forked from shoestringpsycholing/startR
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsession3_script.R
230 lines (176 loc) · 6.77 KB
/
session3_script.R
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
library(reshape)
library(plyr)
library(ggplot2)
library(lme4)
# Read data
list.a <- read.csv("listA.csv")
list.b <- read.csv("listB.csv")
item.info <- read.delim("item_info.txt", na.strings = c("", "na"))
subject.info <- read.delim("subject_info.txt")
# Merge data files
list.a$list <- "A"
list.b$list <- "B"
ldt <- rbind(list.a, list.b)
head(item.info)
nrow(ldt)
ldt <- merge(ldt, item.info, all = TRUE)
nrow(ldt)
ldt <- merge(ldt, subject.info, all = TRUE)
nrow(ldt)
colnames(ldt)
summary(ldt)
write.csv(ldt, "all_ldt.csv", row.names = FALSE)
ldt2 <- read.csv("all_ldt.csv")
# Clean-up and subsetting
ldt <- ldt[ldt$Item < 1000, ]
nrow(ldt)
summary(ldt)
summary(ldt$condition)
# (move write/read code here)
#####################
# Continuous data
# RT analysis: are words faster than nonwords?
# More cleaning/munging
xtabs(~ Subject, ldt)
xtabs(~ ACC, ldt)
xtabs(~ Subject + ACC, ldt)
ldt.rt <- ldt[ldt$ACC == 1, ]
ldt.rt <- ldt.rt[ldt.rt$RT != NA, ] #ACK!
ldt.rt <- ldt[ldt$ACC == 1, ]
ldt.rt <- ldt.rt[!is.na(ldt.rt$RT), ]
summary(ldt.rt)
ldt.rt2 <- ldt.rt[ldt.rt$type %in% c("nonce", "word"), ]
ldt.rt3 <- ldt.rt[ldt.rt$type == c("nonce", "word"), ]
summary(ldt.rt3)
summary(ldt.rt2)
ldt.rt <- droplevels(ldt.rt[ldt.rt$type %in% c("nonce", "word"), ])
summary(ldt.rt)
# Outliers
# Look at distributions!
ggplot(ldt.rt, aes(x = RT)) + geom_histogram()
hist(ldt.rt$RT)
ggplot(ldt.rt, aes(x = RT)) + geom_histogram(binwidth = 10)
hist(ldt.rt$RT, breaks = 250)
ggplot(ldt.rt, aes(x = log(RT))) + geom_histogram()
hist(log(ldt.rt$RT))
# qqnorm(log(ldt.rt$RT))
# Remove outliers
# Define outliers: lots possible!
mean(log(ldt.rt$RT))
sd(log(ldt.rt$RT))
high.cut <- mean(log(ldt.rt$RT)) + 3*sd(log(ldt.rt$RT))
high.cut
exp(high.cut)
low.cut <- mean(log(ldt.rt$RT)) - 3*sd(log(ldt.rt$RT))
low.cut
exp(low.cut)
hist(log(ldt.rt$RT))
abline(v = high.cut, col = "red")
abline(v = low.cut, col = "red")
hist(log(ldt.rt$RT), xlim = c(log(500), log(4000)))
abline(v = high.cut, col = "red")
abline(v = low.cut, col = "red")
#pdf("myplot.pdf")
#dev.off()
hist(ldt.rt$RT, xlim = c(500, 4000))
abline(v = exp(high.cut), col = "red")
abline(v = exp(low.cut), col = "red")
nrow(ldt.rt[log(ldt.rt$RT) < low.cut, ])
nrow(ldt.rt[log(ldt.rt$RT) > high.cut, ])
ldt.rt.trim <- ldt.rt[log(ldt.rt$RT) >= low.cut & log(ldt.rt$RT) <= high.cut, ]
nrow(ldt.rt)
nrow(ldt.rt.trim)
# By-subject cutoffs
cutoffs <- ddply(ldt.rt, "Subject", summarise, low.cut.bysub = mean(log(RT)) - 3*sd(log(RT)), high.cut.bysub = mean(log(RT)) + 3*sd(log(RT)))
cutoffs
ldt.rt <- merge(ldt.rt, cutoffs, all = TRUE)
nrow(ldt.rt)
ldt.rt.trim2 <- ldt.rt[log(ldt.rt$RT) >= ldt.rt$low.cut.bysub & log(ldt.rt$RT) <= ldt.rt$high.cut.bysub, ]
# Summary stats
# Cell means
cast(ldt.rt, type ~ ., value = "RT", mean)
cast(ldt.rt, type ~ ., value = "RT", c(mean, sd))
cast(ldt.rt, type + condition ~ ., value = "RT", c(mean, sd))
cast(ldt.rt, condition + type ~ ., value = "RT", c(mean, sd))
ldt.rt$logRT <- log(ldt.rt$RT)
cast(ldt.rt, type ~ ., value = "logRT", c(mean, sd))
std.err <- function(x) {
n <- length(x)
std.err <- sd(x)/sqrt(n)
return(std.err) # or just std.err
}
std.err <- function(x) sd(x)/sqrt(length(x))
rt.table1 <- cast(ldt.rt.trim, type ~ ., value = "RT", c(mean, sd, std.err))
rt.table2 <- cast(ldt.rt.trim, type ~ ., value = "RT", c(mean, sd, length))
