-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathSimple.hs
1170 lines (1095 loc) · 40.4 KB
/
Simple.hs
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
{-# LANGUAGE DataKinds #-}
{-# LANGUAGE PartialTypeSignatures #-}
{-# LANGUAGE TemplateHaskell #-}
{-# LANGUAGE TypeFamilies #-}
{-# LANGUAGE UndecidableInstances #-}
{-# OPTIONS_GHC -Wno-partial-type-signatures #-}
{- | This module contains a simple (and musically rather naive)
probabilistic model of protovoice derivations.
This model can be used to sample a derivation,
evaluate a derivations probability,
or infer posterior distributions of the model parmeters from given derivations
(i.e., "learn" the model's probabilities).
This model is a /locally conjugate/ model:
It samples a derivation using a sequence of random decisions with certain probabilities.
These probabilities are generally unknown, so they are themselves modeled as random variables with prior distributions.
The full model \(p(d, \theta)\) thus splits into
\[p(D, \theta) = p(d \mid \theta) \cdot p(\theta),\]
the prior over the probability variables
\[p(\theta) = \prod_i p(\theta_i),\]
and the likelihood of the derivation(s) given these probabilities
\[p(D \mid \theta) = \prod_{d \in D} p(d \mid \theta) = \prod_{d \in D} \prod_i p(d_i \mid \theta, d_0, \ldots, d_{i-1}).\]
Given all prior decisions, the likelihood of a decision \(d_i\) based on some parameter \(\theta_a\)
\[p(d_i \mid \theta, d_{<i})\]
is [conjugate](https://en.wikipedia.org/wiki/Conjugate_prior) with the prior of that parameter \(p(\theta_a)\),
which means that the posterior of the parameters given one (or several) derivation(s) \(p(\theta \mid D)\)
can be computed analytically.
The parameters \(\theta\) and their prior distributions
are represented by the higher-kinded type 'PVParams'.
Different instantiations of this type (using 'Hyper' or 'Probs') results in concrete record types
that represent prior or posterior distributions
or concrete values (probabilities) for the parameters.
'PVParams' also supports 'jeffreysPrior' and 'uniformPrior' as default priors,
as well as 'sampleProbs' for sampling from a prior (see "Inferenc.Conjugate").
The likelihood \(p(d \mid \theta)\) of a derivation is represented by
'sampleDerivation'.
It can be executed under different "modes" (probability monads)
for sampling, inference, or tracing (see "Inference.Conjugate").
The decisions during the derivation are represented by a 'Trace' (here @Trace PVParams@).
In order to learn from a given derivation,
the corresponding trace can be obtained using 'observeDerivation'.
A combination of getting a trace and learning from it
is provided by 'trainSinglePiece'.
-}
module PVGrammar.Prob.Simple
( -- * Model Parameters
-- | A higher-kinded type that represents the global parameters (probabilities) of the model.
-- Use it as 'Hyper PVParams' to represent hyperparameters (priors and posteriors)
-- or as 'Probs PVParams' to represent actual probabilites.
-- Each record field corresponds to one parameter
-- that influences a specific type of decision in the generation process.
PVParams (..)
, PVParamsOuter (..)
, PVParamsInner (..)
-- * Likelihood Model
-- | 'sampleDerivation' represents a probabilistic program that samples a derivation.
-- that can be interpreted in various modes for
--
-- - sampling ('sampleTrace', 'sampleResult'),
-- - inference ('evalTraceLogP', 'getPosterior'),
-- - tracing ('showTrace', 'traceTrace').
--
-- 'observeDerivation' takes and existing derivation and returns the corresponding trace.
, sampleDerivation
, sampleDerivation'
, observeDerivation
, observeDerivation'
-- * Utilities
, roundtrip
, trainSinglePiece
) where
import Common
( Analysis
( anaDerivation
, anaTop
)
, Leftmost (..)
, LeftmostDouble (..)
, LeftmostSingle (..)
, Path (..)
, StartStop (..)
, getInner
)
import PVGrammar
import PVGrammar.Generate
( applySplit
, applySpread
, freezable
)
import Control.Monad
( guard
, unless
, when
)
import Control.Monad.Trans.Class (lift)
import Control.Monad.Trans.Except
( except
, runExceptT
)
import Control.Monad.Trans.State
( StateT
, execStateT
)
import Data.Bifunctor qualified as Bi
import Data.Foldable (forM_)
import Data.HashMap.Strict qualified as HM
import Data.HashSet qualified as S
import Data.Hashable (Hashable)
import Data.List qualified as L
import Data.Map.Strict qualified as M
import Data.Maybe
( catMaybes
, fromMaybe
)
import Debug.Trace qualified as DT
import GHC.Generics (Generic)
import Inference.Conjugate
-- import qualified Inference.Conjugate as IC
import Internal.MultiSet qualified as MS
import Lens.Micro.TH (makeLenses)
import Musicology.Pitch as MP hiding
( a
, b
, c
, d
, e
, f
, g
)
import System.Random.MWC.Probability (categorical)
-- | Parameters for decisions about outer operations (split, spread, freeze).
data PVParamsOuter f = PVParamsOuter
{ _pSingleFreeze :: f Beta
, _pDoubleLeft :: f Beta
, _pDoubleLeftFreeze :: f Beta
, _pDoubleRightSplit :: f Beta
}
deriving (Generic)
deriving instance (Show (f Beta)) => Show (PVParamsOuter f)
makeLenses ''PVParamsOuter
{- | Parameters for decisions about inner operations
(elaboration and distribution within splits and spreads).
