-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathspeech_model_adaptation_beta.py
96 lines (78 loc) · 3.13 KB
/
speech_model_adaptation_beta.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
# Copyright 2021 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# [START speech_transcribe_with_model_adaptation]
from google.cloud import speech_v1p1beta1 as speech
def transcribe_with_model_adaptation(
project_id, location, storage_uri, custom_class_id, phrase_set_id
):
"""
Create`PhraseSet` and `CustomClasses` to create custom lists of similar
items that are likely to occur in your input data.
"""
# Create the adaptation client
adaptation_client = speech.AdaptationClient()
# The parent resource where the custom class and phrase set will be created.
parent = f"projects/{project_id}/locations/{location}"
# Create the custom class resource
adaptation_client.create_custom_class(
{
"parent": parent,
"custom_class_id": custom_class_id,
"custom_class": {
"items": [
{"value": "sushido"},
{"value": "altura"},
{"value": "taneda"},
]
},
}
)
custom_class_name = (
f"projects/{project_id}/locations/{location}/customClasses/{custom_class_id}"
)
# Create the phrase set resource
phrase_set_response = adaptation_client.create_phrase_set(
{
"parent": parent,
"phrase_set_id": phrase_set_id,
"phrase_set": {
"boost": 10,
"phrases": [
{"value": f"Visit restaurants like ${{{custom_class_name}}}"}
],
},
}
)
phrase_set_name = phrase_set_response.name
# The next section shows how to use the newly created custom
# class and phrase set to send a transcription request with speech adaptation
# Speech adaptation configuration
speech_adaptation = speech.SpeechAdaptation(phrase_set_references=[phrase_set_name])
# speech configuration object
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=24000,
language_code="en-US",
adaptation=speech_adaptation,
)
# The name of the audio file to transcribe
# storage_uri URI for audio file in Cloud Storage, e.g. gs://[BUCKET]/[FILE]
audio = speech.RecognitionAudio(uri=storage_uri)
# Create the speech client
speech_client = speech.SpeechClient()
response = speech_client.recognize(config=config, audio=audio)
for result in response.results:
print("Transcript: {}".format(result.alternatives[0].transcript))
# [END speech_transcribe_with_model_adaptation]
return response.results[0].alternatives[0].transcript