-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathDatasetTest.py
230 lines (168 loc) · 7.3 KB
/
DatasetTest.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
import numpy as np
import cv2
import json
import os
import skimage.color
import skimage.io
import skimage.transform
import pickle
MAX_OBJ_NUM = 30
IOU_THRESH = 0.5
# Top 5 salient objects should have vales > 0.5
SAL_VAL_THRESH = 0.5
OBJ_THRESH = 0.5
"""
NOTES:
load_gt_rank_order():
final_gt_rank: 0 = BG, 1 = Rank_1, 2 = Rank_2, 3 = Rank_3, 4 = Rank_4, 5 = Rank_5
"""
class DatasetTest(object):
def __init__(self, dataset_root, pre_proc_data_dir, data_split, eval_spr=None):
self.dataset_root = dataset_root # Root folder of Dataset
self.pre_proc_data_dir_root = pre_proc_data_dir # Root folder of pre-processed data - Object Predictions
self.data_split = data_split
self.load_dataset()
self.load_obj_data()
self.eval_spr = eval_spr
if eval_spr:
rank_order_root = self.dataset_root + "rank_order/" + self.data_split + "/"
self.gt_rank_orders = self.load_rank_order_data(rank_order_root)
obj_seg_data_path = self.dataset_root + "obj_seg_data_" + self.data_split + ".json"
self.obj_bboxes, self.obj_seg, self.sal_obj_idx_list, self.not_sal_obj_idx_list = self.load_object_seg_data(
obj_seg_data_path)
def load_dataset(self):
print("\nLoading Dataset...")
image_file = self.data_split + "_images.txt"
# Get list of image ids
image_path = os.path.join(self.dataset_root, image_file)
with open(image_path, "r") as f:
image_names = [line.strip() for line in f.readlines()]
self.img_ids = image_names
print(self.img_ids)
def load_obj_data(self):
data_path = self.pre_proc_data_dir_root + "object_detection_feat/object_detection_test_images.pkl"
with open(data_path, "rb") as f:
data = pickle.load(f)
self.image_id = []
self.rois = []
# self.class_ids = []
# self.scores = []
for i in range(len(data)):
d = data[i]
image_id = d["image_id"]
rois = d["rois"]
# class_ids = d["class_ids"]
scores = d["scores"]
if image_id not in self.img_ids:
continue
num_good_objects = sum(s > OBJ_THRESH for s in scores)
keep_point = num_good_objects
if keep_point > MAX_OBJ_NUM:
keep_point = MAX_OBJ_NUM
self.image_id.append(image_id)
self.rois.append(rois[:keep_point])
# self.class_ids.append(class_ids[:keep_point])
# self.scores.append(scores[:keep_point])
# assert self.img_ids == self.image_id
def load_rank_order_data(self, rank_order_root):
rank_order_data_files = [f for f in os.listdir(rank_order_root)]
rank_order_data_files.sort()
print(rank_order_data_files)
gt_rank_orders = []
for i in range(len(rank_order_data_files)):
img_id = rank_order_data_files[i].split(".")[0]
if img_id not in self.img_ids:
continue
p = rank_order_root + rank_order_data_files[i]
with open(p, "r") as in_file:
rank_data = json.load(in_file)
rank_order = rank_data["rank_order"]
gt_rank_orders.append(rank_order)
return gt_rank_orders
def load_object_seg_data(self, obj_data_path):
with open(obj_data_path, "r") as f:
data = json.load(f)
obj_bbox = []
obj_seg = []
for i in range(len(data)):
img_data = data[i]
image_id = img_data["img"]
# print(i)
# print(image_id)
if image_id not in self.img_ids:
continue
img_obj_data = img_data["object_data"]
_img_obj_bbox = []
_img_obj_seg = []
for obj_data in img_obj_data:
_img_obj_bbox.append(obj_data["bbox"])
_img_obj_seg.append(obj_data["segmentation"])
obj_bbox.append(_img_obj_bbox)
obj_seg.append(_img_obj_seg)
# Find N salient objects based on gt rank order
_sal_obj_idx_list = []
_not_sal_obj_idx_list = []
# Create a set for defined salient objects
for i in range(len(obj_bbox)):
# print(i)
gt_ranks = np.array(self.gt_rank_orders[i])
# print(gt_ranks)
_idx_sal = np.where(gt_ranks > SAL_VAL_THRESH)[0].tolist()
_sal_obj_idx_list.append(_idx_sal)
_idx_not_sal = np.where(gt_ranks <= SAL_VAL_THRESH)[0].tolist()
_not_sal_obj_idx_list.append(_idx_not_sal)
return obj_bbox, obj_seg, _sal_obj_idx_list, _not_sal_obj_idx_list
def load_image(self, image_id):
"""Load the specified image and return a [H,W,3] Numpy array.
"""
# Load image
# p = self.dataset_root + "images/" + self.data_split + "/" + image_id + ".jpg"
p = self.dataset_root + self.data_split + "/" + "images/" + image_id + ".jpg"
image = skimage.io.imread(p)
# If grayscale. Convert to RGB for consistency.
if image.ndim != 3:
image = skimage.color.gray2rgb(image)
# If has an alpha channel, remove it for consistency
if image.shape[-1] == 4:
image = image[..., :3]
return image
def load_gt_mask(self, image_id):
# Load mask
p = self.dataset_root + "gt/" + self.data_split + "/" + image_id + ".png"
og_gt_mask = cv2.imread(p, 1).astype(np.float32)
# Need only one channel
mask = og_gt_mask[:, :, 0]
# Normalize to 0-1
mask /= 255.0
return np.array(mask)
def load_object_roi_masks(self, image_id):
image = self.load_image(image_id)
idx = self.img_ids.index(image_id)
rois = self.rois[idx]
if len(rois) < 1:
obj_masks = np.empty([0, 0, 0])
return obj_masks
# Reference Mask
image_shape = image.shape[:2]
init_mask = np.zeros(shape=image_shape, dtype=np.int32)
# Generate list of object masks from salient and randomly selected non salient objects if available
obj_mask_instances = []
for i in range(len(rois)):
obj = rois[i]
# o_x1, o_y1, o_x2, o_y2 = obj
o_y1, o_x1, o_y2, o_x2 = obj # original coco format
obj_mask = init_mask.copy()
obj_mask[o_y1:o_y2, o_x1:o_x2] = 1
obj_mask_instances.append(obj_mask)
obj_masks = np.stack(obj_mask_instances, axis=2).astype(np.bool)
return obj_masks
def get_image_info(self, image_id):
# idx = self.img_ids.index(image_id)
img_path = self.dataset_root + "images/" + self.data_split + "/" + image_id + ".jpg"
# img_path = self.dataset_root + self.data_split + "/" + "images/" + image_id + ".jpg"
return img_path
def load_obj_pre_proc_data(self, image_id):
p = self.pre_proc_data_dir_root + "object_detection_feat/" + self.data_split + "/" + image_id
with open(p, "rb") as f:
obj_data = pickle.load(f)
return obj_data