-}
data PVParamsInner f = PVParamsInner
-- split
{ _pElaborateRegular :: f Beta
, _pElaborateL :: f Beta
, _pElaborateR :: f Beta
, _pRootFifths :: f Beta
, _pKeepL :: f Beta
, _pKeepR :: f Beta
, _pRepeatOverNeighbor :: f Beta
, _pNBChromatic :: f Beta
, _pNBAlt :: f Beta
, _pRepeatLeftOverRight :: f Beta
, _pRepeatAlter :: f Beta
, _pRepeatAlterUp :: f Beta
, _pRepeatAlterSemis :: f Beta
, _pConnect :: f Beta
, _pConnectChromaticLeftOverRight :: f Beta
, _pPassUp :: f Beta
, _pPassLeftOverRight :: f Beta
, _pNewPassingLeft :: f Beta
, _pNewPassingRight :: f Beta
, -- spread
_pNewPassingMid :: f Beta
, _pNoteSpreadDirection :: f (Dirichlet 3)
, _pNotesOnOtherSide :: f Beta
, _pSpreadRepetitionEdge :: f Beta
}
deriving (Generic)
deriving instance
( Show (f Beta)
, Show (f Beta)
, Show (f Beta)
, Show (f (Dirichlet 3))
, Show (f Beta)
)
=> Show (PVParamsInner f)
makeLenses ''PVParamsInner
-- | The combined parameters for inner and outer operations.
data PVParams f = PVParams
{ _pOuter :: PVParamsOuter f
, _pInner :: PVParamsInner f
}
deriving (Generic)
deriving instance
( Show (f Beta)
, Show (f Beta)
, Show (f Beta)
, Show (f (Dirichlet 3))
, Show (f Beta)
)
=> Show (PVParams f)
makeLenses ''PVParams
data MagicalOctaves = MagicalOctaves
deriving (Eq, Ord, Show)
instance Distribution MagicalOctaves where
type Params MagicalOctaves = ()
type Support MagicalOctaves = Int
distSample _ _ = (`subtract` 2) <$> categorical [0.1, 0.2, 0.4, 0.2, 0.1]
distLogP _ _ _ = 0
type PVProbs = PVParams ProbsRep
type PVProbsInner = PVParamsInner ProbsRep
type ContextSingle n = (StartStop (Notes n), Edges n, StartStop (Notes n))
type ContextDouble n =
(StartStop (Notes n), Edges n, Notes n, Edges n, StartStop (Notes n))
type PVObs a = StateT (Trace PVParams) (Either String) a
{- | A helper function that tests whether 'observeDerivation''
followed by 'sampleDerivation'' restores the original derivation.
Useful for testing the compatibility of the two functions.
-}
roundtrip :: FilePath -> IO (Either String [PVLeftmost SPitch])
roundtrip fn = do
anaE <- loadAnalysis fn
case anaE of
Left err -> error err
Right ana -> do
let traceE = observeDerivation' $ anaDerivation ana
case traceE of
Left err -> error err
Right trace -> do
pure $ traceTrace trace sampleDerivation'
{- | Helper function: Load a single derivation
and infer the corresponding posterior for a uniform prior.
-}
trainSinglePiece :: FilePath -> IO (Maybe (PVParams HyperRep))
trainSinglePiece fn = do
anaE <- loadAnalysis fn
case anaE of
Left err -> error err
Right ana -> do
let traceE = observeDerivation' $ anaDerivation ana
case traceE of
Left err -> error err
Right trace -> do
let prior = uniformPrior @PVParams
pure $ getPosterior prior trace (sampleDerivation $ anaTop ana)
-- | A shorthand for 'sampleDerivation' starting from ⋊——⋉.
sampleDerivation' :: _ => m (Either String [PVLeftmost SPitch])
sampleDerivation' = sampleDerivation $ PathEnd topEdges
-- | A shorthand for 'observeDerivation' starting from ⋊——⋉.
observeDerivation' :: [PVLeftmost SPitch] -> Either String (Trace PVParams)
observeDerivation' deriv = observeDerivation deriv $ PathEnd topEdges
{- | A probabilistic program that samples a derivation starting from a given root path.
Can be interpreted by the interpreter functions in "Inference.Conjugate".
