This repository has been archived by the owner on Jan 3, 2023. It is now read-only.
-
Notifications
You must be signed in to change notification settings - Fork 73
/
Copy pathDepthBufferRasterizerAVXMT.cpp
536 lines (446 loc) · 23.2 KB
/
DepthBufferRasterizerAVXMT.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
////////////////////////////////////////////////////////////////////////////////
// Copyright 2017 Intel Corporation
//
// Licensed under the Apache License, Version 2.0 (the "License"); you may not
// use this file except in compliance with the License. You may obtain a copy
// of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
// WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
// License for the specific language governing permissions and limitations
// under the License.
////////////////////////////////////////////////////////////////////////////////
#include "DepthBufferRasterizerAVXMT.h"
#include"HelperMT.h"
DepthBufferRasterizerAVXMT::DepthBufferRasterizerAVXMT()
: DepthBufferRasterizerAVX()
{
int size = SCREENH_IN_TILES * SCREENW_IN_TILES * NUM_XFORMVERTS_TASKS;
mpBin[0] = new BinTriangle[size * MAX_TRIS_IN_BIN_MT];
mpNumTrisInBin[0] = (USHORT*)_aligned_malloc(size * sizeof(USHORT), 64);
mpBin[1] = new BinTriangle[size * MAX_TRIS_IN_BIN_MT];
mpNumTrisInBin[1] = (USHORT*)_aligned_malloc(size * sizeof(USHORT), 64);
}
DepthBufferRasterizerAVXMT::~DepthBufferRasterizerAVXMT()
{
SAFE_DELETE_ARRAY(mpBin[0]);
_aligned_free(mpNumTrisInBin[0]);
SAFE_DELETE_ARRAY(mpBin[1]);
_aligned_free(mpNumTrisInBin[1]);
}
void DepthBufferRasterizerAVXMT::InsideViewFrustum(VOID *taskData, INT context, UINT taskId, UINT taskCount)
{
PerTaskData *pTaskData = (PerTaskData*)taskData;
pTaskData->pDBR->InsideViewFrustum(taskId, taskCount, pTaskData->idx);
}
//------------------------------------------------------------
// * Determine if the occluder model is inside view frustum
//------------------------------------------------------------
void DepthBufferRasterizerAVXMT::InsideViewFrustum(UINT taskId, UINT taskCount, UINT idx)
{
UINT start, end;
GetWorkExtent(&start, &end, taskId, taskCount, mNumModels1);
BoxTestSetupSSE setup;
setup.Init(mpViewMatrix[idx], mpProjMatrix[idx], viewportMatrix, mpCamera[idx], mOccluderSizeThreshold);
for(UINT i = start; i < end; i++)
{
mpTransformedModels1[i].InsideViewFrustum(setup, idx);
}
}
void DepthBufferRasterizerAVXMT::TooSmall(VOID *taskData, INT context, UINT taskId, UINT taskCount)
{
PerTaskData *pTaskData = (PerTaskData*)taskData;
pTaskData->pDBR->TooSmall(taskId, taskCount, pTaskData->idx);
}
//------------------------------------------------------------
// * Determine if the occluder model is too small in screen space
//------------------------------------------------------------
void DepthBufferRasterizerAVXMT::TooSmall(UINT taskId, UINT taskCount, UINT idx)
{
UINT start, end;
GetWorkExtent(&start, &end, taskId, taskCount, mNumModels1);
BoxTestSetupSSE setup;
setup.Init(mpViewMatrix[idx], mpProjMatrix[idx], viewportMatrix, mpCamera[idx], mOccluderSizeThreshold);
for(UINT i = start; i < end; i++)
{
mpTransformedModels1[i].TooSmall(setup, idx);
}
}
void DepthBufferRasterizerAVXMT::ActiveModels(VOID* taskData, INT context, UINT taskId, UINT taskCount)
{
PerTaskData *pTaskData = (PerTaskData*)taskData;
pTaskData->pDBR->ActiveModels(taskId, pTaskData->idx);
}
void DepthBufferRasterizerAVXMT::ActiveModels(UINT taskId, UINT idx)
{
ResetActive(idx);
for (UINT i = 0; i < mNumModels1; i++)
{
if(mpTransformedModels1[i].IsRasterized2DB(idx))
{
Activate(i, idx);
}
}
}
//------------------------------------------------------------------------------
