-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmain.py
405 lines (267 loc) · 12.5 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
import os
import shutil
import taipy.gui.builder as tgb
import taipy as tp
import pymongo
import pandas as pd
from taipy.gui import Gui, notify , Markdown
from taipy import Config , Core
from pymongo import MongoClient
from google.cloud import aiplatform
from vertexai.language_models import TextEmbeddingModel
from vertexai.vision_models import MultiModalEmbeddingModel
from vertexai.vision_models import Image
from dotenv import load_dotenv
from google.cloud.bigquery.client import Client
from form import form_md
from semanticSearchByText import semanticSearchByText
from semanticSearchByImage import semanticSearchByImage
load_dotenv()
os.environ['GOOGLE_APPLICATION_CREDENTIALS'] = 'mongodb-403805-3cf96c2ad447.json'
bq_client = Client()
mongodb_connection = os.getenv("MONGODB_CONNECTION_S")
cluster = MongoClient(mongodb_connection)
db = cluster["lostandfound"]
collection = db["items"]
#cursor = db.list_collection_names()
PROJECT_ID= os.getenv("MONGODB_POJECT_ID")
dict_for_items = []
dict_for_searchByText = []
dict_for_searchByImage = []
content = ''
message = None
item_name = ''
results_item = None
path = None
input_contact = ''
input_item_type = ''
input_date = ''
input_where = ''
input_lost_or_found = ''
input_how = ''
image_url=''
input_circle_account = ''
image_item_path = ''
searched_image_content = ''
image_results_item=''
for obj in collection.find({}):
dict_for_items.append(obj)
print(obj)
print(dict_for_items)
def generate_text_embedding(sentence) -> list:
"""Text embedding with a Large Language Model."""
model = TextEmbeddingModel.from_pretrained("textembedding-gecko@001")
embeddings = model.get_embeddings([sentence])
for embedding in embeddings:
vector = embedding.values
print(f"Length of Embedding Vector: {len(vector)}")
return vector
def generate_image_embedding(image):
model = MultiModalEmbeddingModel.from_pretrained("multimodalembedding@001")
image = Image.load_from_file(image)#1408
embeddings = model.get_embeddings(
image=image,
contextual_text='',
)
image_embedding = embeddings.image_embedding
return image_embedding
def show_item_info(state,id):
item_info = dict_for_items[int(id)]
notify(state, 'info', f"{item_info['how']}")
with tgb.Page() as itemsPage:
with tgb.layout("2 2"):
with tgb.part():
for i in range(0 , len(dict_for_items) , 2):
tgb.image(dict_for_items[i]['image'] , hover_text=dict_for_items[i]['lost_or_found'])
tgb.button(dict_for_items[i]['contact'] , class_name='plain')
tgb.text(dict_for_items[i]['lost_or_found'] + " at" ,class_name='plain')
tgb.button(dict_for_items[i]['where'] , id=i, on_action = 'show_item_info')
tgb.html("p", dict_for_items[i]['how'])
with tgb.part():
for i in range(1 , len(dict_for_items) , 2):
tgb.image(dict_for_items[i]['image'] , hover_text=dict_for_items[i]['lost_or_found'])
tgb.button(dict_for_items[i]['contact'] , class_name='plain')
tgb.text(dict_for_items[i]['lost_or_found']+ " at " , class_name='plain')
tgb.button(dict_for_items[i]['where'] , id=i, on_action = 'show_item_info')
tgb.html("p", dict_for_items[i]['how'])
def searchItemByText(keyword: str):
query = keyword
results = collection.aggregate([
{"$vectorSearch": {
"queryVector": generate_text_embedding(query),
"path": "plot_embedding_hf",
"numCandidates": 100,
"limit": 4,
"index": "PlotSemanticSearch",
}}]);
return results
def searchItemByImage(imagePath: str):
query = imagePath
results = collection.aggregate([
{"$vectorSearch": {
"queryVector": generate_image_embedding(imagePath),
"path": "plot_image_embedding_hf",
"numCandidates": 100,
"limit": 4,
"index": "PlotSemanticImageSearch",
}}]);
return results
def upload_image(state):
filename = state.path[5:]
shutil.move(state.path, 'photos/'+ filename)
