forked from fatemehsrz/Shortest_Distance
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathsiamese.py
207 lines (120 loc) · 5.39 KB
/
siamese.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import numpy as np
import csv
import random
from keras.datasets import mnist
from keras.models import Sequential, Model
from keras.layers import Dense, Dropout, Input, Lambda
from keras.optimizers import RMSprop
from keras import backend as K
import networkx as nx
import gensim.models.keyedvectors as word2vec
import keras.callbacks as cb
from math import sqrt
from sklearn.metrics import mean_squared_error, mean_absolute_error
class LossHistory(cb.Callback):
def on_train_begin(self, logs={}):
self.losses = []
def on_batch_end(self, batch, logs={}):
batch_loss = logs.get('loss')
self.losses.append(batch_loss)
def euclidean_distance(vects):
x, y = vects
return K.sqrt(K.sum(K.square(x - y), axis=1, keepdims=True))
def eucl_dist_output_shape(shapes):
shape1, shape2 = shapes
print(shape1)
print(shape2)
return (shape1[0], 1)
def create_base_network(input_dim):
'''Base network to be shared (eq. to feature extraction).
'''
print(input_dim)
seq = Sequential()
seq.add(Dense(input_dim, input_shape=(input_dim,), activation='softplus'))
seq.add(Dropout(0.1))
seq.add(Dense(input_dim, activation='softplus'))
seq.add(Dropout(0.1))
seq.add(Dense(input_dim, activation='softplus'))
return seq
def siamese_net(graph_name='Facebook.edges', emb_size=32, data=None, epochs=20):
input_dim = emb_size
tr_pair1, tr_pair2, y_train, te_pair1, te_pair2, y_test=data
print('X train shape:',tr_pair1.shape)
print('X test shape:',te_pair1.shape)
print('y train shape:',y_train.shape)
# network definition
base_network = create_base_network(input_dim)
input_a = Input(shape=(input_dim,))
input_b = Input(shape=(input_dim,))
processed_a = base_network(input_a)
processed_b = base_network(input_b)
distance = Lambda(euclidean_distance, output_shape=eucl_dist_output_shape)([processed_a, processed_b])
print(distance)
model = Model(inputs=[input_a, input_b], outputs=distance)
# train
rms = RMSprop()
model.compile(loss='mse', optimizer= rms, metrics=['mae'])
history = LossHistory()
model.fit([tr_pair1, tr_pair2], y_train, epochs= epochs, batch_size= 32, callbacks=[history], validation_split= 0.3)
preds = model.predict([te_pair1, te_pair2])
pred=[]
f3= open('./data/%s_prediction_harp_%d.txt'%(graph_name, emb_size), 'w')
for i in range(len(preds)):
#print(preds[i][0],' ', y_test[i])
pred.append(round(float(preds[i][0])))
f3.write(str(preds[i][0]))
f3.write('\n')
f3.close()
rmse=sqrt(mean_squared_error(y_test, pred ))
mae= mean_absolute_error(y_test, pred )
return rmse, mae, y_train.shape[0] ,len(y_test)
def prepare_data(graph_name, emb):
tr_pair_list1=[]
tr_pair_list2=[]
y_train=[]
if emb in ['harp', 'poincare']:
model = dict()
embeddings_file = open( "./data/%s_128.%s"%(graph_name, emb),'r')
for line in embeddings_file:
a=line.strip('\n').split(' ')
vec=[]
vec=[float(i) for i in a[1:]]
vec1= np.array(vec)
model.update({a[0]: vec1})
if emb in ['node2vec', 'deepwalk']:
emb_file= './data%s_128.%s'%(graph_name, emb)
model = KeyedVectors.load_word2vec_format(emb_file, binary=False)
f1= open('./data/%s_train.txt'%(graph_name), 'r')
for line in f1:
a=line.strip('\n').split(' ')
y_train.append(int(a[2]))
tr_pair_list1.append(model[a[0]])
tr_pair_list2.append(model[a[1]])
tr_pair1=np.array(tr_pair_list1)
tr_pair2=np.array(tr_pair_list2)
y_train= np.array(y_train)
te_pair_list1=[]
te_pair_list2=[]
y_test=[]
f2= open('./data/%s_test.txt'%(graph_name), 'r')
for line in f2:
at=line.strip('\n').split(' ')
y_test.append(int(at[2]))
te_pair_list1.append(model[at[0]])
te_pair_list2.append(model[at[1]])
te_pair1=np.array(te_pair_list1)
te_pair2=np.array(te_pair_list2)
return tr_pair1, tr_pair2, y_train, te_pair1, te_pair2, y_test
if __name__ == '__main__':
with open('spath.csv', 'w', newline='') as f:
writer = csv.writer(f)
for graph in ['Facebook' ,'Youtube']:
for emb in ['harp']: ##
tr_pair1, tr_pair2, y_train, te_pair1, te_pair2, y_test= prepare_data(graph, emb)
data= tr_pair1, tr_pair2, y_train, te_pair1, te_pair2, y_test
rmse, mae, train, test= siamese_net(graph, 128, data, 8)
G=nx. read_edgelist('./data/%s.edges'%graph)
nodes= len(G.nodes())
result=[emb, graph,'nodes', nodes, 'emb_size 128', 'train pairs', train, 'test pairs', test, 'RMSE', rmse,'MAE', mae ]
print(emb, graph,'nodes', nodes, 'emb_size 128', 'train pairs', train, 'test pairs', test,'RMSE:', rmse,'MAE:', mae)
writer.writerow(result)