rt.table2$std.err <- rt.table2$sd/sqrt(rt.table2$length)
rt.table1
rt.table2
ddply(ldt.rt.trim, "type", summarise, mean = mean(RT), sd = sd(RT), std.err = std.err(RT))
ddply(ldt.rt.trim, "type", summarise, mean = mean(RT), sd = sd(RT), std.err = sd(RT)/sqrt(length(RT)))
rt.table <- ddply(ldt.rt.trim, "type", summarise, mean = mean(log(RT)), sd = sd(log(RT)), std.err = std.err(log(RT)))
rt.table
# Summary plot comparisons
# Boxplots
boxplot(RT ~ type, ldt.rt.trim)
ggplot(ldt.rt.trim, aes(x = type, y = RT)) + geom_boxplot()
boxplot(log(RT) ~ type, ldt.rt.trim)
ggplot(ldt.rt.trim, aes(x = type, y = log(RT))) + geom_boxplot()
# dot + errorbars
rt.table
ggplot(rt.table, aes(x = type, y = mean)) + geom_point() + geom_errorbar(aes(ymin = mean - 1.96*std.err, ymax = mean + 1.96*std.err))
ggplot(rt.table, aes(x = type, y = mean)) + geom_bar() + geom_errorbar(aes(ymin = mean - 1.96*std.err, ymax = mean + 1.96*std.err))
ggplot(rt.table, aes(x = type, y = mean)) + geom_bar(fill = "white") + geom_errorbar(aes(ymin = mean - 1.96*std.err, ymax = mean + 1.96*std.err))
ggplot(rt.table, aes(x = type, y = mean)) + geom_bar(fill = "white") + geom_errorbar(aes(ymin = mean - 1.96*std.err, ymax = mean + 1.96*std.err)) + ylim(7, 7.2)
ggplot(rt.table, aes(x = type, y = mean)) + geom_point() + geom_errorbar(aes(ymin = mean - 1.96*std.err, ymax = mean + 1.96*std.err))
# Analyses
# t-test
t.test(log(RT) ~ type, ldt.rt.trim)
t.test(log(ldt.rt.trim$RT[ldt.rt.trim$type == "nonce"]))
t.test(log(RT) ~ type, ldt.rt.trim, var.equal = TRUE)
?t.test
# correlation
ldt.rt.freq <- ldt.rt.trim[!is.na(ldt.rt.trim$frequency), ]
cor(log(ldt.rt.freq$RT), log(ldt.rt.freq$frequency))
cor.test(log(ldt.rt.freq$RT), log(ldt.rt.freq$frequency))
plot(log(RT) ~ log(frequency), data = ldt.rt.freq)
# lm
rtfreq.lm <- lm(log(RT) ~ log(frequency), data = ldt.rt.freq)
rtfreq.lm
summary(rtfreq.lm)
coef(rtfreq.lm)
rtfreq.lm$coef
str(rtfreq.lm)
abline(rtfreq.lm)
ggplot(ldt.rt.freq, aes(log(frequency), log(RT))) + geom_point() + geom_smooth(method = "lm")
ggplot(ldt.rt.freq, aes(log(frequency), log(RT))) + geom_point() + geom_smooth()
rttype.lm <- lm(log(RT) ~ type, data = ldt.rt.trim)
summary(rttype.lm)
t.test(log(RT) ~ type, ldt.rt.trim)
# ANOVA
anova(rttype.lm)
rttype.anova <- aov(log(RT) ~ type, data = ldt.rt.trim)
summary(rttype.anova)
# By-subject ANOVA
ldt.rt.trim.bysubj <- ddply(ldt.rt.trim, c("Subject", "type"), summarise, meanlogRT = mean(log(RT)), std.err = std.err(log(RT)))
ldt.rt.trim.bysubj
ggplot(ldt.rt.trim.bysubj, aes(type, meanlogRT)) + geom_point() + geom_errorbar(aes(ymin = meanlogRT - 1.96*std.err, ymax = meanlogRT + 1.96*std.err)) + facet_wrap(~ Subject)
rttype.anova.bysubj <- aov(meanlogRT ~ type + Error(Subject/type), data = ldt.rt.trim.bysubj)
summary(rttype.anova.bysubj)
# lmer
rttype.lmer <- lmer(log(RT) ~ type + (1 + type | Subject) + (1 | Item), data = ldt.rt.trim)
summary(rttype.lmer)
summary(rttype.lm)
ranef(rttype.lmer)
coef(summary(rttype.lmer))
write.csv(coef(summary(rttype.lmer)), "lmer_summary.csv")
################################################
# Categorical
ldt.wnw <- droplevels(ldt[ldt$type %in% c("word", "nonce") & !is.na(ldt$ACC), ])
xtabs(~ ACC + type, ldt.wnw)
chisq.test(xtabs(~ ACC + type, ldt.wnw))
plot(xtabs(~ ACC + type, ldt.wnw))
ddply(ldt.wnw, "type", summarise, meanACC = mean(ACC))
ldt.acc.glm <- glm(ACC ~ type, data = ldt.wnw, family = "binomial")
summary(ldt.acc.glm)
ldt.acc.glmer <- lmer(ACC ~ type + (1 + type | Subject) + (1 | Item), data = ldt.wnw, family = "binomial")
summary(ldt.acc.glmer)