-
Notifications
You must be signed in to change notification settings - Fork 7
/
Copy pathutils.py
324 lines (279 loc) · 10.9 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
from collections import defaultdict, Counter
import random
import torch
import numpy as np
from IPython import embed
import scipy.sparse as sp
import networkx as nx
import sys
import pickle as pkl
from itertools import combinations
def pairwise_distances(x, y=None):
'''
Input: x is a Nxd matrix
y is an optional Mxd matirx
Output: dist is a NxM matrix where dist[i,j] is the square norm between x[i,:] and y[j,:]
if y is not given then use 'y=x'.
i.e. dist[i,j] = ||x[i,:]-y[j,:]||^2
'''
x_norm = (x**2).sum(1).view(-1, 1)
if y is not None:
y_t = torch.transpose(y, 0, 1)
y_norm = (y**2).sum(1).view(1, -1)
else:
y_t = torch.transpose(x, 0, 1)
y_norm = x_norm.view(1, -1)
dist = x_norm + y_norm - 2.0 * torch.mm(x, y_t)
# Ensure diagonal is zero if x=y
# if y is None:
# dist = dist - torch.diag(dist.diag)
return torch.clamp(dist, 0.0, np.inf)
def generateUnseen(num_class, num_unseen):
return combinations(range(num_class), num_unseen)
def load_data_dblp(args):
dataset = args.dataset
metapaths = args.metapaths
sc = args.sc
if dataset == 'acm':
data = sio.loadmat('data/{}.mat'.format(dataset))
else:
data = pkl.load(open('data/{}.pkl'.format('dblp_v8_reducedlabel_20'), "rb"))
label = data['label']
N = label.shape[0]
truefeatures = data['feature'].astype(float)
rownetworks = [data[metapath] + np.eye(N)*sc for metapath in metapaths]
# embed()
rownetworks = [sp.csr_matrix(rownetwork) for rownetwork in rownetworks]
truefeatures = sp.lil_matrix(truefeatures)
idx_train = data['train_idx'].ravel()
idx_val = data['val_idx'].ravel()
idx_test = data['test_idx'].ravel()
truefeatures_list = []
for _ in range(len(rownetworks)):
truefeatures_list.append(truefeatures)
return rownetworks, truefeatures_list, label, idx_train, idx_val, idx_test
def load_data(dataset_str): # {'pubmed', 'citeseer', 'cora'}
"""Load data."""
names = ['x', 'y', 'tx', 'ty', 'allx', 'ally', 'graph']
objects = []
for i in range(len(names)):
with open("data/ind.{}.{}".format(dataset_str, names[i]), 'rb') as f:
if sys.version_info > (3, 0):
objects.append(pkl.load(f, encoding='latin1'))
else:
#if True:
objects.append(pkl.load(f))
x, y, tx, ty, allx, ally, graph = tuple(objects)
test_idx_reorder = parse_index_file("data/ind.{}.test.index".format(dataset_str))
test_idx_range = np.sort(test_idx_reorder)
# embed()
if dataset_str == 'citeseer':
# Fix citeseer dataset (there are some isolated nodes in the graph)
# Find isolated nodes, add them as zero-vecs into the right position
test_idx_range_full = range(min(test_idx_reorder), max(test_idx_reorder)+1)
tx_extended = sp.lil_matrix((len(test_idx_range_full), x.shape[1]))
tx_extended[test_idx_range-min(test_idx_range), :] = tx
tx = tx_extended
ty_extended = np.zeros((len(test_idx_range_full), y.shape[1]))
ty_extended[test_idx_range-min(test_idx_range), :] = ty
ty = ty_extended
# embed()
features = sp.vstack((allx, tx)).tolil()
features[test_idx_reorder, :] = features[test_idx_range, :]
adj = nx.adjacency_matrix(nx.from_dict_of_lists(graph))
#embed()
labels = np.vstack((ally, ty))
labels[test_idx_reorder, :] = labels[test_idx_range, :]
idx_test = test_idx_range.tolist()
#embed()
#idx_train = range(len(y))
if dataset_str == 'pubmed':
idx_train = range(10000)
elif dataset_str == 'cora':
idx_train = range(1500)
else:
idx_train = range(1000)
idx_val = range(len(y), len(y)+500)
return adj, features, labels, idx_train, idx_val, idx_test
def parse_index_file(filename):
"""Parse index file."""
index = []
for line in open(filename):
index.append(int(line.strip()))
return index
def createTraining(labels, max_train=200, balance=True, new_classes=[]):
dist = defaultdict(list)
train_mask = torch.zeros(labels.shape, dtype=torch.bool)
for idx,l in enumerate(labels.numpy().tolist()[:max_train]):
dist[l].append(idx)
# print(dist)
cat = []
_sum = 0
if balance:
for k in dist:
if k in new_classes:
continue
_sum += len(dist[k])
# cat += random.sample(dist[k], k=15)
train_mask[random.sample(dist[k], k=3)] = 1
for k in new_classes:
train_mask[random.sample(dist[k], k=3)] = 1
# print(_sum, sum(train_mask))
return train_mask
# print(len(set(cat)))
def preprocess_features(features):
"""Row-normalize feature matrix and convert to tuple representation"""
rowsum = np.array(features.sum(1))
r_inv = np.power(rowsum, -1).flatten()
r_inv[np.isinf(r_inv)] = 0.