-}
sampleDerivation
:: _
=> Path (Edges SPitch) (Notes SPitch)
-- ^ root path
-> m (Either String [PVLeftmost SPitch])
-- ^ a probabilistic program
sampleDerivation top = runExceptT $ go Start top False
where
go sl surface ars = case surface of
-- 1 trans left:
PathEnd t -> do
step <- lift $ sampleSingleStep (sl, t, Stop)
case step of
LMSingleSplit splitOp -> do
(ctl, cs, ctr) <- except $ applySplit splitOp t
nextSteps <- go sl (Path ctl cs (PathEnd ctr)) False
pure $ LMSplitOnly splitOp : nextSteps
LMSingleFreeze freezeOp -> pure [LMFreezeOnly freezeOp]
-- 2 trans left
Path tl sm (PathEnd tr) -> goDouble sl tl sm tr Stop ars PathEnd
-- 3 or more trans left
Path tl sm (Path tr sr rest) ->
goDouble sl tl sm tr (Inner sr) ars (\tr' -> Path tr' sr rest)
-- helper for the two cases of 2+ edges (2 and 3+):
goDouble sl tl sm tr sr ars mkrest = do
step <- lift $ sampleDoubleStep (sl, tl, sm, tr, sr) ars
case step of
LMDoubleSplitLeft splitOp -> do
(ctl, cs, ctr) <- except $ applySplit splitOp tl
nextSteps <- go sl (Path ctl cs (Path ctr sm (mkrest tr))) False
pure $ LMSplitLeft splitOp : nextSteps
LMDoubleFreezeLeft freezeOp -> do
nextSteps <- go (Inner sm) (mkrest tr) False
pure $ LMFreezeLeft freezeOp : nextSteps
LMDoubleSplitRight splitOp -> do
(ctl, cs, ctr) <- except $ applySplit splitOp tr
nextSteps <- go sl (Path tl sm (Path ctl cs (mkrest ctr))) True
pure $ LMSplitRight splitOp : nextSteps
LMDoubleSpread spreadOp -> do
(ctl, csl, ctm, csr, ctr) <- except $ applySpread spreadOp tl sm tr
nextSteps <- go sl (Path ctl csl (Path ctm csr (mkrest ctr))) False
pure $ LMSpread spreadOp : nextSteps
{- | Walk through a derivation (starting at a given root path)
and return the corresponding 'Trace' (if possible).
The trace can be used together with 'sampleDerivation'
for inference ('getPosterior') or for showing the trace ('printTrace').
-}
observeDerivation
:: [PVLeftmost SPitch]
-> Path (Edges SPitch) (Notes SPitch)
-> Either String (Trace PVParams)
observeDerivation deriv top =
execStateT
(go Start top False deriv)
(Trace mempty)
where
go
:: StartStop (Notes SPitch)
-> Path (Edges SPitch) (Notes SPitch)
-> Bool
-> [PVLeftmost SPitch]
-> PVObs ()
go _sl _surface _ars [] = lift $ Left "Derivation incomplete."
go sl (PathEnd trans) _ars (op : rest) = case op of
LMSingle single -> do
observeSingleStep (sl, trans, Stop) single
case single of
LMSingleFreeze _ -> pure ()
LMSingleSplit splitOp -> do
(ctl, cs, ctr) <- lift $ applySplit splitOp trans
go sl (Path ctl cs (PathEnd ctr)) False rest
LMDouble _ -> lift $ Left "Double operation on single transition."
go sl (Path tl sm (PathEnd tr)) ars (op : rest) =
goDouble op rest ars (sl, tl, sm, tr, Stop) PathEnd
go sl (Path tl sm (Path tr sr pathRest)) ars (op : derivRest) =
goDouble op derivRest ars (sl, tl, sm, tr, Inner sr) $
\tr' -> Path tr' sr pathRest
goDouble op rest ars (sl, tl, sm, tr, sr) mkRest = case op of
LMSingle _ -> lift $ Left "Single operation with several transitions left."
LMDouble double -> do
observeDoubleStep (sl, tl, sm, tr, sr) ars double
case double of
LMDoubleFreezeLeft _ -> do
when ars $ lift $ Left "FreezeLeft after SplitRight."
go (Inner sm) (mkRest tr) False rest
LMDoubleSplitLeft splitOp -> do
when ars $ lift $ Left "SplitLeft after SplitRight."
(ctl, cs, ctr) <- lift $ applySplit splitOp tl
go sl (Path ctl cs $ Path ctr sm $ mkRest tr) False rest
LMDoubleSplitRight splitOp -> do
(ctl, cs, ctr) <- lift $ applySplit splitOp tr
go sl (Path tl sm $ Path ctl cs $ mkRest ctr) True rest
LMDoubleSpread spreadOp -> do
(ctl, csl, ctm, csr, ctr) <- lift $ applySpread spreadOp tl sm tr
go sl (Path ctl csl $ Path ctm csr $ mkRest ctr) False rest
sampleSingleStep
:: _ => ContextSingle SPitch -> m (LeftmostSingle (Split SPitch) Freeze)
sampleSingleStep parents@(_, trans, _) =
if freezable trans
then do
shouldFreeze <-
sampleValue "shouldFreeze (single)" Bernoulli $ pOuter . pSingleFreeze
if shouldFreeze
then LMSingleFreeze <$> sampleFreeze parents
else LMSingleSplit <$> sampleSplit parents
else LMSingleSplit <$> sampleSplit parents
observeSingleStep
:: ContextSingle SPitch -> LeftmostSingle (Split SPitch) Freeze -> PVObs ()
observeSingleStep parents@(_, trans, _) singleOp =
if freezable trans
then case singleOp of
LMSingleFreeze f -> do
observeValue
"shouldFreeze (single)"
Bernoulli
(pOuter . pSingleFreeze)
True
observeFreeze parents f
LMSingleSplit s -> do
observeValue
"shouldFreeze (single)"
Bernoulli
(pOuter . pSingleFreeze)
False
observeSplit parents s
else case singleOp of
LMSingleFreeze _ -> lift $ Left "Freezing a non-freezable transition."
