-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathtask2Evaluation.py
105 lines (74 loc) · 3.32 KB
/
task2Evaluation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
"""
Example taken from: https://raw.githubusercontent.com/UKPLab/sentence-transformers/master/examples/training/sts/training_stsbenchmark.py
This examples trains BERT (or any other transformer model like RoBERTa, DistilBERT etc.) for the STSbenchmark from scratch. It generates sentence embeddings
that can be compared using cosine-similarity to measure the similarity.
Usage:
python training_nli.py
OR
python training_nli.py pretrained_transformer_model_name
"""
from torch.utils.data import DataLoader
import math
import torch
import random
import numpy as np
from sentence_transformers import SentenceTransformer, LoggingHandler, losses, models, util
from sentence_transformers.evaluation import EmbeddingSimilarityEvaluator
from sentence_transformers.readers import InputExample
import logging
from datetime import datetime
import sys
import os
import gzip
import csv
sys.stdout.flush()
sys.stderr.flush()
#### Just some code to print debug information to stdout
logging.basicConfig(format='%(asctime)s - %(message)s',
datefmt='%Y-%m-%d %H:%M:%S',
level=logging.INFO,
handlers=[LoggingHandler()])
#### /print debug information to stdout
#Check if dataset exsist. If not, download and extract it
sts_dataset_path = 'datasets/stsbenchmark.tsv.gz'
if not os.path.exists(sts_dataset_path):
util.http_get('https://sbert.net/datasets/stsbenchmark.tsv.gz', sts_dataset_path)
#You can specify any huggingface/transformers pre-trained model here, for example, bert-base-uncased, roberta-base, xlm-roberta-base
is_st_model = True
if len( sys.argv ) < 3 :
raise Exception( "Require path of model to test and dataset location" )
model_name = sys.argv[1]
dataset_location = sys.argv[2]
seed = 42
if not seed is None :
random.seed(seed)
np.random.seed(seed)
torch.manual_seed(seed)
if not is_st_model :
logging.info( "Not ST model, building ... " )
# Use Huggingface/transformers model (like BERT, RoBERTa, XLNet, XLM-R) for mapping tokens to embeddings
word_embedding_model = models.Transformer(model_name)
# Apply mean pooling to get one fixed sized sentence vector
pooling_model = models.Pooling(word_embedding_model.get_word_embedding_dimension(),
pooling_mode_mean_tokens=True,
pooling_mode_cls_token=False,
pooling_mode_max_tokens=False)
model = SentenceTransformer(modules=[word_embedding_model, pooling_model])
else :
logging.info( "Loading ST model ... " )
model = SentenceTransformer( model_name )
# Convert the dataset to a DataLoader ready for training
logging.info("Reading dataset")
# Read the dataset
train_batch_size = 4
num_epochs = 4
for dataset in [ 'dev', 'test' ] :
test_samples = list()
with open( os.path.join( dataset_location, dataset + '_final_eval_data.csv' ) ) as csvfile :
reader = csv.DictReader( csvfile )
for row in reader :
score = float(row['score'])
inp_example = InputExample(texts=[row['sentence1'], row['sentence2']], label=score)
test_samples.append( inp_example )
test_evaluator = EmbeddingSimilarityEvaluator.from_input_examples(test_samples, name='Evaluation on '+dataset+'')
test_evaluator(model)