-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathtrain.py
155 lines (122 loc) · 6.85 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
import torch
from torch import optim
from torch.utils.data.dataloader import DataLoader
from torch.optim.lr_scheduler import ReduceLROnPlateau
from networks import DISCUS, TrainingDataloader, ValidationDataloader
import json
import os
from os.path import join
import sys
import numpy as np
from utils import load_config, get_parser, apply_early_stopping,get_dataset
def main(yaml_filepath):
# Load config file and set hyperparameters
cfg = load_config(yaml_filepath)
query_fraction = cfg.get("query_fraction", 0.4)
device_number = cfg.get("device", 0)
if torch.cuda.is_available(): device = "cuda:{}".format(device_number)
else: device = "cpu"
max_epochs = cfg.get("max_epochs", 100)
experiment_path = cfg.get("experiment_path")
training_batch_size = cfg.get("training_batch_size", 4000)
validation_batch_size = cfg.get("validation_batch_size", 12000)
# Observation set for the validation set
validation_indices = cfg.get("validation_indices")
os.makedirs(experiment_path, exist_ok=True)
init_lr = cfg.get("lr", 0.01)
# Declare the model
model = DISCUS().to(device)
# Declare optimizer, early stopping, learning rate scheduler, loss, augmentations
optimizer = optim.Adam(model.parameters(), lr=init_lr)
es = apply_early_stopping(min_delta=0.00001, patience=20, mode='min', wait=20)
scheduler = ReduceLROnPlateau(optimizer, mode="min", factor=0.1, patience=10, min_lr=5e-5)
# Load and check data
bvecs, bvals, signals = get_dataset(path=cfg["training_dataset_path"], test=False)
dataset_train = TrainingDataloader(bvecs=bvecs, bvals=bvals, signals=signals)
train_dataloader = DataLoader(dataset=dataset_train, batch_size=training_batch_size, shuffle=True)
bvecs, bvals, signals = get_dataset(path=cfg["validation_dataset_path"], test=False)
dataset_validation = ValidationDataloader(bvecs=bvecs, bvals=bvals, signals=signals, validation_indices=validation_indices)
validation_dataloader = DataLoader(dataset=dataset_validation, batch_size=validation_batch_size, shuffle=False)
training_dict = dict()
training_dict["epoch"] = []
training_dict["lr"] = []
training_dict["training_loss"] = []
training_dict["validation_loss"] = []
sys.stdout.flush()
for epoch in range(max_epochs):
print("Epoch: {}, LR {}".format(epoch, optimizer.param_groups[0]["lr"]))
model.train()
train_loss = 0
batch_counter = 0
for batch in train_dataloader:
optimizer.zero_grad()
_, prediction_signals = model.forward(batch["observation_bvecs"].float().to(device),
batch["observation_bvals"].float().to(device),
batch["observation_signals"].float().to(device),
batch["observation_mask"].to(device),
batch["query_bvecs"].float().to(device),
batch["query_bvals"].float().to(device))
loss = (prediction_signals - batch["reference_signals"].float().to(device))**2
observation_loss = loss[batch["reference_mask"].to(device)].mean()
query_loss = loss[~batch["reference_mask"].to(device)].mean()
weighted_loss = query_fraction * query_loss + (1 - query_fraction) * observation_loss
weighted_loss.backward()
optimizer.step()
train_loss += weighted_loss.detach().cpu().numpy()
batch_counter += 1
train_loss /= batch_counter
print("Epoch {}: training-loss {}".format(epoch, train_loss))
sys.stdout.flush()
with torch.no_grad():
model.eval()
validation_loss = 0
batch_counter = 0
for batch in validation_dataloader:
_, prediction_signals = model.forward(batch["observation_bvecs"].float().to(device),
batch["observation_bvals"].float().to(device),
batch["observation_signals"].float().to(device),
batch["observation_mask"].to(device),
batch["query_bvecs"].float().to(device),
batch["query_bvals"].float().to(device))
loss = (prediction_signals - batch["reference_signals"].float().to(device)) ** 2
observation_loss = loss[batch["reference_mask"].to(device)].mean()
query_loss = loss[~batch["reference_mask"].to(device)].mean()
weighted_loss = query_fraction * query_loss + (1 - query_fraction) * observation_loss
validation_loss += weighted_loss.detach().cpu().numpy()
batch_counter += 1
validation_loss /= batch_counter
# Check if this is a new best model checkpoint
save_name = join(experiment_path, "epoch_{}_best.pkl".format(str(epoch).zfill(2)))
message = "Best Epoch {}: validation-loss {}".format(epoch, validation_loss)
if len(training_dict["validation_loss"]) > 0:
if validation_loss < np.min(training_dict["validation_loss"]):
existing_checkpoints = [join(experiment_path, x) for x in os.listdir(experiment_path) if x[-4:] == ".pkl" and "_best" in x]
for file in existing_checkpoints: os.rename(file, file.replace("_best", ""))
else:
save_name = join(experiment_path, 'epoch_{}.pkl'.format(str(epoch).zfill(2)))
message = "Epoch {}: validation-loss {}".format(epoch, validation_loss)
print(message)
sys.stdout.flush()
# Save model checkpoint
checkpoint = {"model_state_dict": model.state_dict(),
"optimizer_state_dict": optimizer.state_dict(),
"scheduler_state_dict": scheduler.state_dict(),
"epoch": epoch}
torch.save(checkpoint, save_name)
training_dict["epoch"].append(epoch)
training_dict["lr"].append(optimizer.param_groups[0]["lr"])
training_dict["training_loss"].append(train_loss.item())
training_dict["validation_loss"].append(validation_loss.item())
with open(join(experiment_path, "validation_dict.json"), 'w') as fp: json.dump(training_dict, fp)
# Update learning rate with the scheduler
scheduler.step(validation_loss)
# Check if early stopping is triggered
if es.evaluate(validation_loss):
print("Applying early stopping ...")
file = open(join(experiment_path, "COMPLETED"), "w")
file.close()
break
if __name__ == '__main__':
args = get_parser().parse_args()
config_file = args.filename
main(config_file)