LMSingleSplit s -> observeSplit parents s
sampleDoubleStep
:: _
=> ContextDouble SPitch
-> Bool
-> m (LeftmostDouble (Split SPitch) Freeze (Spread SPitch))
sampleDoubleStep parents@(sliceL, transL, sliceM, transR, sliceR) afterRightSplit =
if afterRightSplit
then do
shouldSplitRight <-
sampleValue "shouldSplitRight" Bernoulli $ pOuter . pDoubleRightSplit
if shouldSplitRight
then LMDoubleSplitRight <$> sampleSplit (Inner sliceM, transR, sliceR)
else LMDoubleSpread <$> sampleSpread parents
else do
continueLeft <-
sampleValue "continueLeft" Bernoulli $ pOuter . pDoubleLeft
if continueLeft
then
if freezable transL
then do
shouldFreeze <-
sampleValue "shouldFreeze (double)" Bernoulli $
pOuter
. pDoubleLeftFreeze
if shouldFreeze
then
LMDoubleFreezeLeft
<$> sampleFreeze (sliceL, transL, Inner sliceM)
else
LMDoubleSplitLeft
<$> sampleSplit (sliceL, transL, Inner sliceM)
else LMDoubleSplitLeft <$> sampleSplit (sliceL, transL, Inner sliceM)
else sampleDoubleStep parents True
observeDoubleStep
:: ContextDouble SPitch
-> Bool
-> LeftmostDouble (Split SPitch) Freeze (Spread SPitch)
-> PVObs ()
observeDoubleStep parents@(sliceL, transL, sliceM, transR, sliceR) afterRightSplit doubleOp =
case doubleOp of
LMDoubleFreezeLeft f -> do
observeValue "continueLeft" Bernoulli (pOuter . pDoubleLeft) True
observeValue
"shouldFreeze (double)"
Bernoulli
(pOuter . pDoubleLeftFreeze)
True
observeFreeze (sliceL, transL, Inner sliceM) f
LMDoubleSplitLeft s -> do
observeValue "continueLeft" Bernoulli (pOuter . pDoubleLeft) True
when (freezable transL) $
observeValue
"shouldFreeze (double)"
Bernoulli
(pOuter . pDoubleLeftFreeze)
False
observeSplit (sliceL, transL, Inner sliceM) s
LMDoubleSplitRight s -> do
unless afterRightSplit $
observeValue "continueLeft" Bernoulli (pOuter . pDoubleLeft) False
observeValue
"shouldSplitRight"
Bernoulli
(pOuter . pDoubleRightSplit)
True
observeSplit (Inner sliceM, transR, sliceR) s
LMDoubleSpread h -> do
unless afterRightSplit $
observeValue "continueLeft" Bernoulli (pOuter . pDoubleLeft) False
observeValue
"shouldSplitRight"
Bernoulli
(pOuter . pDoubleRightSplit)
False
observeSpread parents h
sampleFreeze :: RandomInterpreter m PVParams => ContextSingle n -> m Freeze
sampleFreeze _parents = pure FreezeOp
observeFreeze :: ContextSingle SPitch -> Freeze -> PVObs ()
observeFreeze _parents FreezeOp = pure ()
-- helper for sampleSplit and observeSplit
collectElabos
:: [(Edge SPitch, [(SPitch, o1)])]
-> [(InnerEdge SPitch, [(SPitch, PassingOrnament)])]
-> [(SPitch, [(SPitch, o2)])]
-> [(SPitch, [(SPitch, o3)])]
-> ( M.Map (StartStop SPitch, StartStop SPitch) [(SPitch, o1)]
, M.Map (SPitch, SPitch) [(SPitch, PassingOrnament)]
, M.Map SPitch [(SPitch, o2)]
, M.Map SPitch [(SPitch, o3)]
, S.HashSet (Edge SPitch)
, S.HashSet (Edge SPitch)
)
collectElabos childrenT childrenNT childrenL childrenR =
let splitTs = M.fromList childrenT
splitNTs = M.fromList childrenNT
fromLeft = M.fromList childrenL
fromRight = M.fromList childrenR
keepLeftT = getEdges childrenT (\p m -> (fst p, Inner m))
keepLeftL = getEdges childrenL (\l m -> (Inner l, Inner m))
keepLeftNT = do
-- List
((l, _), cs) <- childrenNT
(m, orn) <- cs
guard $ orn /= PassingRight
pure (Inner l, Inner m)
leftEdges = S.fromList $ keepLeftT <> keepLeftNT <> keepLeftL
keepRightT = getEdges childrenT (\p m -> (Inner m, snd p))
keepRightR = getEdges childrenR (\r m -> (Inner m, Inner r))
keepRightNT = do
-- List
((_, r), cs) <- childrenNT
(m, orn) <- cs
guard $ orn /= PassingLeft
pure (Inner m, Inner r)
rightEdges = S.fromList $ keepRightT <> keepRightNT <> keepRightR
in (splitTs, splitNTs, fromLeft, fromRight, leftEdges, rightEdges)
where
