]
if not start_from is None :
model_location = os.path.join( outlocation, str( seed ), str( start_from ) )
else :
start_from = 0
model = SentenceTransformer( model_location )
train_dataset = SentencesDataset(train_examples, model)
# train_dataloader = train_examples
train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size)
train_loss = losses.CosineSimilarityLoss(model=model)
train_samples = []
dev_samples = []
test_samples = []
with gzip.open(sts_dataset_path, 'rt', encoding='utf8') as fIn:
reader = csv.DictReader(fIn, delimiter='\t', quoting=csv.QUOTE_NONE)
for row in reader:
score = float(row['score']) / 5.0 # Normalize score to range 0 ... 1
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score)
if row['split'] == 'dev':
dev_samples.append(inp_example)
elif row['split'] == 'test':
test_samples.append(inp_example)
else:
train_samples.append(inp_example)
evaluator = EmbeddingSimilarityEvaluator.from_input_examples(dev_samples, name='sts-dev')
# import pdb; pdb.set_trace()
# train_dataloader = DataLoader(train_examples, shuffle=True, batch_size=train_batch_size)
if save_all :
for epoch in range( ( start_from + 1 ), epochs + 1 ) :
warmup_steps = math.ceil(len(train_dataloader) * 1 * 0.1) #10% of train data for warm-up
model_save_path = os.path.join( outlocation, str( seed ), str( epoch ) )
os.makedirs( model_save_path )
model.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=1,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=model_save_path
)
else :
warmup_steps = math.ceil(len(train_dataloader) * epochs * 0.1) #10% of train data for warm-up
model_save_path = os.path.join( outlocation, str( seed ), str( epochs ) )
os.makedirs( model_save_path )
model.fit(train_objectives=[(train_dataloader, train_loss)],
evaluator=evaluator,
epochs=epochs,
evaluation_steps=1000,
warmup_steps=warmup_steps,
output_path=model_save_path
)
if __name__ == '__main__' :
if len( sys.argv ) < 3 :
print( "Require language (EN|PT) and location of tokenized sentence transformer model (e.g. git clone https://huggingface.co/harish/AStitchInLanguageModels-Task2_EN_SentTransTokenizedNoPreTrain [Use git lfs!])." )
sys.exit()
language = sys.argv[1].upper()
assert language in [ 'EN', 'PT' ]
model_location = sys.argv[2]
folders = [ 'trainDataAllTokenised', 'trainDataNotTokenised', 'trainDataSelectTokenised' ]
for folder in folders :
train_data_file = '../CreateFineTuneData/' + language + '/' + folder + '/sts_train_data.csv'
params = {
'train_data_file' : train_data_file ,
'model_location' : model_location ,
'outlocation' : 'output-no-git/' + language + '/' + folder + '/' ,
'epochs' : 4 ,
'save_all' : True,
'start_from' : None ,
}
## Modify this to continue training from some epoch
## params[ 'start_from' ] = 1
if ( not 'start_from' in params.keys() ) or ( params[ 'start_from' ] is None ) :
os.makedirs( params[ 'outlocation' ] )
## Start from best key of STS trainer so don't have to test multiple seeds here.
params[ 'seed' ] = 0
train_model( **params )