-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathProgram.m
88 lines (79 loc) · 3.03 KB
/
Program.m
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% PROGRAM.m %
% This is a finite-element program for plate analysis using %
% either 4-node Kirchoff or Mindlin plate elements. %
% developed by J. Zhang 12/1.2007 %
% Input Variables: %
% el_row : element numbers along x %
% el_col : element numbers along y %
% a : plate length %
% b : plate width %
% t : plate thickness %
% E : Young's modulus %
% v : Poisson's ratio %
% D : flexural rigidity %
% q0 : uniformly distributed loading %
% Element: Kirchoff plate (Element-1) %
% Mindlin plate (element-2) %
% Edges : boundary condition (0-free, 1-simply supported %
% 2-fixed %
% Output Variables: %
% d_max : maxim displacement %
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%
clear all; close all; clc
tic
%
% Input rectangular plate mesh density
el_row = 20; el_col = 20;
% Element type (1-Kirchoff; 2-Reisner/Mindlin and integration scheme for
% R/M only)
Element=2; Int=[2 1];
%Overall structure geometry
a = 4; b = 4; t=1;
%Material properties
E = 200e9; v = 0.3;
D = E*t^3/(12*(1 - v^2));
%Loading
q0 = 30e3;
%Boundary conditions (0-free; 1-simple support; 2-fixed)
Edges = [1 1 1 1]; %[0 2 2 1] for (free; fixed; fixed; simply-supported)
%
% y-axis
% ^
% | edge 3
% |--------------|
% | |
% | |edge 2
%edge 4| |
% | |
% | |
% |--------------|---> x axis
% edge 1
disp('---------------------FEM Solution-----------------------')
[X,Y,U,x_a,y_b,n_el,n_np,IEN,d_max] = main(el_row, el_col, Element, Int, a, b,t,E,v,q0,Edges);
format long;
resp_const = d_max*D/(q0*a^4);
% Exact solution of Mindlin Plate with all four boundary simply-supported
w_exact_M = 0; w_exact_K = 0; w_exact_M2 = 0;
alpha = 5/6;
G = E/2/(1 + v);
x0= a/2; y0=b/2;
for i=1:2:31
for j=1:2:31
qmn = 16*q0/pi^2/i/j;
w_k = qmn/D/pi^4*sin(i*pi*x0/a)*sin(j*pi*y0/b)/(i^2/a^2+j^2/b^2)^2;
w_s = qmn/(alpha*G*t)/pi^2*sin(i*pi*x0/a)*sin(j*pi*y0/b)/(i^2/a^2 + j^2/b^2);
w_exact_M = w_exact_M + w_k + w_s;
w_exact_K = w_exact_K + w_k;
w_exact_M2 = w_exact_M2 + w_k + 1/alpha/G/t/pi^2*qmn/(i^2/a^2 + j^2/b^2)*sin(i*pi*x0/a)*sin(j*pi*y0/b);
end
end
disp('---Exact Kirchoff sol for Simply-supported plate')
w_exact_K
factor_K = w_exact_K*D/q0/a^4;
disp('----Mindlin Sol based on Conjugate Plate analogy---')
w_exact_M
factor_M = w_exact_M*D/q0/a^4;
w_exact_M2;
toc