-
Notifications
You must be signed in to change notification settings - Fork 103
/
Copy pathtest_containers.py
140 lines (138 loc) · 4.94 KB
/
test_containers.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
'''
Recursive container is temporally disabled
'''
# from __future__ import print_function
# import numpy as np
# from numpy.testing import assert_allclose
#
# import unittest
# import theano.tensor as T
# import theano
# from theano import function
# from keras.layers.core import Activation, Dense
# from keras.models import Sequential
# from keras.layers.recurrent import SimpleRNN
# from seya.layers.containers import Recursive
# from seya.layers.base import Lambda
# floatX = theano.config.floatX
# class TestRecursive(unittest.TestCase):
# def __init__(self, *args, **kwargs):
# super(TestRecursive, self).__init__(*args, **kwargs)
# self.input_dim = 2
# self.state_dim = 2
# self.model = Recursive(return_sequences=True)
# self.model.add_input('input', ndim=3) # Input is 3D tensor
# self.model.add_state('h', dim=self.state_dim)
# self.model.add_node(Dense(self.input_dim + self.state_dim, self.state_dim,
# init='one'), name='rec',
# inputs=['input', 'h'],
# return_state='h')
# self.model.add_node(Activation('linear'), name='out', input='rec',
# create_output=True)
#
# self.model2 = Sequential()
# self.model2.add(SimpleRNN(input_dim=self.input_dim, activation='linear',
# inner_init='one',
# output_dim=self.state_dim, init='one',
# return_sequences=True))
#
# def test_step(self):
# XX = T.matrix()
# HH = T.matrix()
# A = self.model._step(XX, HH)
# F = function([XX, HH], A, allow_input_downcast=True)
# x = np.ones((1, 2))
# h = np.ones((1, 2))
# y = F(x, h)
# r = np.asarray([[4., 4.]])
# assert_allclose([r, r], y)
#
# def test_get_get_output(self):
# X = self.model.get_input()
# Y = self.model._get_output()
# F = function([X], Y, allow_input_downcast=True)
#
# x = np.ones((3, 5, self.input_dim)).astype(floatX)
# y = F(x)
# print(y)
#
# X2 = self.model2.get_input()
# Y2 = self.model2.get_output()
# F2 = function([X2], Y2)
# y2 = F2(x)
#
# assert_allclose(y2, y[1])
#
#
# class TestOrthoRNN(unittest.TestCase):
# def __init__(self, *args, **kwargs):
# super(TestOrthoRNN, self).__init__(*args, **kwargs)
# self.input_dim = 2
# self.state_dim = 2
# self.model = Recursive(return_sequences=True)
# self.model.add_input('input', ndim=3) # Input is 3D tensor
# self.model.add_state('h', dim=self.state_dim)
# self.model.add_node(Dense(self.input_dim, self.state_dim,
# init='one'), name='i2h',
# input='input')
# self.model.add_node(Dense(self.state_dim, self.state_dim,
# init='orthogonal'), name='h2h',
# inputs='h')
# self.model.add_node(Lambda(lambda x: x), name='rec',
# inputs=['i2h', 'h2h'], merge_mode='sum',
# return_state='h',
# create_output=True)
#
# self.model2 = Sequential()
# self.model2.add(SimpleRNN(input_dim=self.input_dim, activation='linear',
# inner_init='one',
# output_dim=self.state_dim, init='one',
# return_sequences=True))
# U = self.model.nodes['h2h'].W.get_value()
# self.model2.layers[0].U.set_value(U)
#
# def test_step(self):
# XX = T.matrix()
# HH = T.matrix()
# A = self.model._step(XX, HH)
# F = function([XX, HH], A, allow_input_downcast=True)
# x = np.ones((1, 2))
# h = np.ones((1, 2))
# y = F(x, h)
# assert(y[-1].shape == (1, 2))
#
# def test__get_output(self):
# X = self.model.get_input()
# Y = self.model._get_output()
# F = function([X], Y, allow_input_downcast=True)
#
# x = np.ones((3, 5, self.input_dim)).astype(floatX)
# y = F(x)
# print(y)
#
# X2 = self.model2.get_input()
# Y2 = self.model2.get_output()
# F2 = function([X2], Y2)
# y2 = F2(x)
#
# assert_allclose(y2, y[-1])
#
# def test_get_output(self):
# X = self.model.get_input()
# Y = self.model.get_output()
# F = function([X], Y, allow_input_downcast=True)
#
# x = np.ones((3, 5, self.input_dim)).astype(floatX)
# y = F(x)
#
# X2 = self.model2.get_input()
# Y2 = self.model2.get_output()
# F2 = function([X2], Y2)
# y2 = F2(x)
#
# print("y-length: {}".format(len(y)))
# assert_allclose(y2, y)
#
# if __name__ == '__main__':
# print('Test Recursive container')
# unittest.main()