// Create tasks to determine if the occluder model is within the viewing frustum
// Create NUM_XFORMVERTS_TASKS to:
// * Transform the occluder models on the CPU
// * Bin the occluder triangles into tiles that the frame buffer is divided into
// * Rasterize the occluder triangles to the CPU depth buffer
//-------------------------------------------------------------------------------
void DepthBufferRasterizerAVXMT::TransformModelsAndRasterizeToDepthBuffer(CPUTCamera *pCamera, UINT idx)
{
static const unsigned int kNumOccluderVisTasks = 32;
mTaskData[idx].idx = idx;
mTaskData[idx].pDBR = this;
QueryPerformanceCounter(&mStartTime[idx]);
mpCamera[idx] = pCamera;
if(mEnableFCulling)
{
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::InsideViewFrustum, &mTaskData[idx], kNumOccluderVisTasks, NULL, 0, "Is Visible", &gInsideViewFrustum[idx]);
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::ActiveModels, &mTaskData[idx], 1, &gInsideViewFrustum[idx], 1, "IsActive", &gActiveModels[idx]);
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::TransformMeshes, &mTaskData[idx], NUM_XFORMVERTS_TASKS, &gActiveModels[idx], 1, "Xform Vertices", &gXformMesh[idx]);
}
else
{
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::TooSmall, &mTaskData[idx], kNumOccluderVisTasks, NULL, 0, "TooSmall", &gTooSmall[idx]);
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::ActiveModels, &mTaskData[idx], 1, &gTooSmall[idx], 1, "IsActive", &gActiveModels[idx]);
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::TransformMeshes, &mTaskData[idx], NUM_XFORMVERTS_TASKS, &gActiveModels[idx], 1, "Xform Vertices", &gXformMesh[idx]);
}
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::BinTransformedMeshes, &mTaskData[idx], NUM_XFORMVERTS_TASKS, &gXformMesh[idx], 1, "Bin Meshes", &gBinMesh[idx]);
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::SortBins, &mTaskData[idx], 1, &gBinMesh[idx], 1, "BinSort", &gSortBins[idx]);
gTaskMgr.CreateTaskSet(&DepthBufferRasterizerAVXMT::RasterizeBinnedTrianglesToDepthBuffer, &mTaskData[idx], NUM_TILES, &gSortBins[idx], 1, "Raster Tris to DB", &gRasterize[idx]);
}
void DepthBufferRasterizerAVXMT::TransformMeshes(VOID* taskData, INT context, UINT taskId, UINT taskCount)
{
PerTaskData *pTaskData = (PerTaskData*)taskData;
pTaskData->pDBR->TransformMeshes(taskId, taskCount, pTaskData->idx);
}
//------------------------------------------------------------------------------------------------------------
// This function combines the vertices of all the occluder models in the scene and processes the models/meshes
// that contain the task's triangle range. It trsanform the occluder vertices once every frame
//------------------------------------------------------------------------------------------------------------
void DepthBufferRasterizerAVXMT::TransformMeshes(UINT taskId, UINT taskCount, UINT idx)
{
UINT verticesPerTask = mNumVerticesA[idx]/taskCount;
verticesPerTask = (mNumVerticesA[idx] % taskCount) > 0 ? verticesPerTask + 1 : verticesPerTask;
UINT startIndex = taskId * verticesPerTask;
UINT remainingVerticesPerTask = verticesPerTask;
// Now, process all of the surfaces that contain this task's triangle range.
UINT runningVertexCount = 0;
for(UINT active = 0; active < mNumModelsA[idx]; active++)
{
UINT ss = mpModelIndexA[idx][active];
UINT thisSurfaceVertexCount = mpTransformedModels1[ss].GetNumVertices();
UINT newRunningVertexCount = runningVertexCount + thisSurfaceVertexCount;
if( newRunningVertexCount < startIndex )
{
// We haven't reached the first surface in our range yet. Skip to the next surface.
runningVertexCount = newRunningVertexCount;
continue;
}
// If we got this far, then we need to process this surface.
