-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathdataset.py
52 lines (46 loc) · 1.7 KB
/
dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
from paddle.io import Dataset
from paddle.vision import transforms
from mxnet_reader import recordio
from PIL import Image
from io import BytesIO
import numpy as np
import numbers
import paddle
import os
__Author__ = 'Quanhao Guo'
__Date__ = '2021.04.24.16.23'
class MXFaceDataset(Dataset):
def __init__(self, root_dir):
super(MXFaceDataset, self).__init__()
self.transform = transforms.Compose(
[
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5]),
])
self.root_dir = root_dir
path_imgrec = os.path.join(root_dir, 'train.rec')
path_imgidx = os.path.join(root_dir, 'train.idx')
self.imgrec = recordio.MXIndexedRecordIO(path_imgidx, path_imgrec, 'r')
s = self.imgrec.read_idx(0)
header, _ = recordio.unpack(s)
if header.flag > 0:
self.header0 = (int(header.label[0]), int(header.label[1]))
self.imgidx = np.array(range(1, int(header.label[0])))
else:
self.imgidx = np.array(list(self.imgrec.keys))
def __getitem__(self, index):
idx = self.imgidx[index]
s = self.imgrec.read_idx(idx)
header, img = recordio.unpack(s)
label = header.label
if not isinstance(label, numbers.Number):
label = label[0]
label = paddle.to_tensor(label, dtype='int64')
# sample = image.imdecode(img).asnumpy()
sample = np.array(Image.open(BytesIO(img)))
if self.transform is not None:
sample = self.transform(sample)
return sample, label
def __len__(self):
return len(self.imgidx)