state.path = 'photos/'+filename
notify(state, 'info', f'The text is: {state.path}')
def submit_scenario(state):
notify(state, 'info', f'The text is: {state.content}')
state.scenario.input_contact.write(state.input_contact)
state.scenario.input_item_type.write(state.input_item_type)
state.scenario.input_date.write(state.input_date)
state.scenario.input_where.write(state.input_where)
state.scenario.input_lost_or_found.write(state.input_lost_or_found)
state.scenario.input_how.write(state.input_how)
state.scenario.path.write(state.path)
#state.scenario.input_circle_account.write(state.input_circle_account)
state.scenario.submit(wait=True)
state.message = scenario.message.read()
def build_message(phone:str ,item:str, when, where :str, lost_or_found : str , how : str , image : str):
collection.insert_one({"contact":phone, "item": item ,"when": str(when) ,"where": where ,
"lost_or_found" : lost_or_found , "how":how , "image" : image ,
"plot_embedding_hf": generate_text_embedding(how) ,
"plot_image_embedding_hf": generate_image_embedding(image)})
return f"{item}"
def search_text_scenario(state):
notify(state, 'info', f'Searching By Text....')
state.scenario_search.item_name.write(state.item_name)
state.scenario_search.submit(wait=True)
state.results_item = scenario_search.results_item.read()
partial = ''
for index in range(0, len(dict_for_searchByText) , 4):
partial+="<|"+dict_for_searchByText[index]+"|image|>"
partial+="<|"+dict_for_searchByText[index+1]+"|button|>"
partial+="<|"+dict_for_searchByText[index+2]+"|button|class_name=plain|>"
partial+="<|"+dict_for_searchByText[index+3]+"|button|class_name=secondary|>"
state.dynamic_content.update_content(state, partial)
def build_search_text_results(keyword: str):
results = searchItemByText(keyword)
output = ""
for document in results:
dict_for_searchByText.append(document["image"])
dict_for_searchByText.append(document["contact"])
dict_for_searchByText.append(document["lost_or_found"])
dict_for_searchByText.append(document["where"])
return f"{output}"
def submit_search_image_scenario(state):
#image_item_name = ''
#searched_image_content = ''
#image_results_item=''
filename = state.searched_image_content[5:]
shutil.move(state.searched_image_content, 'photos/'+ filename)
state.searched_image_content = 'photos/'+filename
notify(state, 'info', f'The image search begun {state.searched_image_content}')
state.image_item_path = state.searched_image_content
state.scenario_search_image.searched_image_content.write(state.searched_image_content)
state.scenario_search_image.image_item_path.write(state.image_item_path)
state.scenario_search_image.submit(wait=True)
partialImage = ''
for index in range(0, len(dict_for_searchByImage) , 4):
partialImage+="<|"+dict_for_searchByImage[index]+"|image|>"
partialImage+="<|"+dict_for_searchByImage[index+1]+"|button|>"
partialImage+="<|"+dict_for_searchByImage[index+2]+"|button|class_name=plain|>"
partialImage+="<|"+dict_for_searchByImage[index+3]+"|button|class_name=secondary|>"
state.dynamic_content_image.update_content(state, partialImage)
def build_search_image_results(imagePath: str , displayImagePath: str ):
print(imagePath)
print(displayImagePath)
results = searchItemByImage(imagePath)
output = ""
for document in results:
dict_for_searchByImage.append(document["image"])
dict_for_searchByImage.append(document["contact"])
dict_for_searchByImage.append(document["lost_or_found"])
dict_for_searchByImage.append(document["where"])
print(dict_for_searchByImage)
return f"{output}"
#configure request submit
input_contact_data_node_cfg = Config.configure_data_node(id="input_contact")
input_item_type_data_node_cfg = Config.configure_data_node(id="input_item_type")
input_when_data_node_cfg = Config.configure_data_node(id="input_date")
