forked from Sleepwalking/libllsm2
-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathdsputils.c
605 lines (552 loc) · 20.2 KB
/
dsputils.c
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
/*
libllsm2 - Low Level Speech Model (version 2)
===
Copyright (c) 2017 Kanru Hua.
libllsm2 is free software: you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation, either version 3 of the License, or
(at your option) any later version.
libllsm2 is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with libllsm. If not, see <http://www.gnu.org/licenses/>.
*/
#include <ciglet/ciglet.h>
#include "llsm.h"
#include "dsputils.h"
#include "filter-coef.h"
static int get_chebyshev_filter(FP_TYPE cutoff, char* type,
FP_TYPE** dst_a, FP_TYPE** dst_b) {
int index = max(0, round(cutoff * 2.0 / step_freq - 1));
if(index >= filter_number) index = filter_number - 1;
int order = coef_size;
*dst_a = calloc(order, sizeof(FP_TYPE));
*dst_b = calloc(order, sizeof(FP_TYPE));
const FP_TYPE* a_line, *b_line;
if(! strcmp(type, "lowpass")) {
a_line = cheby_l_a + index * coef_size;
b_line = cheby_l_b + index * coef_size;
} else {
a_line = cheby_h_a + index * coef_size;
b_line = cheby_h_b + index * coef_size;
}
for(int i = 0; i < order; i ++) {
(*dst_a)[i] = a_line[i];
(*dst_b)[i] = b_line[i];
}
return order;
}
static FP_TYPE* chebyfilt(FP_TYPE* x, int nx, FP_TYPE c1, FP_TYPE c2) {
c1 = max(0.0, c1);
c2 = min(0.5, c2);
if(c1 != 0 && c2 < 0.5) {
FP_TYPE* x1 = chebyfilt(x , nx, c1, 0.5);
FP_TYPE* y = chebyfilt(x1, nx, 0.0, c2);
free(x1);
return y;
}
FP_TYPE* a, *b;
int order = 0;
if(c1 == 0)
order = get_chebyshev_filter(c2, "lowpass", & a, & b);
else
order = get_chebyshev_filter(c1, "highpass", & a, & b);
FP_TYPE* y = filtfilt(b, order, a, order, x, nx);
free(a); free(b);
return y;
}
void llsm_refine_f0(FP_TYPE* x, int nx, FP_TYPE fs, FP_TYPE* f0, int nfrm,
FP_TYPE thop) {
for(int i = 0; i < nfrm; i ++) {
if(f0[i] == 0) continue;
FP_TYPE favg = 0;
int nfavg = 0;
for(int j = 1; j <= 3; j ++) { // j-th harmonic
ifdetector* ifd = create_ifdetector(f0[i] / fs * j, f0[i] / fs);
FP_TYPE* xfrm = fetch_frame(x, nx, round(i * thop * fs), ifd -> nh);
FP_TYPE f_j = ifdetector_estimate(ifd, xfrm, ifd -> nh) / j;
if(fabs(f_j - f0[i] / fs) < f0[i] * 0.1 / fs) {
favg += f_j;
nfavg ++;
}
free(xfrm);
delete_ifdetector(ifd);
}
if(nfavg > 0) {
favg /= nfavg;
f0[i] = favg * fs;
}
}
}
void llsm_compute_spectrogram(FP_TYPE* x, int nx, int* center, int* winsize,
int nfrm, int nfft, char* wintype, FP_TYPE** dst_spec, FP_TYPE** dst_phse) {
// Call stft_forward once just to get the standard normalization factor;
// then scale the factor for each frame.
int standard_winsize = 1024;
FP_TYPE standard_normalizer = 0;
if(nfrm > 0)
cig_stft_forward(x, nx, center, & standard_winsize, 1, nfft, wintype, 0, 2,
NULL, & standard_normalizer, dst_spec, dst_phse);
standard_normalizer *= 0.5;
// The actual STFT analysis.