getEdges :: [(p, [(c, o)])] -> (p -> c -> Edge SPitch) -> [Edge SPitch]
getEdges elabos mkEdge = do
-- List
(p, cs) <- elabos
(c, _) <- cs
pure $ mkEdge p c
-- helper for sampleSplit and observeSplit
collectNotes
:: [(Edge SPitch, [(SPitch, o1)])]
-> [(InnerEdge SPitch, [(SPitch, PassingOrnament)])]
-> [(SPitch, [(SPitch, o2)])]
-> [(SPitch, [(SPitch, o3)])]
-> [SPitch]
collectNotes childrenT childrenNT childrenL childrenR =
let notesT = concatMap (fmap fst . snd) childrenT
notesNT = concatMap (fmap fst . snd) childrenNT
notesFromL = concatMap (fmap fst . snd) childrenL
notesFromR = concatMap (fmap fst . snd) childrenR
in L.sort $ notesT <> notesNT <> notesFromL <> notesFromR
sampleSplit :: forall m. _ => ContextSingle SPitch -> m (Split SPitch)
sampleSplit (sliceL, _edges@(Edges ts nts), sliceR) = do
-- DT.traceM $ "\nPerforming split (smp) on: " <> show edges
-- ornament regular edges at least once
childrenT <- mapM sampleT $ L.sort $ S.toList ts
-- DT.traceM $ "childrenT (smp): " <> show childrenT
-- ornament passing edges exactly once
childrenNT <- mapM sampleNT $ L.sort $ MS.toOccurList nts
-- DT.traceM $ "childrenNT (smp): " <> show childrenNT
-- ornament left notes
childrenL <- case getInner sliceL of
Nothing -> pure []
Just (Notes notes) -> mapM sampleL $ L.sort $ MS.toList notes
-- DT.traceM $ "childrenL (smp): " <> show childrenL
-- ornament right notes
childrenR <- case getInner sliceR of
Nothing -> pure []
Just (Notes notes) -> mapM sampleR $ L.sort $ MS.toList notes
-- DT.traceM $ "childrenR (smp): " <> show childrenR
-- introduce new passing edges left and right
let notes = collectNotes childrenT childrenNT childrenL childrenR
passLeft <- case getInner sliceL of
Nothing -> pure MS.empty
Just (Notes notesl) ->
samplePassing (L.sort $ MS.toList notesl) notes pNewPassingLeft
passRight <- case getInner sliceR of
Nothing -> pure MS.empty
Just (Notes notesr) ->
samplePassing notes (L.sort $ MS.toList notesr) pNewPassingRight
let (splitReg, splitPass, fromLeft, fromRight, leftEdges, rightEdges) =
collectElabos childrenT childrenNT childrenL childrenR
-- decide which edges to keep
keepLeft <- sampleKeepEdges pKeepL leftEdges
keepRight <- sampleKeepEdges pKeepR rightEdges
-- combine all sampling results into split operation
let splitOp =
SplitOp
{ splitReg
, splitPass
, fromLeft
, fromRight
, keepLeft
, keepRight
, passLeft
, passRight
}
-- DT.traceM $ "Performing split (smp): " <> show splitOp
pure splitOp
observeSplit :: ContextSingle SPitch -> Split SPitch -> PVObs ()
observeSplit (sliceL, _edges@(Edges ts nts), sliceR) _splitOp@(SplitOp splitTs splitNTs fromLeft fromRight keepLeft keepRight passLeft passRight) =
do
-- DT.traceM $ "\nPerforming split (obs): " <> show splitOp
-- observe ornaments of regular edges
childrenT <- mapM (observeT splitTs) $ L.sort $ S.toList ts
-- DT.traceM $ "childrenT (obs): " <> show childrenT
-- observe ornaments of passing edges
childrenNT <- mapM (observeNT splitNTs) $ L.sort $ MS.toOccurList nts
-- DT.traceM $ "childrenNT (obs): " <> show childrenNT
-- observe ornaments of left notes
childrenL <- case getInner sliceL of
Nothing -> pure []
Just (Notes notes) -> mapM (observeL fromLeft) $ L.sort $ MS.toList notes
-- DT.traceM $ "childrenL (obs): " <> show childrenL
-- observe ornaments of right notes
childrenR <- case getInner sliceR of
Nothing -> pure []
Just (Notes notes) ->
mapM (observeR fromRight) $ L.sort $ MS.toList notes
-- DT.traceM $ "childrenR (obs): " <> show childrenR
-- observe new passing edges
let notes = collectNotes childrenT childrenNT childrenL childrenR
case getInner sliceL of
Nothing -> pure ()
Just (Notes notesl) ->
observePassing
(L.sort $ MS.toList notesl)
notes
pNewPassingLeft
