-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathtranscribe_word_time_offsets.py
109 lines (84 loc) · 3.58 KB
/
transcribe_word_time_offsets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
# Copyright 2017 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Cloud Speech API sample that demonstrates word time offsets.
Example usage:
python transcribe_word_time_offsets.py resources/audio.raw
python transcribe_word_time_offsets.py \
gs://cloud-samples-tests/speech/vr.flac
"""
import argparse
import io
def transcribe_file_with_word_time_offsets(speech_file):
"""Transcribe the given audio file synchronously and output the word time
offsets."""
from google.cloud import speech
client = speech.SpeechClient()
with io.open(speech_file, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
enable_word_time_offsets=True,
)
response = client.recognize(config=config, audio=audio)
for result in response.results:
alternative = result.alternatives[0]
print("Transcript: {}".format(alternative.transcript))
for word_info in alternative.words:
word = word_info.word
start_time = word_info.start_time
end_time = word_info.end_time
print(
f"Word: {word}, start_time: {start_time.total_seconds()}, end_time: {end_time.total_seconds()}"
)
# [START speech_transcribe_async_word_time_offsets_gcs]
def transcribe_gcs_with_word_time_offsets(gcs_uri):
"""Transcribe the given audio file asynchronously and output the word time
offsets."""
from google.cloud import speech
client = speech.SpeechClient()
audio = speech.RecognitionAudio(uri=gcs_uri)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.FLAC,
sample_rate_hertz=16000,
language_code="en-US",
enable_word_time_offsets=True,
)
operation = client.long_running_recognize(config=config, audio=audio)
print("Waiting for operation to complete...")
result = operation.result(timeout=90)
for result in result.results:
alternative = result.alternatives[0]
print("Transcript: {}".format(alternative.transcript))
print("Confidence: {}".format(alternative.confidence))
for word_info in alternative.words:
word = word_info.word
start_time = word_info.start_time
end_time = word_info.end_time
print(
f"Word: {word}, start_time: {start_time.total_seconds()}, end_time: {end_time.total_seconds()}"
)
# [END speech_transcribe_async_word_time_offsets_gcs]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument("path", help="File or GCS path for audio file to be recognized")
args = parser.parse_args()
if args.path.startswith("gs://"):
transcribe_gcs_with_word_time_offsets(args.path)
else:
transcribe_file_with_word_time_offsets(args.path)