cig_stft_forward(x, nx, center, winsize, nfrm, nfft, wintype, 0, 2,
NULL, NULL, dst_spec, dst_phse);
for(int i = 0; i < nfrm; i ++) {
FP_TYPE normalizer = standard_winsize / standard_normalizer / winsize[i];
for(int j = 0; j < nfft / 2 + 1; j ++)
dst_spec[i][j] *= normalizer;
}
}
void llsm_compute_dc(FP_TYPE* x, int nx, int* center, int* winsize, int nfrm,
FP_TYPE* dst_dc) {
for(int i = 0; i < nfrm; i ++) {
FP_TYPE* xfrm = fetch_frame(x, nx, center[i], winsize[i]);
dst_dc[i] = meanfp(xfrm, winsize[i]);
free(xfrm);
}
}
void llsm_harmonic_peakpicking(FP_TYPE* spectrum, FP_TYPE* phase,
int nfft, FP_TYPE fs, int nhar, FP_TYPE f0,
FP_TYPE* dst_ampl, FP_TYPE* dst_phse) {
const FP_TYPE tolerance = 0.3;
for(int i = 1; i <= nhar; i ++) {
int l_idx = round(f0 * (i - tolerance) / fs * nfft);
int u_idx = round(f0 * (i + tolerance) / fs * nfft);
l_idx = max(1, l_idx);
u_idx = min(nfft / 2 - 1, u_idx);
int peak_bin = cig_find_peak(spectrum, l_idx, u_idx, 1);
FP_TYPE peak_freq, peak_ampl;
peak_ampl = qifft(spectrum, peak_bin, & peak_freq);
dst_ampl[i - 1] = exp_3(peak_ampl);
dst_phse[i - 1] = linterp(phase[(int)peak_freq],
phase[(int)peak_freq + 1], fmod(peak_freq, 1.0));
}
}
void llsm_harmonic_czt(FP_TYPE* x, int nx, FP_TYPE f0, FP_TYPE fs,
int nhar, FP_TYPE* dst_ampl, FP_TYPE* dst_phse) {
FP_TYPE* tmp = calloc(nx * 4, sizeof(FP_TYPE));
FP_TYPE* tmp_re = tmp;
FP_TYPE* tmp_im = tmp + nx * 2;
int shift = nx / 2;
FP_TYPE* w = blackman(nx);
FP_TYPE winsum = sumfp(w, nx);
for(int i = 0; i < nx; i ++) w[i] *= x[i];
czt(w, NULL, tmp_re, tmp_im, 2.0 * M_PI * f0 / fs, nx);
for(int i = 0; i < nhar; i ++) {
FP_TYPE ishift = shift * 2.0 * M_PI * f0 / fs * (i + 1.0);
FP_TYPE s_re = cos(ishift);
FP_TYPE s_im = sin(ishift);
FP_TYPE dst_re = tmp_re[i + 1] * s_re - tmp_im[i + 1] * s_im;
FP_TYPE dst_im = tmp_re[i + 1] * s_im + tmp_im[i + 1] * s_re;
dst_ampl[i] = sqrt (dst_re * dst_re + dst_im * dst_im) * 2.0 / winsum;
dst_phse[i] = atan2(dst_im, dst_re);
}
free(tmp);
free(w);
}
static int f0_to_nhar(FP_TYPE f0, FP_TYPE fs) {
return floor(fs / f0 / 2);
}
void llsm_harmonic_analysis(FP_TYPE* x, int nx, FP_TYPE fs, FP_TYPE* f0,
int nfrm, FP_TYPE thop, FP_TYPE rel_winsize, int maxnhar, int method,
int* dst_nhar, FP_TYPE** dst_ampl, FP_TYPE** dst_phse) {
int nfft = llsm_get_fftsize(f0, nfrm, fs, rel_winsize);
int nspec = nfft / 2 + 1;
int nvfrm = 0; // number of voiced frames