UINT thisSurfaceStartIndex = max( 0, (int)startIndex - (int)runningVertexCount );
UINT thisSurfaceEndIndex = min( thisSurfaceStartIndex + remainingVerticesPerTask, thisSurfaceVertexCount) - 1;
mpTransformedModels1[ss].TransformMeshes(thisSurfaceStartIndex, thisSurfaceEndIndex, mpCamera[idx], idx);
remainingVerticesPerTask -= (thisSurfaceEndIndex + 1 - thisSurfaceStartIndex);
if( remainingVerticesPerTask <= 0 ) break;
runningVertexCount = newRunningVertexCount;
}
}
void DepthBufferRasterizerAVXMT::BinTransformedMeshes(VOID* taskData, INT context, UINT taskId, UINT taskCount)
{
PerTaskData *pTaskData = (PerTaskData*)taskData;
pTaskData->pDBR->BinTransformedMeshes(taskId, taskCount, pTaskData->idx);
}
//--------------------------------------------------------------------------------------
// This function combines the triangles of all the occluder models in the scene and processes
// the models/meshes that contain the task's triangle range. It bins the occluder triangles
// into tiles once every frame
//--------------------------------------------------------------------------------------
void DepthBufferRasterizerAVXMT::BinTransformedMeshes(UINT taskId, UINT taskCount, UINT idx)
{
// Reset the bin count. Note the data layout makes this traversal a bit awkward.
// We can't just use memset() because the last array index isn't what's varying.
// However, this should make the real use of this structure go faster.
for(UINT yy = 0; yy < SCREENH_IN_TILES; yy++)
{
UINT offset = YOFFSET1_MT * yy;
for(UINT xx = 0; xx < SCREENW_IN_TILES; xx++)
{
UINT index = offset + (XOFFSET1_MT * xx) + (TOFFSET1_MT * taskId);
mpNumTrisInBin[idx][index] = 0;
}
}
// Making sure that the #of Tris in each task (except the last one) is a multiple of 4
UINT trianglesPerTask = (mNumTrianglesA[idx] + taskCount - 1)/taskCount;
trianglesPerTask += (trianglesPerTask % SSE) != 0 ? SSE - (trianglesPerTask % SSE) : 0;
UINT startIndex = taskId * trianglesPerTask;
UINT remainingTrianglesPerTask = trianglesPerTask;
// Now, process all of the surfaces that contain this task's triangle range.
UINT runningTriangleCount = 0;
for(UINT active = 0; active < mNumModelsA[idx]; active++)
{
UINT ss = mpModelIndexA[idx][active];
UINT thisSurfaceTriangleCount = mpTransformedModels1[ss].GetNumTriangles();
UINT newRunningTriangleCount = runningTriangleCount + thisSurfaceTriangleCount;
if( newRunningTriangleCount < startIndex )
{
// We haven't reached the first surface in our range yet. Skip to the next surface.
runningTriangleCount = newRunningTriangleCount;
continue;
}
// If we got this far, then we need to process this surface.
UINT thisSurfaceStartIndex = max( 0, (int)startIndex - (int)runningTriangleCount );
UINT thisSurfaceEndIndex = min( thisSurfaceStartIndex + remainingTrianglesPerTask, thisSurfaceTriangleCount) - 1;
mpTransformedModels1[ss].BinTransformedTrianglesMT(taskId, ss, thisSurfaceStartIndex, thisSurfaceEndIndex, mpBin[idx], mpNumTrisInBin[idx], idx);
remainingTrianglesPerTask -= ( thisSurfaceEndIndex + 1 - thisSurfaceStartIndex);
if( remainingTrianglesPerTask <= 0 ) break;
runningTriangleCount = newRunningTriangleCount;
}
}
void DepthBufferRasterizerAVXMT::RasterizeBinnedTrianglesToDepthBuffer(VOID* taskData, INT context, UINT taskId, UINT taskCount)
{
PerTaskData *pTaskData = (PerTaskData*)taskData;
pTaskData->pDBR->RasterizeBinnedTrianglesToDepthBuffer(taskId, pTaskData->idx);
}
//--------------------------------------------------------------------------------------
// This function sorts the tiles in order of decreasing number of triangles; since the
// scheduler starts tasks roughly in order, the idea is to put the "fat tiles" first
// and leave the small jobs for last. This is to avoid the pathological case where a
// relatively big tile gets picked up late (as the other worker threads are about to
// finish) and rendering effectively completes single-threaded.