passLeft
case getInner sliceR of
Nothing -> pure ()
Just (Notes notesr) ->
observePassing
notes
(L.sort $ MS.toList notesr)
pNewPassingRight
passRight
-- observe which edges are kept
let (_, _, _, _, leftEdges, rightEdges) =
collectElabos childrenT childrenNT childrenL childrenR
observeKeepEdges pKeepL leftEdges keepLeft
observeKeepEdges pKeepR rightEdges keepRight
sampleRootNote :: _ => m SPitch
sampleRootNote = do
fifthsSign <- sampleConst "rootFifthsSign" Bernoulli 0.5
fifthsN <- sampleValue "rootFifthsN" Geometric0 $ pInner . pRootFifths
os <- sampleConst "rootOctave" MagicalOctaves ()
let fs = if fifthsSign then fifthsN else negate (fifthsN + 1)
p = (emb <$> spc fs) +^ (octave ^* (os + 4))
-- DT.traceM $ "root note (sample): " <> show p
pure p
observeRootNote :: SPitch -> PVObs ()
observeRootNote child = do
observeConst "rootFifthsSign" Bernoulli 0.5 fifthsSign
observeValue "rootFifthsN" Geometric0 (pInner . pRootFifths) fifthsN
observeConst "rootOctave" MagicalOctaves () (octaves child - 4)
where
-- DT.traceM $ "root note (obs): " <> show child
fs = fifths child
fifthsSign = fs >= 0
fifthsN = if fifthsSign then fs else negate fs - 1
sampleOctaveShift :: _ => String -> m SInterval
sampleOctaveShift name = do
n <- sampleConst name MagicalOctaves ()
let os = octave ^* (n - 4)
-- DT.traceM $ "octave shift (smp) " <> show os
pure os
observeOctaveShift :: _ => String -> SInterval -> PVObs ()
observeOctaveShift name interval = do
let n = octaves (interval ^+^ major second)
observeConst name MagicalOctaves () $ n + 4
-- DT.traceM $ "octave shift (obs) " <> show (octave @SInterval ^* n)
sampleNeighbor :: _ => Bool -> SPitch -> m SPitch
sampleNeighbor stepUp ref = do
chromatic <- sampleValue "nbChromatic" Bernoulli $ pInner . pNBChromatic
os <- sampleOctaveShift "nbOctShift"
alt <- sampleValue "nbAlt" Geometric0 $ pInner . pNBAlt
let altInterval = emb (alt *^ chromaticSemitone @SIC)
if chromatic
then do
pure $ ref +^ os +^ if stepUp then altInterval else down altInterval
else do
altUp <- sampleConst "nbAltUp" Bernoulli 0.5
let step =
if altUp == stepUp
then major second ^+^ altInterval
else minor second ^-^ altInterval
pure $ ref +^ os +^ if stepUp then step else down step
observeNeighbor :: Bool -> SPitch -> SPitch -> PVObs ()
observeNeighbor goesUp ref nb = do
let interval = ic $ ref `pto` nb
isChromatic = diasteps interval == 0
observeValue "nbChromatic" Bernoulli (pInner . pNBChromatic) isChromatic
observeOctaveShift "nbOctShift" (ref `pto` nb)
if isChromatic
then do
let alt = abs (alteration interval)
observeValue "nbAlt" Geometric0 (pInner . pNBAlt) alt
else do
let alt = alteration (iabs interval)
altUp = (alt >= 0) == goesUp
altN = if alt >= 0 then alt else (-alt) - 1
observeValue "nbAlt" Geometric0 (pInner . pNBAlt) altN
observeConst "nbAltUp" Bernoulli 0.5 altUp
sampleDoubleChild :: _ => SPitch -> SPitch -> m (SPitch, DoubleOrnament)
sampleDoubleChild pl pr
| degree pl == degree pr = do
rep <-
sampleValue "repeatOverNeighbor" Bernoulli $ pInner . pRepeatOverNeighbor
if rep
then do
os <- sampleOctaveShift "doubleChildOctave"
pure (pl +^ os, FullRepeat)
else do
stepUp <- sampleConst "stepUp" Bernoulli 0.5
(,FullNeighbor) <$> sampleNeighbor stepUp pl
| otherwise = do
repeatLeft <-
sampleValue "repeatLeftOverRight" Bernoulli $
pInner
. pRepeatLeftOverRight
repeatAlter <- sampleValue "repeatAlter" Bernoulli $ pInner . pRepeatAlter
alt <-
if repeatAlter
then do
alterUp <-
sampleValue "repeatAlterUp" Bernoulli $ pInner . pRepeatAlterUp
semis <-
sampleValue "repeatAlterSemis" Geometric1 $ pInner . pRepeatAlterSemis
pure $ (if alterUp then id else down) $ chromaticSemitone ^* semis
else pure unison