for(int i = 0; i < nfrm; i ++) nvfrm += f0[i] > 0;
int* index_vfrm = calloc(nvfrm, sizeof(int));
int* winsize = calloc(nvfrm, sizeof(int));
int* center = calloc(nvfrm, sizeof(int));
nvfrm = 0;
for(int i = 0; i < nfrm; i ++) {
if(f0[i] > 0) {
index_vfrm[nvfrm] = i;
winsize [nvfrm] = round(fs / f0[i] * rel_winsize / 2) * 2;
center [nvfrm] = round(i * thop * fs);
nvfrm ++;
}
}
if(method == LLSM_AOPTION_HMPP) {
FP_TYPE** spec_magn = malloc2d(nvfrm, nspec, sizeof(FP_TYPE));
FP_TYPE** spec_phse = malloc2d(nvfrm, nspec, sizeof(FP_TYPE));
llsm_compute_spectrogram(x, nx, center, winsize, nvfrm, nfft, "blackman",
spec_magn, spec_phse);
for(int i = 0; i < nvfrm; i ++) {
// convert from linear to log magnitude while taking care of underflow
for(int j = 0; j < nspec; j ++)
spec_magn[i][j] = log(spec_magn[i][j] + 1e-8);
int idx = index_vfrm[i];
dst_nhar[idx] = min(f0_to_nhar(f0[idx], fs), maxnhar);
dst_ampl[idx] = calloc(dst_nhar[idx], sizeof(FP_TYPE));
dst_phse[idx] = calloc(dst_nhar[idx], sizeof(FP_TYPE));
llsm_harmonic_peakpicking(spec_magn[i], spec_phse[i], nfft, fs,
dst_nhar[idx], f0[idx], dst_ampl[idx], dst_phse[idx]);
}
free2d(spec_magn, nvfrm);
free2d(spec_phse, nvfrm);
} else {
for(int i = 0; i < nvfrm; i ++) {
int idx = index_vfrm[i];
FP_TYPE* xfrm = fetch_frame(x, nx, center[i], winsize[i]);
dst_nhar[idx] = min(f0_to_nhar(f0[idx], fs), maxnhar);
dst_ampl[idx] = calloc(dst_nhar[idx], sizeof(FP_TYPE));
dst_phse[idx] = calloc(dst_nhar[idx], sizeof(FP_TYPE));
llsm_harmonic_czt(xfrm, winsize[i], f0[idx], fs, dst_nhar[idx],
dst_ampl[idx], dst_phse[idx]);
free(xfrm);
}
}
free(index_vfrm); free(winsize); free(center);
}
FP_TYPE* llsm_subband_energy(FP_TYPE* x, int nx, FP_TYPE fmin, FP_TYPE fmax) {
FP_TYPE* x_filt = chebyfilt(x, nx, fmin, fmax);
for(int i = 0; i < nx; i ++)
x_filt[i] *= x_filt[i];
return x_filt;
}
void llsm_fft_to_psd(FP_TYPE* X_re, FP_TYPE* X_im, int nfft, FP_TYPE wsqr,
FP_TYPE* dst_psd) {
// Take the power, normalize.
for(int i = 0; i < nfft / 2 + 1; i ++) {
dst_psd[i] = X_re[i] * X_re[i] + X_im[i] * X_im[i];
dst_psd[i] /= wsqr;
}
}
void llsm_estimate_psd(FP_TYPE* x, int nx, int nfft, FP_TYPE* dst_psd) {
// Allocate window and FFT buffer.
FP_TYPE* window = blackman(nx);
FP_TYPE* fftbuff = calloc(nfft * 4, sizeof(FP_TYPE));
FP_TYPE* x_re = fftbuff + 0;
FP_TYPE* x_im = fftbuff + nfft;
// Window the signal and compute normalization factor.
