generated from rishi-a/MLAssignment
-
Notifications
You must be signed in to change notification settings - Fork 2
/
Copy pathq8_compare_time.py
54 lines (48 loc) · 1.23 KB
/
q8_compare_time.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from metrics import *
from linearRegression.linearRegression import LinearRegression
from time import time
for i in [20,40,60]:
N=10000
P=i
X=pd.DataFrame(np.random.randn(N,P))
y=pd.Series(np.random.rand(N))
model=LinearRegression()
st=time()
model.fit_normal(X,y)
stp=time()
print("Time for N={} and P={} is : {}".format(N,P,stp-st))
for i in [1000,10000,100000]:
N=i
P=50
X=pd.DataFrame(np.random.randn(N,P))
y=pd.Series(np.random.rand(N))
model=LinearRegression()
st=time()
model.fit_normal(X,y)
stp=time()
print("Time for N={} and P={} is : {}".format(N,P,stp-st))
for i in [20,40,60,80,100]:
N=10000
P=50
X=pd.DataFrame(np.random.randn(N,P))
y=pd.Series(np.random.rand(N))
model=LinearRegression()
st=time()
model.fit_vectorised(X,y,10000,i)
stp=time()
print("Time for N={} , P={} , iteration={} is : {}".format(N,P,i,stp-st))
N=1000
P=20
X=pd.DataFrame(np.random.randn(N,P))
y=pd.Series(np.random.rand(N))
model=LinearRegression()
st=time()
model.fit_normal(X,y)
stp=time()
y_hat=model.predict(X)
print('RMSE: ', rmse(y_hat, y))
print('MAE: ', mae(y_hat, y))
print(stp-st)