-
Notifications
You must be signed in to change notification settings - Fork 22
/
Copy pathrun_gsat.py
438 lines (360 loc) · 22.2 KB
/
run_gsat.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
import yaml
import numpy as np
from tqdm import tqdm
from pathlib import Path
from copy import deepcopy
from datetime import datetime
import torch
import torch.nn as nn
from torch_sparse import transpose
from torch.optim.lr_scheduler import ReduceLROnPlateau
from torch_geometric.utils import subgraph, is_undirected
from torch_geometric.loader import DataLoader
from ogb.graphproppred import Evaluator
from sklearn.metrics import roc_auc_score
from rdkit import Chem
from pretrain_clf import train_clf_one_seed
from utils import Writer, Criterion, MLP, visualize_a_graph, save_checkpoint, load_checkpoint, get_preds, get_lr, set_seed, process_data
from utils import get_local_config_name, get_model, get_data_loaders, write_stat_from_metric_dicts, init_metric_dict
class GSAT(nn.Module):
def __init__(self, clf, extractor, optimizer, scheduler, writer, device, model_dir, dataset_name, num_class, multi_label, random_state,
method_config, shared_config):
super().__init__()
self.clf = clf
self.extractor = extractor
self.optimizer = optimizer
self.scheduler = scheduler
self.writer = writer
self.device = device
self.model_dir = model_dir
self.dataset_name = dataset_name
self.random_state = random_state
self.method_name = method_config['method_name']
self.learn_edge_att = shared_config['learn_edge_att']
self.k = shared_config['precision_k']
self.num_viz_samples = shared_config['num_viz_samples']
self.viz_interval = shared_config['viz_interval']
self.viz_norm_att = shared_config['viz_norm_att']
self.epochs = method_config['epochs']
self.pred_loss_coef = method_config['pred_loss_coef']
self.info_loss_coef = method_config['info_loss_coef']
self.fix_r = method_config.get('fix_r', None)
self.decay_interval = method_config.get('decay_interval', None)
self.decay_r = method_config.get('decay_r', None)
self.final_r = method_config.get('final_r', 0.1)
self.init_r = method_config.get('init_r', 0.9)
self.multi_label = multi_label
self.criterion = Criterion(num_class, multi_label)
def __loss__(self, att, clf_logits, clf_labels, epoch):
pred_loss = self.criterion(clf_logits, clf_labels)
r = self.fix_r if self.fix_r else self.get_r(self.decay_interval, self.decay_r, epoch, final_r=self.final_r, init_r=self.init_r)
info_loss = (att * torch.log(att/r + 1e-6) + (1-att) * torch.log((1-att)/(1-r+1e-6) + 1e-6)).mean()
pred_loss = pred_loss * self.pred_loss_coef
info_loss = info_loss * self.info_loss_coef
loss = pred_loss + info_loss
loss_dict = {'loss': loss.item(), 'pred': pred_loss.item(), 'info': info_loss.item()}
return loss, loss_dict
def forward_pass(self, data, epoch, training):
emb = self.clf.get_emb(data.x, data.edge_index, batch=data.batch, edge_attr=data.edge_attr)
att_log_logits = self.extractor(emb, data.edge_index, data.batch)
att = self.sampling(att_log_logits, epoch, training)
if self.learn_edge_att:
if is_undirected(data.edge_index):
nodesize = data.x.shape[0]
edge_att = (att + transpose(data.edge_index, att, nodesize, nodesize, coalesced=False)[1]) / 2
else:
edge_att = att
else:
edge_att = self.lift_node_att_to_edge_att(att, data.edge_index)
clf_logits = self.clf(data.x, data.edge_index, data.batch, edge_attr=data.edge_attr, edge_atten=edge_att)
loss, loss_dict = self.__loss__(att, clf_logits, data.y, epoch)
return edge_att, loss, loss_dict, clf_logits
@torch.no_grad()
def eval_one_batch(self, data, epoch):
self.extractor.eval()
self.clf.eval()
att, loss, loss_dict, clf_logits = self.forward_pass(data, epoch, training=False)
return att.data.cpu().reshape(-1), loss_dict, clf_logits.data.cpu()
def train_one_batch(self, data, epoch):
self.extractor.train()
self.clf.train()
att, loss, loss_dict, clf_logits = self.forward_pass(data, epoch, training=True)
self.optimizer.zero_grad()
loss.backward()
self.optimizer.step()
return att.data.cpu().reshape(-1), loss_dict, clf_logits.data.cpu()