FP_TYPE win_power = 0;
for(int i = 0; i < nx; i ++) {
x_re[i] = window[i] * x[i];
win_power += window[i] * window[i];
}
fft(x_re, NULL, x_re, x_im, nfft, fftbuff + nfft * 2);
llsm_fft_to_psd(x_re, x_im, nfft, win_power, dst_psd);
free(window);
free(fftbuff);
}
FP_TYPE* llsm_warp_frequency(FP_TYPE fmin, FP_TYPE fmax, int n,
FP_TYPE warp_const) {
FP_TYPE* freq = calloc(n, sizeof(FP_TYPE));
FP_TYPE wmin = 5000.0 * log(1.0 + fmin / warp_const);
FP_TYPE wmax = 5000.0 * log(1.0 + fmax / warp_const);
for(int i = 0; i < n; i ++)
freq[i] = warp_const * (
exp(((FP_TYPE)i / n * (wmax - wmin) + wmin) / 5000.0) - 1.0);
return freq;
}
FP_TYPE* llsm_spectral_mean(FP_TYPE* spectrum, int nspec, FP_TYPE fnyq,
FP_TYPE* freq, int nfreq) {
FP_TYPE* env = calloc(nfreq, sizeof(FP_TYPE));
for(int i = 0; i < nfreq; i ++) {
FP_TYPE fprev = i == 0 ? 0 : freq[i - 1];
FP_TYPE fnext = i == nfreq - 1 ? freq[i] * 2 - freq[i - 1] : freq[i + 1];
FP_TYPE fcenter = freq[i];
int idxl = fprev / fnyq * nspec;
int idxh = fnext / fnyq * nspec + 1;
idxl = max(0, idxl); idxl = min(nspec - 1, idxl);
idxh = max(0, idxh); idxh = min(nspec - 1, idxh);
if(i > 0 && idxh == idxl)
env[i] = env[i - 1];
else {
// Compute the mean weighted by a triangular spectral filter.
int center = (idxh + idxl) / 2.0;
center = max(center, 1);
center = min(center, nspec - 2);
int width = max(1, center - idxl);
FP_TYPE acc = (width + 2) * width + 1;
env[i] = spectrum[center] * (width + 1) / acc;
for(int j = 0; j < width; j ++) {
FP_TYPE w = (width - j) / acc;
env[i] += spectrum[center + j + 1] * w;
env[i] += spectrum[center - j - 1] * w;
}
}
}
return env;
}
FP_TYPE* llsm_spectrum_from_envelope(FP_TYPE* freq, FP_TYPE* ampl, int nfreq,
int nspec, FP_TYPE fnyq) {
FP_TYPE* faxis = calloc(nspec, sizeof(FP_TYPE));
for(int i = 0; i < nspec; i ++)
faxis[i] = (FP_TYPE)i * fnyq / nspec;
FP_TYPE* spectrum = interp1(freq, ampl, nfreq, faxis, nspec);
free(faxis);
return spectrum;
}
int llsm_get_fftsize(FP_TYPE* f0, int nfrm, FP_TYPE fs, FP_TYPE rel_winsize) {
FP_TYPE minf0 = 1000;
for(int i = 0; i < nfrm; i ++)
if(f0[i] > 0 && f0[i] < minf0)
minf0 = f0[i];
// Window size has to be odd.
int max_winsize = round(fs / minf0 * rel_winsize / 2) * 2;
return pow(2, ceil(log2(max_winsize)));
}
FP_TYPE* llsm_synthesize_harmonic_frame(FP_TYPE* ampl, FP_TYPE* phse, int nhar,
FP_TYPE f0, int nx) {
FP_TYPE* freq = malloc(nhar * sizeof(FP_TYPE));
for(int i = 0; i < nhar; i ++)
freq[i] = f0 * (i + 1.0);
FP_TYPE* y = gensins(freq, ampl, phse, nhar, 1.0, nx);
free(freq);
return y;
}
FP_TYPE* llsm_synthesize_harmonic_frame_iczt(FP_TYPE* ampl, FP_TYPE* phse,
int nhar, FP_TYPE f0, int nx) {
FP_TYPE* yr = malloc(nx * sizeof(FP_TYPE));
FP_TYPE* re = calloc(max(nhar + 1, nx) * 2, sizeof(FP_TYPE));
FP_TYPE* im = re + max(nhar + 1, nx);
FP_TYPE omega0 = 2.0 * M_PI * f0;
