-
Notifications
You must be signed in to change notification settings - Fork 6.5k
/
Copy pathbeta_snippets.py
355 lines (275 loc) · 12 KB
/
beta_snippets.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
# Copyright 2018 Google LLC
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# https://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Google Cloud Speech API sample that demonstrates enhanced models
and recognition metadata.
Example usage:
python beta_snippets.py enhanced-model
python beta_snippets.py metadata
python beta_snippets.py punctuation
python beta_snippets.py diarization
python beta_snippets.py multi-channel
python beta_snippets.py multi-language
python beta_snippets.py word-level-conf
python beta_snippets.py spoken-punctuation-emojis
"""
import argparse
import io
def transcribe_file_with_enhanced_model():
"""Transcribe the given audio file using an enhanced model."""
# [START speech_transcribe_enhanced_model_beta]
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
speech_file = "resources/commercial_mono.wav"
with io.open(speech_file, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code="en-US",
use_enhanced=True,
# A model must be specified to use enhanced model.
model="phone_call",
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print("First alternative of result {}".format(i))
print("Transcript: {}".format(alternative.transcript))
# [END speech_transcribe_enhanced_model_beta]
def transcribe_file_with_metadata():
"""Send a request that includes recognition metadata."""
# [START speech_transcribe_recognition_metadata_beta]
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
speech_file = "resources/commercial_mono.wav"
with io.open(speech_file, "rb") as audio_file:
content = audio_file.read()
# Here we construct a recognition metadata object.
# Most metadata fields are specified as enums that can be found
# in speech.enums.RecognitionMetadata
metadata = speech.RecognitionMetadata()
metadata.interaction_type = speech.RecognitionMetadata.InteractionType.DISCUSSION
metadata.microphone_distance = (
speech.RecognitionMetadata.MicrophoneDistance.NEARFIELD
)
metadata.recording_device_type = (
speech.RecognitionMetadata.RecordingDeviceType.SMARTPHONE
)
# Some metadata fields are free form strings
metadata.recording_device_name = "Pixel 2 XL"
# And some are integers, for instance the 6 digit NAICS code
# https://www.naics.com/search/
metadata.industry_naics_code_of_audio = 519190
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code="en-US",
# Add this in the request to send metadata.
metadata=metadata,
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print("First alternative of result {}".format(i))
print("Transcript: {}".format(alternative.transcript))
# [END speech_transcribe_recognition_metadata_beta]
def transcribe_file_with_auto_punctuation():
"""Transcribe the given audio file with auto punctuation enabled."""
# [START speech_transcribe_auto_punctuation_beta]
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
speech_file = "resources/commercial_mono.wav"
with io.open(speech_file, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code="en-US",
# Enable automatic punctuation
enable_automatic_punctuation=True,
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print("First alternative of result {}".format(i))
print("Transcript: {}".format(alternative.transcript))
# [END speech_transcribe_auto_punctuation_beta]
def transcribe_file_with_diarization():
"""Transcribe the given audio file synchronously with diarization."""
# [START speech_transcribe_diarization_beta]
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
speech_file = "resources/commercial_mono.wav"
with open(speech_file, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
diarization_config = speech.SpeakerDiarizationConfig(
enable_speaker_diarization=True,
min_speaker_count=2,
max_speaker_count=10,
)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code="en-US",
diarization_config=diarization_config,
)
print("Waiting for operation to complete...")
response = client.recognize(config=config, audio=audio)
# The transcript within each result is separate and sequential per result.
# However, the words list within an alternative includes all the words
# from all the results thus far. Thus, to get all the words with speaker
# tags, you only have to take the words list from the last result:
result = response.results[-1]
words_info = result.alternatives[0].words
# Printing out the output:
for word_info in words_info:
print(
"word: '{}', speaker_tag: {}".format(word_info.word, word_info.speaker_tag)
)
# [END speech_transcribe_diarization_beta]
def transcribe_file_with_multichannel():
"""Transcribe the given audio file synchronously with
multi channel."""
# [START speech_transcribe_multichannel_beta]
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
speech_file = "resources/Google_Gnome.wav"
with open(speech_file, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
audio_channel_count=1,
enable_separate_recognition_per_channel=True,
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print("First alternative of result {}".format(i))
print("Transcript: {}".format(alternative.transcript))
print("Channel Tag: {}".format(result.channel_tag))
# [END speech_transcribe_multichannel_beta]
def transcribe_file_with_multilanguage():
"""Transcribe the given audio file synchronously with
multi language."""
# [START speech_transcribe_multilanguage_beta]
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
speech_file = "resources/multi.wav"
first_lang = "en-US"
second_lang = "es"
with open(speech_file, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=44100,
audio_channel_count=2,
language_code=first_lang,
alternative_language_codes=[second_lang],
)
print("Waiting for operation to complete...")
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print("First alternative of result {}: {}".format(i, alternative))
print("Transcript: {}".format(alternative.transcript))
# [END speech_transcribe_multilanguage_beta]
def transcribe_file_with_word_level_confidence():
"""Transcribe the given audio file synchronously with
word level confidence."""
# [START speech_transcribe_word_level_confidence_beta]
from google.cloud import speech_v1p1beta1 as speech
client = speech.SpeechClient()
speech_file = "resources/Google_Gnome.wav"
with open(speech_file, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=16000,
language_code="en-US",
enable_word_confidence=True,
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print("First alternative of result {}".format(i))
print("Transcript: {}".format(alternative.transcript))
print(
"First Word and Confidence: ({}, {})".format(
alternative.words[0].word, alternative.words[0].confidence
)
)
# [END speech_transcribe_word_level_confidence_beta]
def transcribe_file_with_spoken_punctuation_end_emojis():
"""Transcribe the given audio file with spoken punctuation and emojis enabled."""
# [START speech_transcribe_spoken_punctuation_emojis_beta]
from google.cloud import speech_v1p1beta1 as speech
from google.protobuf import wrappers_pb2
client = speech.SpeechClient()
speech_file = "resources/commercial_mono.wav"
with io.open(speech_file, "rb") as audio_file:
content = audio_file.read()
audio = speech.RecognitionAudio(content=content)
config = speech.RecognitionConfig(
encoding=speech.RecognitionConfig.AudioEncoding.LINEAR16,
sample_rate_hertz=8000,
language_code="en-US",
# Enable spoken punctuation
enable_spoken_punctuation=wrappers_pb2.BoolValue(value=True),
# Enable spoken emojis
enable_spoken_emojis=wrappers_pb2.BoolValue(value=True),
)
response = client.recognize(config=config, audio=audio)
for i, result in enumerate(response.results):
alternative = result.alternatives[0]
print("-" * 20)
print("First alternative of result {}".format(i))
print("Transcript: {}".format(alternative.transcript))
# [END speech_transcribe_spoken_punctuation_emojis_beta]
if __name__ == "__main__":
parser = argparse.ArgumentParser(
description=__doc__, formatter_class=argparse.RawDescriptionHelpFormatter
)
parser.add_argument("command")
args = parser.parse_args()
if args.command == "enhanced-model":
transcribe_file_with_enhanced_model()
elif args.command == "metadata":
transcribe_file_with_metadata()
elif args.command == "punctuation":
transcribe_file_with_auto_punctuation()
elif args.command == "diarization":
transcribe_file_with_diarization()
elif args.command == "multi-channel":
transcribe_file_with_multichannel()
elif args.command == "multi-language":
transcribe_file_with_multilanguage()
elif args.command == "word-level-conf":
transcribe_file_with_word_level_confidence()
elif args.command == "spoken-punctuation-emojis":
transcribe_file_with_spoken_punctuation_end_emojis()