os <- sampleOctaveShift "doubleChildOctave"
if repeatLeft
then pure (pl +^ os +^ alt, RightRepeatOfLeft)
else pure (pr +^ os +^ alt, LeftRepeatOfRight)
observeDoubleChild :: SPitch -> SPitch -> SPitch -> PVObs ()
observeDoubleChild pl pr child
| degree pl == degree pr = do
let isRep = pc child == pc pl
observeValue
"RepeatOverNeighbor"
Bernoulli
(pInner . pRepeatOverNeighbor)
isRep
if isRep
then do
observeOctaveShift "doubleChildOctave" (pl `pto` child)
else do
let dir = direction (pc pl `pto` pc child)
let goesUp = dir == GT
observeConst "stepUp" Bernoulli 0.5 goesUp
observeNeighbor goesUp pl child
| otherwise = do
let repeatLeft = degree pl == degree child
ref = if repeatLeft then pl else pr
alt = alteration child - alteration ref
observeValue
"repeatLeftOverRight"
Bernoulli
(pInner . pRepeatLeftOverRight)
repeatLeft
observeValue "repeatAlter" Bernoulli (pInner . pRepeatAlter) (alt /= 0)
when (alt /= 0) $ do
observeValue "repeatAlterUp" Bernoulli (pInner . pRepeatAlterUp) (alt > 0)
observeValue
"repeatAlterSemis"
Geometric1
(pInner . pRepeatAlterSemis)
(abs alt)
observeOctaveShift "doubleChildOctave" $ ref `pto` child
sampleT :: _ => Edge SPitch -> m (Edge SPitch, [(SPitch, DoubleOrnament)])
sampleT (l, r) = do
-- DT.traceM $ "elaborating T (smp): " <> show (l, r)
n <- sampleValue "elaborateRegular" Geometric1 $ pInner . pElaborateRegular
children <- permutationPlate n $ case (l, r) of
(Start, Stop) -> do
child <- sampleRootNote
pure $ Just (child, RootNote)
(Inner pl, Inner pr) -> do
(child, orn) <- sampleDoubleChild pl pr
pure $ Just (child, orn)
_ -> pure Nothing
pure ((l, r), catMaybes children)
observeT
:: M.Map (Edge SPitch) [(SPitch, DoubleOrnament)]
-> Edge SPitch
-> PVObs (Edge SPitch, [(SPitch, DoubleOrnament)])
observeT splitTs parents = do
-- DT.traceM $ "elaborating T (obs): " <> show parents
let children = fromMaybe [] $ M.lookup parents splitTs
observeValue
"elaborateRegular"
Geometric1
(pInner . pElaborateRegular)
(length children)
forM_ children $ \(child, _) -> case parents of
(Start, Stop) -> do
observeRootNote child
(Inner pl, Inner pr) -> do
observeDoubleChild pl pr child
_ -> lift $ Left $ "Invalid parent edge " <> show parents <> "."
pure (parents, children)
-- requires distance >= M2
sampleChromPassing :: _ => SPitch -> SPitch -> m (SPitch, PassingOrnament)
sampleChromPassing pl pr = do
atLeft <-
sampleValue "connectChromaticLeftOverRight" Bernoulli $
pInner
. pConnectChromaticLeftOverRight
os <- sampleOctaveShift "connectChromaticOctave"
let dir = if direction (pc pl `pto` pc pr) == GT then id else down
child =
if atLeft
then pl +^ dir chromaticSemitone
else pr -^ dir chromaticSemitone
pure (child +^ os, PassingMid)
observeChromPassing :: SPitch -> SPitch -> SPitch -> PVObs ()
observeChromPassing pl pr child = do
let isLeft = degree pl == degree child
observeValue
"connectChromaticLeftOverRight"
Bernoulli
(pInner . pConnectChromaticLeftOverRight)
isLeft
observeOctaveShift
"connectChromaticOctave"
((if isLeft then pl else pr) `pto` child)
sampleMidPassing :: _ => SPitch -> SPitch -> m (SPitch, PassingOrnament)
sampleMidPassing pl pr = do
child <- sampleNeighbor (direction (pc pl `pto` pc pr) == GT) pl
pure (child, PassingMid)
observeMidPassing :: SPitch -> SPitch -> SPitch -> PVObs ()
observeMidPassing pl pr =
observeNeighbor (direction (pc pl `pto` pc pr) == GT) pl
sampleNonMidPassing :: _ => SPitch -> SPitch -> m (SPitch, PassingOrnament)
sampleNonMidPassing pl pr = do
left <-
sampleValue "passLeftOverRight" Bernoulli $ pInner . pPassLeftOverRight
-- TODO: sampling like this overgenerates, since it allows passing motions to change direction
-- the direction of a passing edge should be tracked explicitly!
