-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathtranscribe_streaming_voice_activity_events.py
110 lines (90 loc) · 3.66 KB
/
transcribe_streaming_voice_activity_events.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
# Copyright 2022 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
# [START speech_transcribe_streaming_voice_activity_events]
import io
from google.cloud.speech_v2 import SpeechClient
from google.cloud.speech_v2.types import cloud_speech
def transcribe_streaming_voice_activity_events(project_id, recognizer_id, audio_file):
# Instantiates a client
client = SpeechClient()
request = cloud_speech.CreateRecognizerRequest(
parent=f"projects/{project_id}/locations/global",
recognizer_id=recognizer_id,
recognizer=cloud_speech.Recognizer(
language_codes=["en-US"], model="latest_long"
),
)
# Creates a Recognizer
operation = client.create_recognizer(request=request)
recognizer = operation.result()
# Reads a file as bytes
with io.open(audio_file, "rb") as f:
content = f.read()
# In practice, stream should be a generator yielding chunks of audio data
chunk_length = len(content) // 5
stream = [
content[start : start + chunk_length]
for start in range(0, len(content), chunk_length)
]
audio_requests = (
cloud_speech.StreamingRecognizeRequest(audio=audio) for audio in stream
)
recognition_config = cloud_speech.RecognitionConfig(auto_decoding_config={})
# Sets the flag to enable voice activity events
streaming_features = cloud_speech.StreamingRecognitionFeatures(
enable_voice_activity_events=True
)
streaming_config = cloud_speech.StreamingRecognitionConfig(
config=recognition_config, streaming_features=streaming_features
)
config_request = cloud_speech.StreamingRecognizeRequest(
recognizer=recognizer.name, streaming_config=streaming_config
)
def requests(config, audio):
yield config
for message in audio:
yield message
# Transcribes the audio into text
responses_iterator = client.streaming_recognize(
requests=requests(config_request, audio_requests)
)
responses = []
for response in responses_iterator:
responses.append(response)
if (
response.speech_event_type
== cloud_speech.StreamingRecognizeResponse.SpeechEventType.SPEECH_ACTIVITY_BEGIN
):
print("Speech started.")
if (
response.speech_event_type
== cloud_speech.StreamingRecognizeResponse.SpeechEventType.SPEECH_ACTIVITY_END
):
print("Speech ended.")
for result in response.results:
print("Transcript: {}".format(result.alternatives[0].transcript))
return responses
# [END speech_transcribe_streaming_voice_activity_events]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument("project_id", help="project to create recognizer in")
parser.add_argument("recognizer_id", help="name of recognizer to create")
parser.add_argument("audio_file", help="audio file to stream")
args = parser.parse_args()
transcribe_streaming_voice_activity_events(
args.project_id, args.recognizer_id, args.audio_file
)