-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdemo.py
135 lines (110 loc) · 3.86 KB
/
demo.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import os
import torch
from torch import nn
from torch.utils.data import DataLoader
from tqdm import tqdm
from dataset_YTC import CustomDataset
from GrasNet import *
class ManiBlock(nn.Module):
def __init__(self, in_datadim=400, out_datadim1=300, out_datadim2=100, out_datadim3=150, embeddim=10):
super().__init__()
self.p = embeddim
self.QR = QRComposition()
self.ProjMap = Projmap()
self.FR1 = FRMap(in_datadim, out_datadim1)
self.FR2 = FRMap(out_datadim3, out_datadim2)
self.Orth = Orthmap(self.p)
self.Pool = ProjPoolLayer()
def forward(self, x):
x = x.to(torch.float32)
x = self.Orth(x)
x = self.FR1(x) # 400-300
x = self.QR(x)
x = self.ProjMap(x)# 300-150
x = self.Pool(x)
x = self.Orth(x)
x = self.FR2(x) # 150-100
x = self.QR(x) # 100 * 100
return x
class GrNet(nn.Module):
def __init__(self):
super().__init__()
self.ManiBlock = ManiBlock()
self.fc = nn.Linear(10000, 7)
def forward(self, x):
x = x.to(torch.float32)
x = self.ManiBlock(x)
x = self.ManiBlock.ProjMap(x)
x = x.reshape(x.shape[0], -1)
x = self.fc(x)
return x
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
data_dir = ''
transformed_dataset_featurebank = CustomDataset(data_dir, split='train')
dataloader_featurebank = DataLoader(transformed_dataset_featurebank, batch_size=32,
shuffle=False, num_workers=16)
transformed_dataset_val = CustomDataset(data_dir, split='test')
dataloader_val = DataLoader(transformed_dataset_val, batch_size=32,
shuffle=False, num_workers=16)
use_cuda = True
model = GrNet()
if use_cuda:
model = model.cuda()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.Adam(model.parameters(), lr=0.0006)
# Training
def train(epoch):
global batch_idx, train_acc
print('\nEpoch: %d' % epoch)
model.train()
train_loss = 0
correct = 0.0
total = 0.0
bar = tqdm(enumerate(dataloader_train))
for batch_idx, sample_batched in bar:
inputs = sample_batched['data']
targets = sample_batched['label'].squeeze()
if use_cuda:
inputs = inputs.cuda()
targets = targets.cuda()
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.data.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum().data.item()
train_acc = 100. * correct / total
bar.set_description('Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (train_loss/(batch_idx+1.0), 100.*correct/total, correct, total))
return (train_loss/(batch_idx+1), train_acc)
best_acc = 0
def test(epoch):
global batch_idx, test_acc
model.eval()
test_loss = 0
correct = 0.0
total = 0.0
bar = tqdm(enumerate(dataloader_val))
for batch_idx, sample_batched in bar:
inputs = sample_batched['data']
targets = sample_batched['label'].squeeze()
if use_cuda:
inputs = inputs.cuda()
targets = targets.cuda()
outputs = model(inputs)
loss = criterion(outputs, targets)
test_loss += loss.data.item()
_, predicted = torch.max(outputs.data, 1)
total += targets.size(0)
correct += predicted.eq(targets.data).cpu().sum().data.item()
test_acc = 100. * correct / total
bar.set_description('Loss: %.3f | Acc: %.3f%% (%d/%d)'
% (test_loss/(batch_idx+1), 100.*correct/total, correct, total))
return (test_loss/(batch_idx+1), test_acc)
start_epoch = 1
for epoch in range(start_epoch, start_epoch+500):
train_loss, train_acc = train(epoch)
test_loss, test_acc = test(epoch)