def run_one_epoch(self, data_loader, epoch, phase, use_edge_attr):
loader_len = len(data_loader)
run_one_batch = self.train_one_batch if phase == 'train' else self.eval_one_batch
phase = 'test ' if phase == 'test' else phase # align tqdm desc bar
all_loss_dict = {}
all_exp_labels, all_att, all_clf_labels, all_clf_logits, all_precision_at_k = ([] for i in range(5))
pbar = tqdm(data_loader)
for idx, data in enumerate(pbar):
data = process_data(data, use_edge_attr)
att, loss_dict, clf_logits = run_one_batch(data.to(self.device), epoch)
exp_labels = data.edge_label.data.cpu()
precision_at_k = self.get_precision_at_k(att, exp_labels, self.k, data.batch, data.edge_index)
desc, _, _, _, _, _ = self.log_epoch(epoch, phase, loss_dict, exp_labels, att, precision_at_k,
data.y.data.cpu(), clf_logits, batch=True)
for k, v in loss_dict.items():
all_loss_dict[k] = all_loss_dict.get(k, 0) + v
all_exp_labels.append(exp_labels), all_att.append(att), all_precision_at_k.extend(precision_at_k)
all_clf_labels.append(data.y.data.cpu()), all_clf_logits.append(clf_logits)
if idx == loader_len - 1:
all_exp_labels, all_att = torch.cat(all_exp_labels), torch.cat(all_att),
all_clf_labels, all_clf_logits = torch.cat(all_clf_labels), torch.cat(all_clf_logits)
for k, v in all_loss_dict.items():
all_loss_dict[k] = v / loader_len
desc, att_auroc, precision, clf_acc, clf_roc, avg_loss = self.log_epoch(epoch, phase, all_loss_dict, all_exp_labels, all_att,
all_precision_at_k, all_clf_labels, all_clf_logits, batch=False)
pbar.set_description(desc)
return att_auroc, precision, clf_acc, clf_roc, avg_loss
def train(self, loaders, test_set, metric_dict, use_edge_attr):
viz_set = self.get_viz_idx(test_set, self.dataset_name)
for epoch in range(self.epochs):
train_res = self.run_one_epoch(loaders['train'], epoch, 'train', use_edge_attr)
valid_res = self.run_one_epoch(loaders['valid'], epoch, 'valid', use_edge_attr)
test_res = self.run_one_epoch(loaders['test'], epoch, 'test', use_edge_attr)
self.writer.add_scalar('gsat_train/lr', get_lr(self.optimizer), epoch)
assert len(train_res) == 5
main_metric_idx = 3 if 'ogb' in self.dataset_name else 2 # clf_roc or clf_acc
if self.scheduler is not None:
self.scheduler.step(valid_res[main_metric_idx])
r = self.fix_r if self.fix_r else self.get_r(self.decay_interval, self.decay_r, epoch, final_r=self.final_r, init_r=self.init_r)
if (r == self.final_r or self.fix_r) and epoch > 10 and ((valid_res[main_metric_idx] > metric_dict['metric/best_clf_valid'])
or (valid_res[main_metric_idx] == metric_dict['metric/best_clf_valid']
and valid_res[4] < metric_dict['metric/best_clf_valid_loss'])):
metric_dict = {'metric/best_clf_epoch': epoch, 'metric/best_clf_valid_loss': valid_res[4],
'metric/best_clf_train': train_res[main_metric_idx], 'metric/best_clf_valid': valid_res[main_metric_idx], 'metric/best_clf_test': test_res[main_metric_idx],
'metric/best_x_roc_train': train_res[0], 'metric/best_x_roc_valid': valid_res[0], 'metric/best_x_roc_test': test_res[0],
'metric/best_x_precision_train': train_res[1], 'metric/best_x_precision_valid': valid_res[1], 'metric/best_x_precision_test': test_res[1]}
save_checkpoint(self.clf, self.model_dir, model_name='gsat_clf_epoch_' + str(epoch))
save_checkpoint(self.extractor, self.model_dir, model_name='gsat_att_epoch_' + str(epoch))
for metric, value in metric_dict.items():
metric = metric.split('/')[-1]
self.writer.add_scalar(f'gsat_best/{metric}', value, epoch)
if self.num_viz_samples != 0 and (epoch % self.viz_interval == 0 or epoch == self.epochs - 1):
if self.multi_label:
raise NotImplementedError
for idx, tag in viz_set:
self.visualize_results(test_set, idx, epoch, tag, use_edge_attr)
if epoch == self.epochs - 1:
save_checkpoint(self.clf, self.model_dir, model_name='gsat_clf_epoch_' + str(epoch))
save_checkpoint(self.extractor, self.model_dir, model_name='gsat_att_epoch_' + str(epoch))
print(f'[Seed {self.random_state}, Epoch: {epoch}]: Best Epoch: {metric_dict["metric/best_clf_epoch"]}, '
f'Best Val Pred ACC/ROC: {metric_dict["metric/best_clf_valid"]:.3f}, Best Test Pred ACC/ROC: {metric_dict["metric/best_clf_test"]:.3f}, '