dirUp <- sampleValue "passUp" Bernoulli $ pInner . pPassUp
-- let dirUp = direction (pc pl `pto` pc pr) == GT
if left
then do
child <- sampleNeighbor dirUp pl
pure (child, PassingLeft)
else do
child <- sampleNeighbor (not dirUp) pr
pure (child, PassingRight)
observeNonMidPassing :: SPitch -> SPitch -> SPitch -> PassingOrnament -> PVObs ()
observeNonMidPassing pl pr child orn = do
let left = orn == PassingLeft
dirUp =
if left
then direction (pc pl `pto` pc child) == GT
else direction (pc pr `pto` pc child) == LT
observeValue "passLeftOverRight" Bernoulli (pInner . pPassLeftOverRight) left
observeValue "passUp" Bernoulli (pInner . pPassUp) dirUp
if left
then observeNeighbor dirUp pl child
else observeNeighbor (not dirUp) pr child
sampleNT
:: _ => (InnerEdge SPitch, Int) -> m (InnerEdge SPitch, [(SPitch, PassingOrnament)])
sampleNT ((pl, pr), n) = do
-- DT.traceM $ "Elaborating edge (smp): " <> show ((pl, pr), n)
let dist = degree $ iabs $ pc pl `pto` pc pr
-- DT.traceM $ "passing from " <> showNotation pl <> " to " <> showNotation pr <> ": " <> show dist <> " steps."
children <- permutationPlate n $ case dist of
1 -> sampleChromPassing pl pr
2 -> do
connect <- sampleValue "passingConnect" Bernoulli $ pInner . pConnect
if connect then sampleMidPassing pl pr else sampleNonMidPassing pl pr
_ -> sampleNonMidPassing pl pr
pure ((pl, pr), children)
observeNT
:: _
=> M.Map (InnerEdge SPitch) [(SPitch, PassingOrnament)]
-> (InnerEdge SPitch, Int)
-> PVObs (InnerEdge SPitch, [(SPitch, PassingOrnament)])
observeNT splitNTs ((pl, pr), _n) = do
-- DT.traceM $ "Elaborating edge (obs): " <> show ((pl, pr), n)
let children = fromMaybe [] $ M.lookup (pl, pr) splitNTs
forM_ children $ \(child, orn) -> case degree $ iabs $ pc pl `pto` pc pr of
1 -> observeChromPassing pl pr child
2 -> case orn of
PassingMid -> do
observeValue "passingConnect" Bernoulli (pInner . pConnect) True
observeMidPassing pl pr child
_ -> do
observeValue "passingConnect" Bernoulli (pInner . pConnect) False
observeNonMidPassing pl pr child orn
_ -> observeNonMidPassing pl pr child orn
pure ((pl, pr), children)
sampleSingleOrn
:: _
=> SPitch
-> o
-> o
-> Accessor PVParamsInner Beta
-> m (SPitch, [(SPitch, o)])
sampleSingleOrn parent oRepeat oNeighbor pElaborate = do
n <- sampleValue "elaborateSingle" Geometric0 $ pInner . pElaborate
children <- permutationPlate n $ do
rep <-
sampleValue "repeatOverNeighborSingle" Bernoulli $
pInner
. pRepeatOverNeighbor
if rep
then do
os <- sampleOctaveShift "singleChildOctave"
pure (parent +^ os, oRepeat)
else do
stepUp <- sampleConst "singleUp" Bernoulli 0.5
child <- sampleNeighbor stepUp parent
pure (child, oNeighbor)
pure (parent, children)
observeSingleOrn
:: M.Map SPitch [(SPitch, o)]
-> SPitch
-> Accessor PVParamsInner Beta
-> PVObs (SPitch, [(SPitch, o)])
observeSingleOrn table parent pElaborate = do
let children = fromMaybe [] $ M.lookup parent table
observeValue
"elaborateSingle"
Geometric0
(pInner . pElaborate)
(length children)
forM_ children $ \(child, _) -> do
let rep = pc child == pc parent
observeValue
"repeatOverNeighborSingle"
Bernoulli
(pInner . pRepeatOverNeighbor)
rep
if rep
then do
observeOctaveShift "singleChildOctave" (parent `pto` child)
else do
let dir = direction (pc parent `pto` pc child)
up = dir == GT
observeConst "singleUp" Bernoulli 0.5 up
observeNeighbor up parent child
pure (parent, children)
sampleL :: _ => SPitch -> m (SPitch, [(SPitch, RightOrnament)])
sampleL parent = sampleSingleOrn parent RightRepeat RightNeighbor pElaborateL
observeL
:: M.Map SPitch [(SPitch, RightOrnament)]
-> SPitch
-> PVObs (SPitch, [(SPitch, RightOrnament)])
observeL ls parent = observeSingleOrn ls parent pElaborateL
sampleR :: _ => SPitch -> m (SPitch, [(SPitch, LeftOrnament)])
sampleR parent = sampleSingleOrn parent LeftRepeat LeftNeighbor pElaborateR
observeR
:: M.Map SPitch [(SPitch, LeftOrnament)]
-> SPitch
-> PVObs (SPitch, [(SPitch, LeftOrnament)])
observeR rs parent = observeSingleOrn rs parent pElaborateR
sampleKeepEdges
:: _ => Accessor PVParamsInner Beta -> S.HashSet e -> m (S.HashSet e)
sampleKeepEdges pKeep set = do
kept <- mapM sKeep (L.sort $ S.toList set)
pure $ S.fromList $ catMaybes kept
where
sKeep elt = do
keep <- sampleValue "keep" Bernoulli (pInner . pKeep)
pure $ if keep then Just elt else Nothing
observeKeepEdges
:: (Eq e, Hashable e, Ord e)