input_where_data_node_cfg = Config.configure_data_node(id="input_where")
input_lost_or_found_data_node_cfg = Config.configure_data_node(id="input_lost_or_found")
input_how_data_node_cfg = Config.configure_data_node(id="input_how")
input_where_data_node_cfg = Config.configure_data_node(id="input_where")
image_path_data_node_cfg = Config.configure_data_node(id="path")
message_data_node_cfg = Config.configure_data_node(id="message")
build_msg_task_cfg = Config.configure_task(id="build_msg",
function=build_message,
input=[input_contact_data_node_cfg,
input_item_type_data_node_cfg,
input_when_data_node_cfg,
input_where_data_node_cfg,
input_lost_or_found_data_node_cfg,
input_how_data_node_cfg,
input_where_data_node_cfg,
image_path_data_node_cfg ],output = message_data_node_cfg)
scenario_cfg = Config.configure_scenario("scenario", task_configs=[build_msg_task_cfg])
#Configure sematic text search
input_item_name_data_node_cfg = Config.configure_data_node(id="item_name")
results_item_data_node_cfg = Config.configure_data_node(id="results_item")
build_text_search_task_cfg = Config.configure_task(id="build_search",function=build_search_text_results,input=[input_item_name_data_node_cfg ],output = results_item_data_node_cfg)
text_search_scenario_cfg = Config.configure_scenario("scenario_search", task_configs=[build_text_search_task_cfg ])
#configure sematic image Search
searched_image_content_data_node_cfg = Config.configure_data_node(id="searched_image_content")
image_item_path_data_node_cfg = Config.configure_data_node(id="image_item_path")
image_results_item_data_node_cfg = Config.configure_data_node(id ="image_results_item")
build_image_search_task_cfg = Config.configure_task(id="build_image_search",function=build_search_image_results,input=[image_item_path_data_node_cfg,searched_image_content_data_node_cfg ],output = image_results_item_data_node_cfg)
image_search_scenario_cfg = Config.configure_scenario("scenario_search_image", task_configs=[build_image_search_task_cfg])
pages = {"/": "<|navbar|>",
'items': itemsPage,
'Register':form_md,
'SearchByText':semanticSearchByText,
'SearchByImage': semanticSearchByImage
}
if __name__ == "__main__":
Core().run()
scenario = tp.create_scenario(scenario_cfg)
scenario_search = tp.create_scenario(text_search_scenario_cfg)
scenario_search_image = tp.create_scenario(image_search_scenario_cfg)
gui = Gui(pages = pages)
dynamic_content = gui.add_partial('')
dynamic_content_image = gui.add_partial('')
gui.run()
"""
button adds "" <-xters
image upload, ajax -->reflect db changes , file upload ,
aDDING ELEMENTS TO DB DORES NOT REFRECT N PAGE UNLESS WE RELOAD THE SERVER, NOT PAGE , SERVER
input does not reset on submit
place holder , search ,
sessions , request
with page and string styling
text area multiline typing / delete not working
checkbox or select option
cant notify without state
if you don't return from the build message , you get NULL in mongodb
ssh connection works only after dropping app
comment on markdown
markdown up , functions down but function must come before markdown if used
Dialog content with tgb page
you cannot search on enter key
input nums
markdown vs page builder
date input breaks lines
search on enter key
cANT RELOAD SERVER FROM APP
INPUT FORM DOES NOT RESET AFTER SUBMITTIING
geting started is mixed up
add element not working on button click
logging does not have line #
Generate csv on fly
enter on auto fill not working
opening on new tap , reuse prev tab
Taipy homepage wasn't made from Taipy
theme change
mongodb vector must me done manually or just do it on button click from atlas
"""
"""
Google Cloud , service account key
mongodb close brackets (python search query) error on this link - > https://www.mongodb.com/library/vector-search/building-generative-ai-applications-using-mongodb?lb-mode=overlay
"""