//--------------------------------------------------------------------------------------
void DepthBufferRasterizerAVXMT::SortBins(VOID* taskData, INT context, UINT taskId, UINT taskCount)
{
PerTaskData *pTaskData = (PerTaskData*)taskData;
// Initialize sequence in sequential order and compute total number of triangles
// in the bins for each tile
UINT tileTotalTris[NUM_TILES];
for(UINT tile = 0; tile < NUM_TILES; tile++)
{
pTaskData->pDBR->mTileSequence[pTaskData->idx][tile] = tile;
UINT numTris = 0;
for (UINT bin = 0; bin < NUM_XFORMVERTS_TASKS; bin++)
{
numTris += pTaskData->pDBR->mpNumTrisInBin[pTaskData->idx][tile * NUM_XFORMVERTS_TASKS + bin];
}
tileTotalTris[tile] = numTris;
}
// Sort tiles by number of triangles, decreasing.
std::sort(pTaskData->pDBR->mTileSequence[pTaskData->idx], pTaskData->pDBR->mTileSequence[pTaskData->idx] + NUM_TILES,
[&](const UINT a, const UINT b){ return tileTotalTris[a] > tileTotalTris[b]; });
}
//-------------------------------------------------------------------------------
// For each tile go through all the bins and process all the triangles in it.
// Rasterize each triangle to the CPU depth buffer.
//-------------------------------------------------------------------------------
void DepthBufferRasterizerAVXMT::RasterizeBinnedTrianglesToDepthBuffer(UINT rawTaskId, UINT idx)
{
UINT taskId = mTileSequence[idx][rawTaskId];
// Set DAZ and FZ MXCSR bits to flush denormals to zero (i.e., make it faster)
// Denormal are zero (DAZ) is bit 6 and Flush to zero (FZ) is bit 15.
// so to enable the two to have to set bits 6 and 15 which 1000 0000 0100 0000 = 0x8040
_mm_setcsr( _mm_getcsr() | 0x8040 );
__m256i colOffset = _mm256_setr_epi32(0, 1, 2, 3, 0, 1, 2, 3);
__m256i rowOffset = _mm256_setr_epi32(0, 0, 0, 0, 1, 1, 1, 1);
float* pDepthBuffer = (float*)mpRenderTargetPixels[idx];
// Based on TaskId determine which tile to process
UINT screenWidthInTiles = SCREENW/TILE_WIDTH_IN_PIXELS;
UINT tileX = taskId % screenWidthInTiles;
UINT tileY = taskId / screenWidthInTiles;
int tileStartX = tileX * TILE_WIDTH_IN_PIXELS;
int tileEndX = min(tileStartX + TILE_WIDTH_IN_PIXELS - 1, SCREENW - 1);
int tileStartY = tileY * TILE_HEIGHT_IN_PIXELS;
int tileEndY = min(tileStartY + TILE_HEIGHT_IN_PIXELS - 1, SCREENH - 1);
ClearDepthTile(tileStartX, tileStartY, tileEndX + 1, tileEndY + 1, idx);
UINT bin = 0;
UINT binIndex = 0;
UINT offset1 = YOFFSET1_MT * tileY + XOFFSET1_MT * tileX;
UINT offset2 = YOFFSET2_MT * tileY + XOFFSET2_MT * tileX;
UINT numTrisInBin = mpNumTrisInBin[idx][offset1 + TOFFSET1_MT * bin];
__declspec(align(32)) int vIndex[8] = { 0, 24, 48, 72, 96, 120, 144, 168 };
__m256i gatherBuf[6];
__m256i gatherBufvindex = _mm256_load_si256((const __m256i *)vIndex);
__m256i four = _mm256_set1_epi32(4);
bool done = false;
bool allBinsEmpty = true;
mNumRasterizedTris[idx][taskId] = numTrisInBin;
while (!done)
{
// *****************************************************************************************
// Loop through all the bins and process 8 binned triangles at a time
int numSimdTris = 0;
int numTrisToProcess = 0;
{
while (numTrisInBin <= 0)
{
// This bin is empty. Move to next bin.