r_mat_inv = sp.diags(r_inv)
features = r_mat_inv.dot(features)
try:
return features.todense()
except:
return features
def normalize_adj(adj):
"""Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -0.5).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def ind_normalize_adj(adj):
# """Symmetrically normalize adjacency matrix."""
adj = sp.coo_matrix(adj)
rowsum = np.array(adj.sum(1))
d_inv_sqrt = np.power(rowsum, -1).flatten()
d_inv_sqrt[np.isinf(d_inv_sqrt)] = 0.
d_mat_inv_sqrt = sp.diags(d_inv_sqrt)
return d_mat_inv_sqrt.dot(adj).tocoo()
#return adj.dot(d_mat_inv_sqrt).transpose().dot(d_mat_inv_sqrt).tocoo()
def sparse_mx_to_torch_sparse_tensor(sparse_mx):
"""Convert a scipy sparse matrix to a torch sparse tensor."""
sparse_mx = sparse_mx.tocoo().astype(np.float32)
indices = torch.from_numpy(
np.vstack((sparse_mx.row, sparse_mx.col)).astype(np.int64))
values = torch.from_numpy(sparse_mx.data)
shape = torch.Size(sparse_mx.shape)
return torch.sparse.FloatTensor(indices, values, shape)
import itertools
def createDBLPTraining(labels, idx_train, idx_val, idx_test, max_train=20, balance=True, new_classes=[], unknown=False):
labels = [np.where(r==1)[0][0] if r.sum() > 0 else -1 for r in labels]
#print(Counter(labels))
new_mapping = {}
dist = defaultdict(list)
new_idx_train, new_idx_val, in_idx_test, out_idx_test, new_idx_test = [], [], [], [], []
for idx in idx_train:
dist[labels[idx]].append(idx)
for k in range(len(dist)):
if k not in new_classes:
new_mapping[k] = len(new_mapping)
# embed()
if False:
for idx in idx_train:
if labels[idx]:
#unknown label id
new_idx_train.append(idx)
else:
for k in dist:
# embed()
if max_train < len(dist[k]):
new_idx_train += np.random.choice(dist[k], max_train, replace=False).tolist()
else:
new_idx_train += dist[k]
# print(len(set(new_idx_train)))
for idx in idx_val:
if labels[idx] in new_mapping:
#unknown label id
new_idx_val.append(idx)
else:
new_idx_val.append(idx)
for idx in idx_test:
if labels[idx] in new_mapping:
#unknown label id
new_idx_test.append(idx)
in_idx_test.append(idx)
else:
#unknown class
if unknown:
new_idx_test.append(idx)
out_idx_test.append(idx)
for idx,label in enumerate(labels):
if label < 0:
continue
if label in new_mapping:
labels[idx] = new_mapping[label]
else:
labels[idx] = len(new_mapping)
#print('its here')
# embed()
return new_idx_train, new_idx_val, in_idx_test, new_idx_test, out_idx_test, labels
def createPPITraining(train_labels, val_labels, test_labels, idx_train, idx_val, idx_test, new_classes=[], unknown=False):
# labels = [np.where(r==1)[0][0] for r in labels]
new_mapping = {}
dist = defaultdict(list)
new_idx_train, new_idx_val, in_idx_test, out_idx_test, new_idx_test = [], [], [], [], []
for idx in idx_train:
dist[train_labels[idx]].append(idx)
for k in range(len(dist)):
if k not in new_classes:
new_mapping[k] = len(new_mapping)
for idx in idx_train:
assert train_labels[idx] > -1
if train_labels[idx] in new_mapping:
#unknown label id
new_idx_train.append(idx)
train_labels[idx] = new_mapping[train_labels[idx]]
else:
train_labels[idx] = len(new_mapping)
for idx in idx_val:
assert val_labels[idx] > -1
if val_labels[idx] in new_mapping:
#unknown label id
new_idx_val.append(idx)
val_labels[idx] = new_mapping[val_labels[idx]]
else:
new_idx_val.append(idx)
val_labels[idx] = len(new_mapping)
for idx in idx_test:
assert test_labels[idx] > -1
if test_labels[idx] in new_mapping:
#unknown label id
new_idx_test.append(idx)
in_idx_test.append(idx)
test_labels[idx] = new_mapping[test_labels[idx]]
else:
#unknown class
test_labels[idx] = len(new_mapping)
if unknown:
new_idx_test.append(idx)
out_idx_test.append(idx)
print(new_mapping)
return new_idx_train, new_idx_val, in_idx_test, out_idx_test, new_idx_test
def createClusteringData(labels, idx_train, idx_val, idx_test, max_train=200, balance=True, new_classes=[], unknown=False):
labels = [np.where(r==1)[0][0] for r in labels]
#
# np.where(labels==1)
new_mapping = {}
dist = defaultdict(list)
for idx in idx_train:
dist[labels[idx]].append(idx)
# train_mask[idx] = 1
for k in range(len(dist)):
if k not in new_classes:
new_mapping[k] = len(new_mapping)
print('new mapping is {}'.format(new_mapping))
new_idx_train, new_labels = [], []
# embed()
for idx in idx_train:
if labels[idx] not in new_classes:
new_idx_train.append(idx)
for idx,label in enumerate(labels):
if label in new_mapping:
new_labels.append(new_mapping[label])
else:
new_labels.append(len(new_mapping))
# print(dist)
# embed()
return new_idx_train, labels, new_labels