-
Notifications
You must be signed in to change notification settings - Fork 530
/
Copy pathdetection_sub_classing_test.py
90 lines (72 loc) · 4.79 KB
/
detection_sub_classing_test.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
import unittest
import numpy as np
from super_gradients.training.datasets import DetectionDataset
from super_gradients.training.utils.detection_utils import DetectionTargetsFormat
from super_gradients.common.exceptions.dataset_exceptions import EmptyDatasetException, DatasetValidationException
class DummyDetectionDataset(DetectionDataset):
def __init__(self, input_dim, *args, **kwargs):
"""Dummy Dataset testing subclassing, designed with no annotation that includes class_2."""
self.dummy_targets = [
np.array([[0, 0, 10, 10, 0], [0, 5, 10, 15, 0], [0, 5, 15, 20, 0]]),
np.array([[0, 0, 10, 10, 0], [0, 5, 10, 15, 0], [0, 15, 55, 20, 1]]),
]
self.image_size = input_dim
kwargs["all_classes_list"] = ["class_0", "class_1", "class_2"]
kwargs["original_target_format"] = DetectionTargetsFormat.XYXY_LABEL
super().__init__(data_dir="", input_dim=input_dim, *args, **kwargs)
def _setup_data_source(self):
return len(self.dummy_targets)
def _load_annotation(self, sample_id: int) -> dict:
"""Load 2 different annotations.
- Annotation 0 is made of: 3 targets of class 0, 0 of class_1 and 0 of class_2
- Annotation 1 is made of: 2 targets of class_0, 1 of class_1 and 0 of class_2
"""
return {"img_path": "", "resized_img_shape": None, "target": self.dummy_targets[sample_id]}
# DetectionDatasetV2 will call _load_image but since we don't have any image we patch this method with
# tensor of image shape
def _load_image(self, index: int) -> np.ndarray:
return np.random.random(self.image_size)
class TestDetectionDatasetSubclassing(unittest.TestCase):
def setUp(self) -> None:
self.config_keep_empty_annotation = [
{"class_inclusion_list": ["class_0", "class_1", "class_2"], "expected_n_targets_after_subclass": [3, 3]},
{"class_inclusion_list": ["class_0"], "expected_n_targets_after_subclass": [3, 2]},
{"class_inclusion_list": ["class_1"], "expected_n_targets_after_subclass": [0, 1]},
{"class_inclusion_list": ["class_2"], "expected_n_targets_after_subclass": [0, 0]},
]
self.config_ignore_empty_annotation = [
{"class_inclusion_list": ["class_0", "class_1", "class_2"], "expected_n_targets_after_subclass": [3, 3]},
{"class_inclusion_list": ["class_0"], "expected_n_targets_after_subclass": [3, 2]},
{"class_inclusion_list": ["class_1"], "expected_n_targets_after_subclass": [1]},
]
def test_subclass_keep_empty(self):
"""Check that subclassing only keeps annotations of wanted class"""
for config in self.config_keep_empty_annotation:
test_dataset = DummyDetectionDataset(input_dim=(640, 512), ignore_empty_annotations=False, class_inclusion_list=config["class_inclusion_list"])
n_targets_after_subclass = _count_targets_after_subclass_per_index(test_dataset)
self.assertListEqual(config["expected_n_targets_after_subclass"], n_targets_after_subclass)
def test_subclass_drop_empty(self):
"""Check that empty annotations are not indexed (i.e. ignored) when ignore_empty_annotations=True"""
for config in self.config_ignore_empty_annotation:
test_dataset = DummyDetectionDataset(input_dim=(640, 512), ignore_empty_annotations=True, class_inclusion_list=config["class_inclusion_list"])
n_targets_after_subclass = _count_targets_after_subclass_per_index(test_dataset)
self.assertListEqual(config["expected_n_targets_after_subclass"], n_targets_after_subclass)
# Check last case when class_2, which should raise EmptyDatasetException because not a single image has
# a target in class_inclusion_list
with self.assertRaises(EmptyDatasetException):
DummyDetectionDataset(input_dim=(640, 512), ignore_empty_annotations=True, class_inclusion_list=["class_2"])
def test_wrong_subclass(self):
"""Check that ValueError is raised when class_inclusion_list includes a class that does not exist."""
with self.assertRaises(DatasetValidationException):
DummyDetectionDataset(input_dim=(640, 512), class_inclusion_list=["non_existing_class"])
with self.assertRaises(DatasetValidationException):
DummyDetectionDataset(input_dim=(640, 512), class_inclusion_list=["class_0", "non_existing_class"])
def _count_targets_after_subclass_per_index(test_dataset: DummyDetectionDataset):
"""Iterate through every index of the dataset and count the associated number of targets per index"""
dataset_target_len = []
for index in range(len(test_dataset)):
_img, targets = test_dataset[index]
dataset_target_len.append(len(targets))
return dataset_target_len
if __name__ == "__main__":
unittest.main()