if (++bin >= NUM_XFORMVERTS_TASKS)
{
break;
}
numTrisInBin = mpNumTrisInBin[idx][offset1 + TOFFSET1_MT * bin];
mNumRasterizedTris[idx][taskId] += numTrisInBin;
binIndex = 0;
}
if (numTrisInBin > 0)
{
if (numTrisInBin >= 8)
{
gatherBufvindex = _mm256_load_si256((const __m256i *)vIndex);
numTrisToProcess = 8;
}
else
{
gatherBufvindex = _mm256_set1_epi32(0);
for (UINT i = 0; i < numTrisInBin; i++)
{
gatherBufvindex.m256i_i32[i] = i * 24;
}
numTrisToProcess = numTrisInBin;
}
const BinTriangle *pTri = &mpBin[idx][offset2 + bin * MAX_TRIS_IN_BIN_MT + binIndex];
gatherBuf[0] = _mm256_i32gather_epi32((const int *)&pTri->vert[0].xy, gatherBufvindex, 1);
gatherBufvindex = _mm256_add_epi32(gatherBufvindex, four);
gatherBuf[1] = _mm256_i32gather_epi32((const int *)&pTri->vert[0].xy, gatherBufvindex, 1);
gatherBufvindex = _mm256_add_epi32(gatherBufvindex, four);
gatherBuf[2] = _mm256_i32gather_epi32((const int *)&pTri->vert[0].xy, gatherBufvindex, 1);
gatherBufvindex = _mm256_add_epi32(gatherBufvindex, four);
gatherBuf[3] = _mm256_i32gather_epi32((const int *)&pTri->vert[0].xy, gatherBufvindex, 1);
gatherBufvindex = _mm256_add_epi32(gatherBufvindex, four);
gatherBuf[4] = _mm256_i32gather_epi32((const int *)&pTri->vert[0].xy, gatherBufvindex, 1);
gatherBufvindex = _mm256_add_epi32(gatherBufvindex, four);
gatherBuf[5] = _mm256_i32gather_epi32((const int *)&pTri->vert[0].xy, gatherBufvindex, 1);
numSimdTris += numTrisToProcess;
binIndex += numTrisToProcess;
numTrisInBin -= numTrisToProcess;
allBinsEmpty = false;
}
}
done = bin >= NUM_XFORMVERTS_TASKS;
if (allBinsEmpty)
{
QueryPerformanceCounter(&mStopTime[idx][taskId]);
return;
}
__m256i fxPtX[3], fxPtY[3];
{
fxPtX[0] = _mm256_srai_epi32(_mm256_slli_epi32(gatherBuf[0], 16), 16);
fxPtY[0] = _mm256_srai_epi32(gatherBuf[0], 16);
fxPtX[1] = _mm256_srai_epi32(_mm256_slli_epi32(gatherBuf[1], 16), 16);
fxPtY[1] = _mm256_srai_epi32(gatherBuf[1], 16);
fxPtX[2] = _mm256_srai_epi32(_mm256_slli_epi32(gatherBuf[2], 16), 16);
fxPtY[2] = _mm256_srai_epi32(gatherBuf[2], 16);
}
// Fab(x, y) = Ax + By + C = 0
// Fab(x, y) = (ya - yb)x + (xb - xa)y + (xa * yb - xb * ya) = 0
// Compute A = (ya - yb) for the 3 line segments that make up each triangle
__m256i AA0 = _mm256_sub_epi32(fxPtY[1], fxPtY[2]);
__m256i AA1 = _mm256_sub_epi32(fxPtY[2], fxPtY[0]);
__m256i AA2 = _mm256_sub_epi32(fxPtY[0], fxPtY[1]);
// Compute B = (xb - xa) for the 3 line segments that make up each triangle
__m256i BB0 = _mm256_sub_epi32(fxPtX[2], fxPtX[1]);
__m256i BB1 = _mm256_sub_epi32(fxPtX[0], fxPtX[2]);
__m256i BB2 = _mm256_sub_epi32(fxPtX[1], fxPtX[0]);
// Compute C = (xa * yb - xb * ya) for the 3 line segments that make up each triangle