f'Best Test X AUROC: {metric_dict["metric/best_x_roc_test"]:.3f}')
print('====================================')
print('====================================')
return metric_dict
def log_epoch(self, epoch, phase, loss_dict, exp_labels, att, precision_at_k, clf_labels, clf_logits, batch):
desc = f'[Seed {self.random_state}, Epoch: {epoch}]: gsat_{phase}........., ' if batch else f'[Seed {self.random_state}, Epoch: {epoch}]: gsat_{phase} finished, '
for k, v in loss_dict.items():
if not batch:
self.writer.add_scalar(f'gsat_{phase}/{k}', v, epoch)
desc += f'{k}: {v:.3f}, '
eval_desc, att_auroc, precision, clf_acc, clf_roc = self.get_eval_score(epoch, phase, exp_labels, att, precision_at_k, clf_labels, clf_logits, batch)
desc += eval_desc
return desc, att_auroc, precision, clf_acc, clf_roc, loss_dict['pred']
def get_eval_score(self, epoch, phase, exp_labels, att, precision_at_k, clf_labels, clf_logits, batch):
clf_preds = get_preds(clf_logits, self.multi_label)
clf_acc = 0 if self.multi_label else (clf_preds == clf_labels).sum().item() / clf_labels.shape[0]
if batch:
return f'clf_acc: {clf_acc:.3f}', None, None, None, None
precision_at_k = np.mean(precision_at_k)
clf_roc = 0
if 'ogb' in self.dataset_name:
evaluator = Evaluator(name='-'.join(self.dataset_name.split('_')))
clf_roc = evaluator.eval({'y_pred': clf_logits, 'y_true': clf_labels})['rocauc']
att_auroc, bkg_att_weights, signal_att_weights = 0, att, att
if np.unique(exp_labels).shape[0] > 1:
att_auroc = roc_auc_score(exp_labels, att)
bkg_att_weights = att[exp_labels == 0]
signal_att_weights = att[exp_labels == 1]
self.writer.add_histogram(f'gsat_{phase}/bkg_att_weights', bkg_att_weights, epoch)
self.writer.add_histogram(f'gsat_{phase}/signal_att_weights', signal_att_weights, epoch)
self.writer.add_scalar(f'gsat_{phase}/clf_acc/', clf_acc, epoch)
self.writer.add_scalar(f'gsat_{phase}/clf_roc/', clf_roc, epoch)
self.writer.add_scalar(f'gsat_{phase}/att_auroc/', att_auroc, epoch)
self.writer.add_scalar(f'gsat_{phase}/precision@{self.k}/', precision_at_k, epoch)
self.writer.add_scalar(f'gsat_{phase}/avg_bkg_att_weights/', bkg_att_weights.mean(), epoch)
self.writer.add_scalar(f'gsat_{phase}/avg_signal_att_weights/', signal_att_weights.mean(), epoch)
self.writer.add_pr_curve(f'PR_Curve/gsat_{phase}/', exp_labels, att, epoch)
desc = f'clf_acc: {clf_acc:.3f}, clf_roc: {clf_roc:.3f}, ' + \
f'att_roc: {att_auroc:.3f}, att_prec@{self.k}: {precision_at_k:.3f}'
return desc, att_auroc, precision_at_k, clf_acc, clf_roc
def get_precision_at_k(self, att, exp_labels, k, batch, edge_index):
precision_at_k = []
for i in range(batch.max()+1):
nodes_for_graph_i = batch == i
edges_for_graph_i = nodes_for_graph_i[edge_index[0]] & nodes_for_graph_i[edge_index[1]]
labels_for_graph_i = exp_labels[edges_for_graph_i]
mask_log_logits_for_graph_i = att[edges_for_graph_i]
precision_at_k.append(labels_for_graph_i[np.argsort(-mask_log_logits_for_graph_i)[:k]].sum().item() / k)
return precision_at_k
def get_viz_idx(self, test_set, dataset_name):
y_dist = test_set.data.y.numpy().reshape(-1)
num_nodes = np.array([each.x.shape[0] for each in test_set])
classes = np.unique(y_dist)
res = []
for each_class in classes:
tag = 'class_' + str(each_class)
if dataset_name == 'Graph-SST2':
condi = (y_dist == each_class) * (num_nodes > 5) * (num_nodes < 10) # in case too short or too long
candidate_set = np.nonzero(condi)[0]
else:
candidate_set = np.nonzero(y_dist == each_class)[0]
idx = np.random.choice(candidate_set, self.num_viz_samples, replace=False)
res.append((idx, tag))
return res
def visualize_results(self, test_set, idx, epoch, tag, use_edge_attr):
viz_set = test_set[idx]
data = next(iter(DataLoader(viz_set, batch_size=len(idx), shuffle=False)))
data = process_data(data, use_edge_attr)
batch_att, _, clf_logits = self.eval_one_batch(data.to(self.device), epoch)
imgs = []
for i in tqdm(range(len(viz_set))):
mol_type, coor = None, None
if self.dataset_name == 'mutag':