for(int i = 0; i < nhar; i ++) {
re[i + 1] = ampl[i] * cos_2(phse[i] - nx / 2 * (1.0 + i) * omega0) * nx;
im[i + 1] = ampl[i] * sin_2(phse[i] - nx / 2 * (1.0 + i) * omega0) * nx;
}
iczt(re, im, yr, NULL, omega0, nx);
free(re);
return yr;
}
FP_TYPE* llsm_generate_white_noise(int nx) {
FP_TYPE* ret = calloc(nx, sizeof(FP_TYPE));
int ntemplate = min(20000, nx);
for(int i = 0; i < ntemplate; i ++)
ret[i] = randn(0, 1);
for(int i = ntemplate; i < nx; i ++)
ret[i] = ret[(i - ntemplate) % ntemplate];
return ret;
}
static FP_TYPE* stretch_stationary_noise(FP_TYPE* x, int nx, int ny,
int overlap) {
FP_TYPE* y = calloc(ny, sizeof(FP_TYPE));
for(int i = 0; i < min(nx, ny); i ++) y[i] = x[i];
if(ny <= nx) return y;
int head = nx;
while(1) {
for(int i = 0; i < overlap; i ++) {
FP_TYPE r = (FP_TYPE)i / overlap;
y[head - overlap + i] *= 1.0 - r;
y[head - overlap + i] += x[i] * r;
y[head - overlap + i] /= sqrt(2 * r * (r - 1) + 1);
}
for(int i = 0; i < nx - overlap; i ++) {
if(head + i >= ny) return y;
y[head + i] = x[i + overlap];
}
head += nx - overlap;
}
return y;
}
FP_TYPE* llsm_generate_bandlimited_noise(int nx, FP_TYPE fmin, FP_TYPE fmax) {
int ntemplate = min(20000, nx);
int extension = 128;
FP_TYPE* template_white = llsm_generate_white_noise(ntemplate + extension);
FP_TYPE* template_colored = chebyfilt(template_white, ntemplate + extension,
fmin, fmax);
FP_TYPE* y = stretch_stationary_noise(template_colored, ntemplate, nx, 128);
free(template_white); free(template_colored);
return y;
}
void llsm_lipfilter(FP_TYPE radius, FP_TYPE f0, int nhar,
FP_TYPE* dst_ampl, FP_TYPE* dst_phse, int inverse) {
FP_TYPE Rr = 128.0 / 9.0 / M_PI / M_PI;
FP_TYPE Lr = 8.0 * radius / 100.0 / 3.0 / M_PI / 340.0;
for(int i = 0; i < nhar; i ++) {
FP_TYPE omega = f0 * (1.0 + i) * 2.0 * M_PI;
cplx iresp = c_mul(c_cplx(0, 1),
c_div(c_cplx(omega * Lr * Rr, 0), c_cplx(Rr, omega * Lr)));
if(inverse) {
if(dst_ampl != NULL) dst_ampl[i] /= c_abs(iresp);
if(dst_phse != NULL) dst_phse[i] -= c_arg(iresp);
} else {
if(dst_ampl != NULL) dst_ampl[i] *= c_abs(iresp);
if(dst_phse != NULL) dst_phse[i] += c_arg(iresp);
}
}
}
void llsm_lipfilter_reim(FP_TYPE radius, FP_TYPE f0, int nhar,
FP_TYPE* dst_re, FP_TYPE* dst_im, int inverse) {
FP_TYPE Rr = 128.0 / 9.0 / M_PI / M_PI;
FP_TYPE Lr = 8.0 * radius / 100.0 / 3.0 / M_PI / 340.0;
for(int i = 0; i < nhar; i ++) {
FP_TYPE omega = f0 * (1.0 + i) * 2.0 * M_PI;
cplx iresp = c_mul(c_cplx(0, 1),
c_div(c_cplx(omega * Lr * Rr, 0), c_cplx(Rr, omega * Lr)));
cplx y;
if(inverse)
y = c_div(c_cplx(dst_re[i], dst_im[i]), iresp);
else
y = c_mul(c_cplx(dst_re[i], dst_im[i]), iresp);
dst_re[i] = y.real;
dst_im[i] = y.imag;
}
}
FP_TYPE* llsm_harmonic_spectrum(FP_TYPE* ampl, int nhar, FP_TYPE f0,
int nfft) {
FP_TYPE* X = calloc(nfft / 2 + 1, sizeof(FP_TYPE));
int nX = nfft / 2 + 1;
