-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathrun.py
executable file
·247 lines (200 loc) · 8.1 KB
/
run.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
import os,itertools
from torchvision import transforms
from PIL import Image
from torch.utils.data import DataLoader
from torchvision.datasets import ImageFolder
from torchvision.utils import save_image, make_grid
# Create sample and checkpoint directories
dataset_name = 'old2young'
os.makedirs("images/%s" % dataset_name, exist_ok=True)
os.makedirs("saved_models/%s" % dataset_name, exist_ok=True)
from data import *
from model import *
n_epochs=10
epoch=offset=0
decay_start_epoch=3
input_shape = (3,40,40)
c,img_height,img_width = input_shape
batch_size = 1
lr = 2e-4
checkpoint_interval = 1
sample_interval = 100
lambda_cyc = 10
lambda_id = 5
# Losses
criterion_GAN = torch.nn.MSELoss()
criterion_cycle = torch.nn.L1Loss()
criterion_identity = torch.nn.L1Loss()
# Initialize generator and discriminator
G_AB = GeneratorResNet(input_shape, num_residual_blocks=3)
G_BA = GeneratorResNet(input_shape, num_residual_blocks=3)
D_A = Discriminator(input_shape)
D_B = Discriminator(input_shape)
gpu_flag = torch.cuda.is_available()
if gpu_flag:
G_AB = G_AB.cuda()
G_BA = G_BA.cuda()
D_A = D_A.cuda()
D_B = D_B.cuda()
criterion_GAN.cuda()
criterion_cycle.cuda()
criterion_identity.cuda()
if epoch != 0: # Resuming Trainning from Checkpoints
# Load pretrained models
G_AB.load_state_dict(torch.load("saved_models/%s/G_AB_%d.pth" % (dataset_name, epoch)))
G_BA.load_state_dict(torch.load("saved_models/%s/G_BA_%d.pth" % (dataset_name, epoch)))
D_A.load_state_dict(torch.load("saved_models/%s/D_A_%d.pth" % (dataset_name, epoch)))
D_B.load_state_dict(torch.load("saved_models/%s/D_B_%d.pth" % (dataset_name, epoch)))
else:
# Initialize weights
G_AB.apply(weights_init_normal)
G_BA.apply(weights_init_normal)
D_A.apply(weights_init_normal)
D_B.apply(weights_init_normal)
# Optimizers
optimizer_G = torch.optim.Adam(itertools.chain(G_AB.parameters(), G_BA.parameters()), lr=lr, betas=(0.5, 0.999))
optimizer_D_A = torch.optim.Adam(D_A.parameters(), lr=lr, betas=(0.5, 0.999))
optimizer_D_B = torch.optim.Adam(D_B.parameters(), lr=lr, betas=(0.5, 0.999))
# Learning rate update schedulers
decay_lr_step = lambda epoch : 1.0 - max(0,epoch + offset - decay_start_epoch)/(n_epochs - decay_start_epoch)
lr_scheduler_G = torch.optim.lr_scheduler.LambdaLR(optimizer_G, lr_lambda=decay_lr_step)
lr_scheduler_D_A = torch.optim.lr_scheduler.LambdaLR(optimizer_D_A, lr_lambda=decay_lr_step)
lr_scheduler_D_B = torch.optim.lr_scheduler.LambdaLR(optimizer_D_B, lr_lambda=decay_lr_step)
Tensor = torch.cuda.FloatTensor if gpu_flag else torch.Tensor
# Buffers of previously generated samples
fake_A_buffer = ReplayBuffer()
fake_B_buffer = ReplayBuffer()
# Image transformations
transforms_ = [
transforms.Resize(int(img_height * 1.12), Image.BICUBIC),
transforms.RandomCrop((img_height, img_width)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)),
]
# Training data loader
train_dataloader = DataLoader(
CycleGANDataset(f'{dataset_name}', transforms_=transforms_, unaligned=True),
batch_size=batch_size,
shuffle=True,
num_workers=0,
)
# Test data loader
val_dataloader = DataLoader(
CycleGANDataset(f'{dataset_name}', transforms_=transforms_, unaligned=True, mode="test"),
batch_size=5,
shuffle=True,
num_workers=0,
)
device = 'cuda' if torch.cuda.is_available() else 'cpu'
def sample_images(batches_done):
"""Saves a generated sample from the test set"""
imgs = next(iter(val_dataloader))
G_AB.eval()
