forked from lucidrains/denoising-diffusion-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathpytorch-xla-env-setup.py
182 lines (151 loc) · 5.89 KB
/
pytorch-xla-env-setup.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
#!/usr/bin/env python
# Sample usage:
# python env-setup.py --version 1.11 --apt-packages libomp5
import argparse
import collections
from datetime import datetime
import os
import platform
import re
import requests
import subprocess
import threading
import sys
VersionConfig = collections.namedtuple('VersionConfig',
['wheels', 'tpu', 'py_version', 'cuda_version'])
DEFAULT_CUDA_VERSION = '11.2'
OLDEST_VERSION = datetime.strptime('20200318', '%Y%m%d')
NEW_VERSION = datetime.strptime('20220315', '%Y%m%d') # 1.11 release date
OLDEST_GPU_VERSION = datetime.strptime('20200707', '%Y%m%d')
DIST_BUCKET = 'gs://tpu-pytorch/wheels'
TORCH_WHEEL_TMPL = 'torch-{whl_version}-cp{py_version}-cp{py_version}m-linux_x86_64.whl'
TORCH_XLA_WHEEL_TMPL = 'torch_xla-{whl_version}-cp{py_version}-cp{py_version}m-linux_x86_64.whl'
TORCHVISION_WHEEL_TMPL = 'torchvision-{whl_version}-cp{py_version}-cp{py_version}m-linux_x86_64.whl'
VERSION_REGEX = re.compile(r'^(\d+\.)+\d+$')
def is_gpu_runtime():
return int(os.environ.get('COLAB_GPU', 0)) == 1
def is_tpu_runtime():
return 'TPU_NAME' in os.environ
def update_tpu_runtime(tpu_name, version):
print(f'Updating TPU runtime to {version.tpu} ...')
try:
import cloud_tpu_client
except ImportError:
subprocess.call([sys.executable, '-m', 'pip', 'install', 'cloud-tpu-client'])
import cloud_tpu_client
client = cloud_tpu_client.Client(tpu_name)
client.configure_tpu_version(version.tpu)
print('Done updating TPU runtime')
def get_py_version():
version_tuple = platform.python_version_tuple()
return version_tuple[0] + version_tuple[1] # major_version + minor_version
def get_cuda_version():
if is_gpu_runtime():
# cuda available, install cuda wheels
return DEFAULT_CUDA_VERSION
def get_version(version):
cuda_version = get_cuda_version()
if version == 'nightly':
return VersionConfig(
'nightly', 'pytorch-nightly', get_py_version(), cuda_version)
version_date = None
try:
version_date = datetime.strptime(version, '%Y%m%d')
except ValueError:
pass # Not a dated nightly.
if version_date:
if cuda_version and version_date < OLDEST_GPU_VERSION:
raise ValueError(
f'Oldest nightly version build with CUDA available is {OLDEST_GPU_VERSION}')
elif not cuda_version and version_date < OLDEST_VERSION:
raise ValueError(f'Oldest nightly version available is {OLDEST_VERSION}')
return VersionConfig(f'nightly+{version}', f'pytorch-dev{version}',
get_py_version(), cuda_version)
if not VERSION_REGEX.match(version):
raise ValueError(f'{version} is an invalid torch_xla version pattern')
return VersionConfig(
version, f'pytorch-{version}', get_py_version(), cuda_version)
def install_vm(version, apt_packages, is_root=False):
dist_bucket = DIST_BUCKET
if version.cuda_version:
# Distributions for GPU runtime
# Note: GPU wheels available from 1.11
dist_bucket = os.path.join(
DIST_BUCKET, 'cuda/{}'.format(version.cuda_version.replace('.', '')))
else:
# Distributions for TPU runtime
# Note: this redirection is required for 1.11 & nightly releases
# because the current 2 VM wheels are not compatible with colab environment.
if version.wheels == 'nightly':
dist_bucket = os.path.join(DIST_BUCKET, 'colab/')
elif 'nightly+' in version.wheels:
build_date = datetime.strptime( version.wheels.split('+')[1], '%Y%m%d')
if build_date >= NEW_VERSION:
dist_bucket = os.path.join(DIST_BUCKET, 'colab/')
elif VERSION_REGEX.match(version.wheels):
minor = int(version.wheels.split('.')[1])
if minor >= 11:
dist_bucket = os.path.join(DIST_BUCKET, 'colab/')
else:
raise ValueError(f'{version} is an invalid torch_xla version pattern')
torch_whl = TORCH_WHEEL_TMPL.format(
whl_version=version.wheels, py_version=version.py_version)
torch_whl_path = os.path.join(dist_bucket, torch_whl)
torch_xla_whl = TORCH_XLA_WHEEL_TMPL.format(
whl_version=version.wheels, py_version=version.py_version)
torch_xla_whl_path = os.path.join(dist_bucket, torch_xla_whl)
torchvision_whl = TORCHVISION_WHEEL_TMPL.format(
whl_version=version.wheels, py_version=version.py_version)
torchvision_whl_path = os.path.join(dist_bucket, torchvision_whl)
apt_cmd = ['apt-get', 'install', '-y']
apt_cmd.extend(apt_packages)
if not is_root:
# Colab/Kaggle run as root, but not GCE VMs so we need privilege
apt_cmd.insert(0, 'sudo')
installation_cmds = [
[sys.executable, '-m', 'pip', 'uninstall', '-y', 'torch', 'torchvision'],
['gsutil', 'cp', torch_whl_path, '.'],
['gsutil', 'cp', torch_xla_whl_path, '.'],
['gsutil', 'cp', torchvision_whl_path, '.'],
[sys.executable, '-m', 'pip', 'install', torch_whl],
[sys.executable, '-m', 'pip', 'install', torch_xla_whl],
[sys.executable, '-m', 'pip', 'install', torchvision_whl],
apt_cmd,
]
for cmd in installation_cmds:
subprocess.call(cmd)
def run_setup(args):
version = get_version(args.version)
# Update TPU
print('Updating... This may take around 2 minutes.')
if is_tpu_runtime():
update = threading.Thread(
target=update_tpu_runtime, args=(
args.tpu,
version,
))
update.start()
install_vm(version, args.apt_packages, is_root=not args.tpu)
if is_tpu_runtime():
update.join()
if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument(
'--version',
type=str,
default='20200515',
help='Versions to install (nightly, release version, or YYYYMMDD).',
)
parser.add_argument(
'--apt-packages',
nargs='+',
default=['libomp5'],
help='List of apt packages to install',
)
parser.add_argument(
'--tpu',
type=str,
help='[GCP] Name of the TPU (same zone, project as VM running script)',
)
args = parser.parse_args()
run_setup(args)