-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathsmoothed_edges.py
51 lines (40 loc) · 1.64 KB
/
smoothed_edges.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
FOLDER = './smoothed_resized/'
import os
import numpy as np
import cv2
from glob import glob
from tqdm import tqdm
def make_edge_smooth(path):
file_list = glob(os.path.expanduser(os.path.join(path, '*')))
save_dir = os.path.expanduser(FOLDER)
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
kernel_size = 5
kernel = np.ones((kernel_size, kernel_size), np.uint8)
gauss = cv2.getGaussianKernel(kernel_size, 0)
gauss = gauss * gauss.transpose(1, 0)
for f in tqdm(file_list):
file_name = os.path.basename(f)
bgr_img = cv2.imread(f)
gray_img = cv2.imread(f, 0)
pad_img = np.pad(bgr_img, ((2, 2), (2, 2), (0, 0)), mode='reflect')
edges = cv2.Canny(gray_img, 100, 200)
dilation = cv2.dilate(edges, kernel)
gauss_img = np.copy(bgr_img)
idx = np.where(dilation != 0)
for i in range(np.sum(dilation != 0)):
gauss_img[idx[0][i], idx[1][i], 0] = np.sum(np.multiply(
pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 0],
gauss))
gauss_img[idx[0][i], idx[1][i], 1] = np.sum(np.multiply(
pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 1],
gauss))
gauss_img[idx[0][i], idx[1][i], 2] = np.sum(np.multiply(
pad_img[idx[0][i]:idx[0][i] + kernel_size, idx[1][i]:idx[1][i] + kernel_size, 2],
gauss))
cv2.imwrite(os.path.join(save_dir, file_name), gauss_img)
def main(path):
make_edge_smooth(path)
if __name__ == '__main__':
path = './cartoon_resized'
main(path)