forked from lucidrains/denoising-diffusion-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmodel.py
99 lines (85 loc) · 2.89 KB
/
model.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
import torch
import wandb
from denoising_diffusion_pytorch import Unet, GaussianDiffusion, Trainer
torch.cuda.empty_cache()
wandb.login()
# wandb.config.learning_rate = 3e-4
# wandb.config.training_timesteps = 5000
# wandb.config.sampling_timesteps = 250
# wandb.config.image_size = 32
# wandb.config.number_of_samples = 25
# wandb.config.batch_size = 512
# wandb.config.use_amp = False
# wandb.config.use_fp16 = True
# wandb.config.gradient_accumulation_rate = 2
# wandb.config.ema_update_rate = 10
# wandb.config.ema_decay = 0.995
# wandb.config.adam_betas = (0.9, 0.99)
# wandb.config.save_and_sample_rate = 1000
# wandb.config.do_split_batches = False
# wandb.config.timesteps = 1000
# wandb.config.loss_type = 'L2'
# wandb.config.unet_dim = 16
# wandb.config.unet_mults = (1, 2, 4, 8)
# wandb.config.unet_channels = 3
# wandb.config.training_objective = 'pred_x0'
default_hypers = dict(
learning_rate=3e-4,
training_timesteps=1001,
sampling_timesteps=250,
image_size=32,
number_of_samples=25,
batch_size=256,
use_amp=False,
use_fp16=False,
gradient_accumulation_rate=2,
ema_update_rate=10,
ema_decay=0.995,
adam_betas=(0.9, 0.99),
save_and_sample_rate=1000,
do_split_batches=False,
timesteps=1000,
loss_type='L2',
unet_dim=16,
unet_mults=(1, 2, 4, 8),
unet_channels=3,
training_objective='pred_x0'
)
wandb.init(config=default_hypers, project='bath-thesis', entity='jd202')
# with open('./sweep.yaml') as f:
# sweep_config = yaml.load(f, Loader=SafeLoader)
#
# sweep_id = wandb.sweep(sweep_config, entity='jd202', project='bath-thesis')
model = Unet(
dim=wandb.config.unet_dim,
dim_mults=wandb.config.unet_mults,
channels=wandb.config.unet_channels
)
diffusion = GaussianDiffusion(
model,
image_size=wandb.config.image_size,
timesteps=wandb.config.timesteps, # number of steps
sampling_timesteps=wandb.config.sampling_timesteps,
# number of sampling timesteps (using ddim for faster inference [see citation for ddim paper])
loss_type=wandb.config.loss_type, # L1 or L2
training_objective=wandb.config.training_objective
)
trainer = Trainer(
diffusion,
'/Users/jake/Desktop/scp/cifar',
train_batch_size=wandb.config.batch_size,
training_learning_rate=wandb.config.learning_rate,
num_training_steps=wandb.config.training_timesteps, # total training steps
num_samples=wandb.config.number_of_samples,
gradient_accumulate_every=wandb.config.gradient_accumulation_rate, # gradient accumulation steps
ema_update_every=wandb.config.ema_update_rate,
ema_decay=wandb.config.ema_decay, # exponential moving average decay
amp=wandb.config.use_amp, # turn on mixed precision
fp16=wandb.config.use_fp16,
save_and_sample_every=wandb.config.save_and_sample_rate
)
trainer.load('./results/loadins', '17')
wandb.watch(model)
wandb.watch(diffusion)
trainer.train()
wandb.finish()