forked from lucidrains/denoising-diffusion-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathvisualise.py
68 lines (59 loc) · 2 KB
/
visualise.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
import torch
import wandb
from denoising_diffusion_pytorch import Unet, GaussianDiffusion, Trainer
torch.cuda.empty_cache()
wandb.login()
default_hypers = dict(
learning_rate=3e-4,
training_timesteps=1001,
sampling_timesteps=250,
image_size=32,
number_of_samples=25,
batch_size=256,
use_amp=False,
use_fp16=False,
gradient_accumulation_rate=2,
ema_update_rate=10,
ema_decay=0.995,
adam_betas=(0.9, 0.99),
save_and_sample_rate=1000,
do_split_batches=False,
timesteps=4000,
loss_type='L2',
unet_dim=128,
unet_mults=(1, 2, 2, 2),
unet_channels=3,
training_objective='pred_x0'
)
wandb.init(config=default_hypers, project='bath-thesis', entity='jd202')
model = Unet(
dim=wandb.config.unet_dim,
dim_mults=wandb.config.unet_mults,
channels=wandb.config.unet_channels
)
diffusion = GaussianDiffusion(
model,
image_size=wandb.config.image_size,
timesteps=wandb.config.timesteps, # number of steps
sampling_timesteps=wandb.config.sampling_timesteps,
# number of sampling timesteps (using ddim for faster inference [see citation for ddim paper])
loss_type=wandb.config.loss_type, # L1 or L2
training_objective=wandb.config.training_objective
)
trainer = Trainer(
diffusion,
'/Users/jake/Desktop/scp/cifar',
train_batch_size=wandb.config.batch_size,
training_learning_rate=wandb.config.learning_rate,
num_training_steps=wandb.config.training_timesteps, # total training steps
num_samples=wandb.config.number_of_samples,
gradient_accumulate_every=wandb.config.gradient_accumulation_rate, # gradient accumulation steps
ema_update_every=wandb.config.ema_update_rate,
ema_decay=wandb.config.ema_decay, # exponential moving average decay
amp=wandb.config.use_amp, # turn on mixed precision
fp16=wandb.config.use_fp16,
save_and_sample_every=wandb.config.save_and_sample_rate
)
trainer.load('./results/loadins', '56')
trainer.ema.ema_model.eval()
torch.save(model.state_dict(), './')