node_dict = {0: 'C', 1: 'O', 2: 'Cl', 3: 'H', 4: 'N', 5: 'F', 6: 'Br', 7: 'S', 8: 'P', 9: 'I', 10: 'Na', 11: 'K', 12: 'Li', 13: 'Ca'}
mol_type = {k: node_dict[v.item()] for k, v in enumerate(viz_set[i].node_type)}
elif self.dataset_name == 'Graph-SST2':
mol_type = {k: v for k, v in enumerate(viz_set[i].sentence_tokens)}
num_nodes = data.x.shape[0]
x = np.linspace(0, 1, num_nodes)
y = np.ones_like(x)
coor = np.stack([x, y], axis=1)
elif self.dataset_name == 'ogbg_molhiv':
element_idxs = {k: int(v+1) for k, v in enumerate(viz_set[i].x[:, 0])}
mol_type = {k: Chem.PeriodicTable.GetElementSymbol(Chem.GetPeriodicTable(), int(v)) for k, v in element_idxs.items()}
elif self.dataset_name == 'mnist':
raise NotImplementedError
node_subset = data.batch == i
_, edge_att = subgraph(node_subset, data.edge_index, edge_attr=batch_att)
node_label = viz_set[i].node_label.reshape(-1) if viz_set[i].get('node_label', None) is not None else torch.zeros(viz_set[i].x.shape[0])
fig, img = visualize_a_graph(viz_set[i].edge_index, edge_att, node_label, self.dataset_name, norm=self.viz_norm_att, mol_type=mol_type, coor=coor)
imgs.append(img)
imgs = np.stack(imgs)
self.writer.add_images(tag, imgs, epoch, dataformats='NHWC')
def get_r(self, decay_interval, decay_r, current_epoch, init_r=0.9, final_r=0.5):
r = init_r - current_epoch // decay_interval * decay_r
if r < final_r:
r = final_r
return r
def sampling(self, att_log_logits, epoch, training):
att = self.concrete_sample(att_log_logits, temp=1, training=training)
return att
@staticmethod
def lift_node_att_to_edge_att(node_att, edge_index):
src_lifted_att = node_att[edge_index[0]]
dst_lifted_att = node_att[edge_index[1]]
edge_att = src_lifted_att * dst_lifted_att
return edge_att
@staticmethod
def concrete_sample(att_log_logit, temp, training):
if training:
random_noise = torch.empty_like(att_log_logit).uniform_(1e-10, 1 - 1e-10)
random_noise = torch.log(random_noise) - torch.log(1.0 - random_noise)
att_bern = ((att_log_logit + random_noise) / temp).sigmoid()
else:
att_bern = (att_log_logit).sigmoid()
return att_bern
class ExtractorMLP(nn.Module):
def __init__(self, hidden_size, shared_config):
super().__init__()
self.learn_edge_att = shared_config['learn_edge_att']
dropout_p = shared_config['extractor_dropout_p']
if self.learn_edge_att:
self.feature_extractor = MLP([hidden_size * 2, hidden_size * 4, hidden_size, 1], dropout=dropout_p)
else:
self.feature_extractor = MLP([hidden_size * 1, hidden_size * 2, hidden_size, 1], dropout=dropout_p)
def forward(self, emb, edge_index, batch):
if self.learn_edge_att:
col, row = edge_index
f1, f2 = emb[col], emb[row]
f12 = torch.cat([f1, f2], dim=-1)
att_log_logits = self.feature_extractor(f12, batch[col])
else:
att_log_logits = self.feature_extractor(emb, batch)
return att_log_logits
def train_gsat_one_seed(local_config, data_dir, log_dir, model_name, dataset_name, method_name, device, random_state):
print('====================================')
print('====================================')
print(f'[INFO] Using device: {device}')
print(f'[INFO] Using random_state: {random_state}')
print(f'[INFO] Using dataset: {dataset_name}')
print(f'[INFO] Using model: {model_name}')
set_seed(random_state)
model_config = local_config['model_config']
data_config = local_config['data_config']
method_config = local_config[f'{method_name}_config']
shared_config = local_config['shared_config']
assert model_config['model_name'] == model_name
assert method_config['method_name'] == method_name
batch_size, splits = data_config['batch_size'], data_config.get('splits', None)
loaders, test_set, x_dim, edge_attr_dim, num_class, aux_info = get_data_loaders(data_dir, dataset_name, batch_size, splits, random_state, data_config.get('mutag_x', False))
model_config['deg'] = aux_info['deg']
model = get_model(x_dim, edge_attr_dim, num_class, aux_info['multi_label'], model_config, device)
print('====================================')
print('====================================')
log_dir.mkdir(parents=True, exist_ok=True)
if not method_config['from_scratch']:
print('[INFO] Pretraining the model...')