G_BA.eval()
real_A = imgs["A"].to(device)
fake_B = G_AB(real_A)
real_B = imgs["B"].to(device)
fake_A = G_BA(real_B)
# Arange images along x-axis
real_A = make_grid(real_A, nrow=5, normalize=True)
real_B = make_grid(real_B, nrow=5, normalize=True)
fake_A = make_grid(fake_A, nrow=5, normalize=True)
fake_B = make_grid(fake_B, nrow=5, normalize=True)
# Arange images along y-axis
image_grid = torch.cat((real_A, fake_B, real_B, fake_A), 1)
save_image(image_grid, "images/%s/%s.png" % (dataset_name, batches_done), normalize=False)
for epoch in range(epoch, n_epochs):
print(f"Starting Epoch : {epoch}")
for i, batch in enumerate(train_dataloader):
# Set model input
real_A = batch["A"].to(device)
real_B = batch["B"].to(device)
# Adversarial ground truths
valid = torch.ones(((real_A.size(0), *D_A.output_shape)), requires_grad=False).to(device)
fake = torch.zeros(((real_A.size(0), *D_A.output_shape)), requires_grad=False).to(device)
# ------------------
# Train Generators
# ------------------
G_AB.train()
G_BA.train()
optimizer_G.zero_grad()
# Identity loss
loss_id_A = criterion_identity(G_BA(real_A), real_A)
loss_id_B = criterion_identity(G_AB(real_B), real_B)
loss_identity = (loss_id_A + loss_id_B) / 2
# GAN loss
fake_B = G_AB(real_A)
loss_GAN_AB = criterion_GAN(D_B(fake_B), valid)
fake_A = G_BA(real_B)
loss_GAN_BA = criterion_GAN(D_A(fake_A), valid)
loss_GAN = (loss_GAN_AB + loss_GAN_BA) / 2
# Cycle loss
recov_A = G_BA(fake_B)
loss_cycle_A = criterion_cycle(recov_A, real_A)
recov_B = G_AB(fake_A)
loss_cycle_B = criterion_cycle(recov_B, real_B)
loss_cycle = (loss_cycle_A + loss_cycle_B) / 2
# Total loss
loss_G = loss_GAN + lambda_cyc * loss_cycle + lambda_id * loss_identity
loss_G.backward()
optimizer_G.step()
# -----------------------
# Train Discriminator A
# -----------------------
optimizer_D_A.zero_grad()
# Real loss
loss_real = criterion_GAN(D_A(real_A), valid)
# Fake loss (on batch of previously generated samples)
fake_A_ = fake_A_buffer.push_and_pop(fake_A)
loss_fake = criterion_GAN(D_A(fake_A_.detach()), fake)
# Total loss
loss_D_A = (loss_real + loss_fake) / 2
loss_D_A.backward()
optimizer_D_A.step()
# -----------------------
# Train Discriminator B
# -----------------------
optimizer_D_B.zero_grad()
# Real loss
loss_real = criterion_GAN(D_B(real_B), valid)
# Fake loss (on batch of previously generated samples)
fake_B_ = fake_B_buffer.push_and_pop(fake_B)
loss_fake = criterion_GAN(D_B(fake_B_.detach()), fake)
# Total loss
loss_D_B = (loss_real + loss_fake) / 2
loss_D_B.backward()
optimizer_D_B.step()
loss_D = (loss_D_A + loss_D_B) / 2
# --------------
# Log Progress
# --------------
# Print log
batches_done = epoch * len(train_dataloader) + i
sys.stdout.write(
"\r[Epoch %d/%d] [Batch %d/%d] [D loss: %f] [G loss: %f, adv: %f, cycle: %f, identity: %f]"
% (
epoch,
n_epochs,
i,
len(train_dataloader),
loss_D.item(),
loss_G.item(),
loss_GAN.item(),
loss_cycle.item(),
loss_identity.item(),
)
)
# If at sample interval save image
if batches_done % sample_interval == 0:
sample_images(batches_done)
# Update learning rates
lr_scheduler_G.step()
lr_scheduler_D_A.step()
lr_scheduler_D_B.step()
if checkpoint_interval != -1 and epoch % checkpoint_interval == 0:
# Save model checkpoints
torch.save(G_AB.state_dict(), "saved_models/%s/G_AB_%d.pth" % (dataset_name, epoch))
torch.save(G_BA.state_dict(), "saved_models/%s/G_BA_%d.pth" % (dataset_name, epoch))
torch.save(D_A.state_dict(), "saved_models/%s/D_A_%d.pth" % (dataset_name, epoch))
torch.save(D_B.state_dict(), "saved_models/%s/D_B_%d.pth" % (dataset_name, epoch))