__m256i CC0 = _mm256_sub_epi32(_mm256_mullo_epi32(fxPtX[1], fxPtY[2]), _mm256_mullo_epi32(fxPtX[2], fxPtY[1]));
__m256i CC1 = _mm256_sub_epi32(_mm256_mullo_epi32(fxPtX[2], fxPtY[0]), _mm256_mullo_epi32(fxPtX[0], fxPtY[2]));
__m256i CC2 = _mm256_sub_epi32(_mm256_mullo_epi32(fxPtX[0], fxPtY[1]), _mm256_mullo_epi32(fxPtX[1], fxPtY[0]));
__m256i startX = _mm256_and_si256(Max(Min(Min(fxPtX[0], fxPtX[1]), fxPtX[2]), _mm256_set1_epi32(tileStartX)), _mm256_set1_epi32(0xFFFFFFFC));
__m256i endX = Min(_mm256_add_epi32(Max(Max(fxPtX[0], fxPtX[1]), fxPtX[2]), _mm256_set1_epi32(1)), _mm256_set1_epi32(tileEndX));
__m256i startY = _mm256_and_si256(Max(Min(Min(fxPtY[0], fxPtY[1]), fxPtY[2]), _mm256_set1_epi32(tileStartY)), _mm256_set1_epi32(0xFFFFFFFE));
__m256i endY = Min(_mm256_add_epi32(Max(Max(fxPtY[0], fxPtY[1]), fxPtY[2]), _mm256_set1_epi32(1)), _mm256_set1_epi32(tileEndY));
// Now we have 8 triangles set up. Rasterize them each individually.
for (int lane = 0; lane < numSimdTris; lane++)
{
// Extract this triangle's properties from the SIMD versions
__m256 zz[3];
zz[0] = _mm256_castsi256_ps(_mm256_set1_epi32(gatherBuf[3].m256i_i32[lane]));
zz[1] = _mm256_castsi256_ps(_mm256_set1_epi32(gatherBuf[4].m256i_i32[lane]));
zz[2] = _mm256_castsi256_ps(_mm256_set1_epi32(gatherBuf[5].m256i_i32[lane]));
int startXx = startX.m256i_i32[lane];
int endXx = endX.m256i_i32[lane];
int startYy = startY.m256i_i32[lane];
int endYy = endY.m256i_i32[lane];
__m256i aa0 = _mm256_set1_epi32(AA0.m256i_i32[lane]);
__m256i aa1 = _mm256_set1_epi32(AA1.m256i_i32[lane]);
__m256i aa2 = _mm256_set1_epi32(AA2.m256i_i32[lane]);
__m256i bb0 = _mm256_set1_epi32(BB0.m256i_i32[lane]);
__m256i bb1 = _mm256_set1_epi32(BB1.m256i_i32[lane]);
__m256i bb2 = _mm256_set1_epi32(BB2.m256i_i32[lane]);
__m256i aa0Inc = _mm256_slli_epi32(aa0, 2);
__m256i aa1Inc = _mm256_slli_epi32(aa1, 2);
__m256i aa2Inc = _mm256_slli_epi32(aa2, 2);
__m256i row, col;
// Tranverse pixels in 2x4 blocks and store 2x4 pixel quad depths contiguously in memory ==> 2*X
// This method provides better performance
int rowIdx = (startYy * SCREENW + 2 * startXx);
col = _mm256_add_epi32(colOffset, _mm256_set1_epi32(startXx));
__m256i aa0Col = _mm256_mullo_epi32(aa0, col);
__m256i aa1Col = _mm256_mullo_epi32(aa1, col);
__m256i aa2Col = _mm256_mullo_epi32(aa2, col);
row = _mm256_add_epi32(rowOffset, _mm256_set1_epi32(startYy));