train_clf_one_seed(local_config, data_dir, log_dir, model_name, dataset_name, device, random_state,
model=model, loaders=loaders, num_class=num_class, aux_info=aux_info)
pretrain_epochs = local_config['model_config']['pretrain_epochs'] - 1
load_checkpoint(model, model_dir=log_dir, model_name=f'epoch_{pretrain_epochs}')
else:
print('[INFO] Training both the model and the attention from scratch...')
extractor = ExtractorMLP(model_config['hidden_size'], shared_config).to(device)
lr, wd = method_config['lr'], method_config.get('weight_decay', 0)
optimizer = torch.optim.Adam(list(extractor.parameters()) + list(model.parameters()), lr=lr, weight_decay=wd)
scheduler_config = method_config.get('scheduler', {})
scheduler = None if scheduler_config == {} else ReduceLROnPlateau(optimizer, mode='max', **scheduler_config)
writer = Writer(log_dir=log_dir)
hparam_dict = {**model_config, **data_config}
hparam_dict = {k: str(v) if isinstance(v, (dict, list)) else v for k, v in hparam_dict.items()}
metric_dict = deepcopy(init_metric_dict)
writer.add_hparams(hparam_dict=hparam_dict, metric_dict=metric_dict)
print('====================================')
print('[INFO] Training GSAT...')
gsat = GSAT(model, extractor, optimizer, scheduler, writer, device, log_dir, dataset_name, num_class, aux_info['multi_label'], random_state, method_config, shared_config)
metric_dict = gsat.train(loaders, test_set, metric_dict, model_config.get('use_edge_attr', True))
writer.add_hparams(hparam_dict=hparam_dict, metric_dict=metric_dict)
return hparam_dict, metric_dict
def main():
import argparse
parser = argparse.ArgumentParser(description='Train GSAT')
parser.add_argument('--dataset', type=str, help='dataset used')
parser.add_argument('--backbone', type=str, help='backbone model used')
parser.add_argument('--cuda', type=int, help='cuda device id, -1 for cpu')
args = parser.parse_args()
dataset_name = args.dataset
model_name = args.backbone
cuda_id = args.cuda
torch.set_num_threads(5)
config_dir = Path('./configs')
method_name = 'GSAT'
print('====================================')
print('====================================')
print(f'[INFO] Running {method_name} on {dataset_name} with {model_name}')
print('====================================')
global_config = yaml.safe_load((config_dir / 'global_config.yml').open('r'))
local_config_name = get_local_config_name(model_name, dataset_name)
local_config = yaml.safe_load((config_dir / local_config_name).open('r'))
data_dir = Path(global_config['data_dir'])
num_seeds = global_config['num_seeds']
time = datetime.now().strftime("%m_%d_%Y-%H_%M_%S")
device = torch.device(f'cuda:{cuda_id}' if cuda_id >= 0 else 'cpu')
metric_dicts = []
for random_state in range(num_seeds):
log_dir = data_dir / dataset_name / 'logs' / (time + '-' + dataset_name + '-' + model_name + '-seed' + str(random_state) + '-' + method_name)
hparam_dict, metric_dict = train_gsat_one_seed(local_config, data_dir, log_dir, model_name, dataset_name, method_name, device, random_state)
metric_dicts.append(metric_dict)
log_dir = data_dir / dataset_name / 'logs' / (time + '-' + dataset_name + '-' + model_name + '-seed99-' + method_name + '-stat')
log_dir.mkdir(parents=True, exist_ok=True)
writer = Writer(log_dir=log_dir)
write_stat_from_metric_dicts(hparam_dict, metric_dicts, writer)
if __name__ == '__main__':
main()