int T = 3.0 / f0;
int width = ceil(f0 * nfft * 1.5);
for(int i = 0; i < nhar; i ++) {
FP_TYPE ifreq = f0 * (1.0 + i);
int center = round(ifreq * nfft);
for(int j = max(0, center - width);
j < min(nX, center + width + 1); j ++) {
FP_TYPE omega = ((FP_TYPE)j / nfft - ifreq) * 2.0 * M_PI;
FP_TYPE resp = 0.5 * safe_aliased_sinc(T, omega) +
0.25 * safe_aliased_sinc(T, omega - 2.0 * M_PI / T) +
0.25 * safe_aliased_sinc(T, omega + 2.0 * M_PI / T);
X[j] = fmax(X[j], resp * ampl[i]);
}
}
// normalization
for(int i = 0; i < nfft / 2 + 1; i ++) X[i] *= f0;
return X;
}
static FP_TYPE compress_logspectrum(FP_TYPE x) {
if(x > -10) return x;
return (x + 10.0) / 2 - 10.0;
}
static FP_TYPE decompress_logspectrum(FP_TYPE x) {
if(x > -10) return x;
return (x + 10.0) * 2 - 10.0;
}
FP_TYPE* llsm_harmonic_envelope(FP_TYPE* ampl, int nhar, FP_TYPE f0,
int nfft) {
FP_TYPE* compressed_ampl = calloc(nhar, sizeof(FP_TYPE));
FP_TYPE peak = log(maxfp(ampl, nhar));
for(int i = 0; i < nhar; i ++)
compressed_ampl[i] = exp(compress_logspectrum(log(ampl[i]) - peak));
FP_TYPE* X = llsm_harmonic_spectrum(compressed_ampl, nhar, f0, nfft);
FP_TYPE* full_spectrum = cig_spec2env(X, nfft, f0, nhar, NULL);
free(X);
for(int i = 0; i < nfft / 2 + 1; i ++) {
full_spectrum[i] = decompress_logspectrum(full_spectrum[i]) + peak;
full_spectrum[i] *= 20.0 / 2.3025851; // log2db
}
free(compressed_ampl);
return full_spectrum;
}
FP_TYPE* llsm_harmonic_minphase(FP_TYPE* ampl, int nhar) {
// Interpolate the harmonics to form a spectral envelope; compute the
// minimum-phase response; subsample the phase response at harmonic
// frequencies.
int nfft = max(64, pow(2, ceil(log2(nhar) + 2)));
FP_TYPE* har_idx = calloc(nhar + 1, sizeof(FP_TYPE));
FP_TYPE* har_ampl = calloc(nhar + 1, sizeof(FP_TYPE));
FP_TYPE* fft_idx = calloc(nfft / 2 + 1, sizeof(FP_TYPE));
for(int i = 0; i < nhar; i ++) {
har_idx [i + 1] = (i + 1.0) / (nhar + 1.0) * nfft / 2.0;
har_ampl[i + 1] = log(ampl[i] + 1e-10);
}
har_ampl[0] = har_ampl[1];
for(int i = 0; i < nfft / 2 + 1; i ++) fft_idx[i] = i;
FP_TYPE* spectrum = interp1u(0, har_idx[nhar] * 2 - har_idx[nhar - 1],
har_ampl, nhar + 1, fft_idx, nfft / 2 + 1);
FP_TYPE* spectrum_phase = minphase(spectrum, nfft);
FP_TYPE* har_phse = interp1u(0, nfft / 2 + 1,
spectrum_phase, nfft / 2 + 1, har_idx, nhar + 1);
for(int i = 1; i < nhar; i ++)
har_phse[i - 1] = har_phse[i];
free(har_idx); free(har_ampl); free(fft_idx);
free(spectrum); free(spectrum_phase);
return har_phse;
}
typedef struct {
FP_TYPE** power; // squared amplitude responses
FP_TYPE* param; // the parameter for each response
int nhar; // number of harmonics
int nresp; // number of cached responses
} cached_glottal_model;
llsm_cached_glottal_model* llsm_create_cached_glottal_model(FP_TYPE* param,
int nparam, int nhar) {