__m256i bb0Row = _mm256_add_epi32(_mm256_mullo_epi32(bb0, row), _mm256_set1_epi32(CC0.m256i_i32[lane]));
__m256i bb1Row = _mm256_add_epi32(_mm256_mullo_epi32(bb1, row), _mm256_set1_epi32(CC1.m256i_i32[lane]));
__m256i bb2Row = _mm256_add_epi32(_mm256_mullo_epi32(bb2, row), _mm256_set1_epi32(CC2.m256i_i32[lane]));
__m256i sum0Row = _mm256_add_epi32(aa0Col, bb0Row);
__m256i sum1Row = _mm256_add_epi32(aa1Col, bb1Row);
__m256i sum2Row = _mm256_add_epi32(aa2Col, bb2Row);
__m256i bb0Inc = _mm256_slli_epi32(bb0, 1);
__m256i bb1Inc = _mm256_slli_epi32(bb1, 1);
__m256i bb2Inc = _mm256_slli_epi32(bb2, 1);
__m256 zxAVX = _mm256_mul_ps(_mm256_cvtepi32_ps(aa1Inc), zz[1]);
zxAVX = _mm256_add_ps(zxAVX, _mm256_mul_ps(_mm256_cvtepi32_ps(aa2Inc), zz[2]));
// Incrementally compute Fab(x, y) for all the pixels inside the bounding box formed by (startX, endX) and (startY, endY)
for (int r = startYy; r < endYy; r += 2,
rowIdx += 2 * SCREENW,
sum0Row = _mm256_add_epi32(sum0Row, bb0Inc),
sum1Row = _mm256_add_epi32(sum1Row, bb1Inc),
sum2Row = _mm256_add_epi32(sum2Row, bb2Inc))
{
// Compute barycentric coordinates
int index = rowIdx;
__m256i alpha = sum0Row;
__m256i beta = sum1Row;
__m256i gama = sum2Row;
//Compute barycentric-interpolated depth
__m256 depth = zz[0];
depth = _mm256_add_ps(depth, _mm256_mul_ps(_mm256_cvtepi32_ps(beta), zz[1]));
depth = _mm256_add_ps(depth, _mm256_mul_ps(_mm256_cvtepi32_ps(gama), zz[2]));
for (int c = startXx; c < endXx; c += 4,
index += 8,
alpha = _mm256_add_epi32(alpha, aa0Inc),
beta = _mm256_add_epi32(beta, aa1Inc),
gama = _mm256_add_epi32(gama, aa2Inc),
depth = _mm256_add_ps(depth, zxAVX))
{
//Test Pixel inside triangle
__m256i mask = _mm256_or_si256(_mm256_or_si256(alpha, beta), gama);
__m256 previousDepthValue = _mm256_loadu_ps(&pDepthBuffer[index]);
__m256 mergedDepth = _mm256_max_ps(depth, previousDepthValue);
__m256 finalDepth = _mm256_blendv_ps(mergedDepth, previousDepthValue, _mm256_castsi256_ps(mask));
_mm256_storeu_ps(&pDepthBuffer[index], finalDepth);
// *****************************************************************************************
}//for each column
}// for each row
}// for each triangle
}
QueryPerformanceCounter(&mStopTime[idx][taskId]);
// Summarize depth buffer
CreateCoarseDepth(tileStartX, tileStartY, tileEndX + 1, tileEndY + 1, idx);
}
void DepthBufferRasterizerAVXMT::ComputeR2DBTime(UINT idx)
{
LARGE_INTEGER stopTime = mStopTime[idx][0];
for(UINT i = 0; i < NUM_TILES; i++)
{
stopTime = stopTime.QuadPart < mStopTime[idx][i].QuadPart ? mStopTime[idx][i] : stopTime;
}
mRasterizeTime[mTimeCounter++] = ((double)(stopTime.QuadPart - mStartTime[idx].QuadPart))/((double)glFrequency.QuadPart);
mTimeCounter = mTimeCounter >= AVG_COUNTER ? 0 : mTimeCounter;
}