diff --git a/README.md b/README.md index 5a13c08dc4..1a6fe6e58f 100644 --- a/README.md +++ b/README.md @@ -489,7 +489,8 @@ train_params = { ... # training parameters

Integration to ClearML

- + + ```python from super_gradients import Trainer @@ -508,7 +509,45 @@ train_params = { ... # training parameters } ``` +
+
+ +

Integration to Voxel51

+ +You can apply SuperGradients YOLO-NAS models directly to your FiftyOne dataset using the apply_model() method: + +```python +import fiftyone as fo +import fiftyone.zoo as foz + +from super_gradients.training import models + +dataset = foz.load_zoo_dataset("quickstart", max_samples=25) +dataset.select_fields().keep_fields() + +model = models.get("yolo_nas_m", pretrained_weights="coco") + +dataset.apply_model(model, label_field="yolo_nas", confidence_thresh=0.7) + +session = fo.launch_app(dataset) +``` + +The SuperGradients YOLO-NAS model can be accessed directly from the FiftyOne Model Zoo: + +```python +import fiftyone as fo +import fiftyone.zoo as foz + +model = foz.load_zoo_model("yolo-nas-torch") + +dataset = foz.load_zoo_dataset("quickstart") +dataset.apply_model(model, label_field="yolo_nas") + +session = fo.launch_app(dataset) +``` + +
## Installation Methods