cached_glottal_model* ret = malloc(sizeof(cached_glottal_model));
ret -> nresp = nparam;
ret -> nhar = nhar;
ret -> power = calloc(nparam, sizeof(FP_TYPE*));
ret -> param = calloc(nparam, sizeof(FP_TYPE));
FP_TYPE f0 = 200.0; // the shape of LF model is f0-independent
FP_TYPE* freq = calloc(nhar, sizeof(FP_TYPE));
for(int i = 0; i < nhar; i ++) freq[i] = f0 * (1.0 + i);
for(int i = 0; i < nparam; i ++) {
ret -> param[i] = param[i];
lfmodel lf = lfmodel_from_rd(param[i], 1.0 / f0, 1.0);
ret -> power[i] = lfmodel_spectrum(lf, freq, nhar, NULL);
for(int j = 0; j < nhar; j ++) {
ret -> power[i][j] /= j + 1.0;
ret -> power[i][j] *= ret -> power[i][j];
}
}
free(freq);
return (llsm_cached_glottal_model*)ret;
}
void llsm_delete_cached_glottal_model(llsm_cached_glottal_model* dst_) {
if(dst_ == NULL) return;
cached_glottal_model* dst = (cached_glottal_model*)dst_;
free2d(dst -> power, dst -> nresp);
free(dst -> param);
free(dst);
}
FP_TYPE llsm_spectral_glottal_fitting(FP_TYPE* ampl, int nhar,
llsm_cached_glottal_model* model_) {
cached_glottal_model* model = (cached_glottal_model*)model_;
nhar = min(nhar, model -> nhar);
FP_TYPE* power = calloc(nhar, sizeof(FP_TYPE));
for(int i = 0; i < nhar; i ++) {
power[i] = ampl[i] * ampl[i];
}
FP_TYPE* distance = calloc(model -> nresp, sizeof(FP_TYPE));
FP_TYPE* power_model = calloc(nhar, sizeof(FP_TYPE));
for(int i = 0; i < model -> nresp; i ++) {
FP_TYPE lgavg = 0;
for(int j = 0; j < nhar; j ++) lgavg += log(power[j]) / nhar;
FP_TYPE gain = power[0] / model -> power[i][0];
for(int j = 0; j < nhar; j ++)
power_model[j] = model -> power[i][j] * gain;
distance[i] = exp(itakura_saito(power, power_model, nhar));
}
free(power_model);
free(power);
int valley = find_minima(distance, 0, model -> nresp - 1);
FP_TYPE param_refined = model -> param[valley];
if(valley > 0 && valley < model -> nresp - 1) {
qifft(distance, valley, & param_refined);
param_refined = linterp(model -> param[(int)param_refined],
model -> param[(int)param_refined + 1], fmod(param_refined, 1.0));
}
free(distance);
return param_refined;
}
// https://www.dsprelated.com/showarticle/1068.php
FP_TYPE* llsm_smoothing_filter(FP_TYPE* x, int nx, int order) {
FP_TYPE* y = calloc(nx, sizeof(FP_TYPE));
if(nx < order) {
memcpy(y, x, nx * sizeof(FP_TYPE));
return y;
}
FP_TYPE mean0 = meanfp(x, order);
FP_TYPE mean1 = meanfp(x + nx - order, order);
for(int i = 0; i < order / 2; i ++) {
y[i] = mean0;
y[nx - i - 1] = mean1;
}
for(int i = order / 2; i < nx - order / 2; i ++) {
int idx_l = i - order / 2;
int idx_u = idx_l + order;
FP_TYPE i_mean = meanfp(x + idx_l, order);
int npos = 0; int nneg = 0;
FP_TYPE d_total = 0;
for(int j = idx_l; j < idx_u; j ++) {
npos += x[j] >= i_mean;
nneg += x[j] <= i_mean;
d_total += max(0, x[j] - i_mean);
}
y[i] = i_mean + (npos - nneg) * d_total / order / order;
}
return y;
}