-
Notifications
You must be signed in to change notification settings - Fork 5
/
Copy pathparser.py
247 lines (212 loc) · 10 KB
/
parser.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
"""
Parse .xml or .mxl files and return a pandas DataFrameself.
"""
import sys
import os
import numpy as np
import pandas as pd
# import xml parser from magenta
from pitchplots.modified_musicxml_parser import MusicXMLDocument
class ParseError(Exception):
"""
Exception thrown when the MusicXML contents cannot be parsed.
"""
pass
### DEFINE PARSER
def xml_to_csv(filepath=os.path.dirname(os.path.realpath(__file__))+'\\'+'data'+'\\'+'data_example.mxl',
filename=None, save_csv=True, duration='whole_note'):
"""return the Dataframe, and possbily register it in csv, of the musicxml file
Keyword arguments:
filepath -- absolute path to the xml file by default goes to the example file
filename -- give the name of the .csv file, by default give the same name as the .mxl file
save_cvs -- if True save the csv file in the csv directory or at the given path
duration -- define of the duration will be in seconds or relative to a whole note
(possible values: 'seconds' or 'whole_note'(default value))
"""
columns = ['filepath', # piece ID or something (TODO)
'qpm', #add qpm, the beat per minute
'time_sign_num', #add the time signature numerator
'time_sign_den', #add the time signature denumerator
'measure_no', # number of measure
'no_accs', # number of accidentals
'mode', # mode of key as defined in XML (not reliable)
'key_area', # begin of key signature
'type', # type of event (note or rest)
'note_name', # note name (e.g. C4, Bb2)
'tpc', # tonal pitch class: note name w/o octave, e.g. C, F#...
'step', # diatonic step in A, B, C, D, E, F, G
'acc', # accidentals
'octave', # octave number (int)
'pitch', # MIDI pitch name (i.e. C4 = 60)
'pitch_class', # pitch modulo 12
'duration', # note duration in beats as float (i.e. a quarter note is 0.25) ???? IS THIS CORRECT?
'onset' # onset in seconds
]
#add of these variables for control
key_signature_on = False
time_signature_on = False
qpm_on = False
try:
parsed = MusicXMLDocument(filepath)
except:
raise ParseError('There is a problem with the path to the xml/mxl file or the files are not standard.')
df = pd.DataFrame(columns=columns)
for part in parsed.parts:
measure_no = 0
for measure in part.measures:
measure_no += 1
#keep the previous key signature
#because the key signature appears only if it changes
if pd.isnull(measure.key_signature) == False:
key_signature_on = True
root = measure.key_signature.key
mode = measure.key_signature.mode
key_area = measure.key_signature.time_position
elif key_signature_on == False:
root = np.nan
mode = np.nan
key_area = np.nan
#adding of the time_signature like the key_signature
if pd.isnull(measure.time_signature) == False:
time_signature_on = True
time_sign_num = measure.time_signature.numerator
time_sign_den = measure.time_signature.denominator
elif time_signature_on == False:
time_sign_num = np.nan
time_sign_den = np.nan
#adding of qpm
if pd.isnull(measure.state.qpm) == False:
qpm_on = True
qpm = measure.state.qpm
elif qpm_on == False:
qpm = np.nan
for note in measure.notes:
if note.is_rest:
ntype = 'rest'
else:
ntype = 'note'
if note.pitch is not None:
note_name = note.pitch[0]
tpc = note_name[:-1]
pitch = int(note.pitch[1])
pitch_class = int(note.pitch[1] % 12)
step = note_name[0]
if '#' in note_name:
acc = 1
elif 'bb' in note_name:
acc = -2
elif 'b' in note_name:
acc = -1
elif 'x' in note_name:
acc = 2
else:
acc = 0
octave = note_name[-1]
else:
note_name = np.nan
tpc = np.nan
pitch = np.nan
step = np.nan
acc = np.nan
pitch_class = np.nan
octave = np.nan
duration = note.note_duration.duration_float()
onset = note.note_duration.time_position
# final list of of the columns of the dataframe
values = [filepath,
qpm,
time_sign_num,
time_sign_den,
measure_no,
root,
mode,
key_area,
ntype,
note_name,
tpc,
step,
acc,
octave,
pitch,
pitch_class,
duration,
onset]
row = dict(zip(columns, values))
df = df.append(row, ignore_index=True)
# correct the onset to be quantized by the measure number
# add the 'onset_seconds' column from the new onset, for the dynamic plotting
df = data_onset_duration_corrector(df, duration)
if save_csv:
# path to the csv directory
csv_path = os.path.dirname(sys.argv[0])+r'/csv'
# get the name from the xml file and put in csv dir
if pd.isnull(filename):
if not os.path.exists(csv_path):
os.makedirs(csv_path)
filename = os.path.basename(filepath).split('.')[0] + '.csv'
df.to_csv(os.path.join(csv_path,filename), sep=',')
# if filename is a path, register the csv file at the given path
elif "\\" in filename or "/" in filename:
df.to_csv(filename, sep=',')
# get the name and put it in csv folder
else:
# check if the csv folder already exist if not create one
if not os.path.exists(csv_path):
os.makedirs(csv_path)
df.to_csv(os.path.join(csv_path,filename), sep=',')
return df
def data_onset_duration_corrector(data, duration):
"""
corrects the duration and onset of the piece and normalize by the measure
Keyword arguments:
data -- the pandas DataFrame of the piece
duration -- define of the duration will be in seconds or relative to a whole note
(possible values: 'seconds' or 'whole_note'(default value))
return:
ret_data -- the pandas DataFrame of the the correction of the piece
"""
corr_data = data.copy()
#get rid of notes and rests that have a 0 duration
#they are more likely falsely parsed notes from musicxml_parser
corr_data.drop(corr_data[corr_data.duration == 0].index, inplace=True)
min_onset = 0
max_onset = 0
onset_ratio = 0
duration_ratio = 0
current_minimum_time = 0
time_ratio = 0
#get rid of all the notes that have a zero duration
corr_data.drop(corr_data[corr_data.duration == 0].index, inplace=True)
#group the notes by measure
gb_mesure_no = corr_data.groupby('measure_no')
ret_data = pd.DataFrame()
for i in range(corr_data['measure_no'].max()):
df_group = gb_mesure_no.get_group(i+1).copy()
#assume that the onset_ratio is the same for the last and before last measure
if i != corr_data['measure_no'].max() - 1:
df_group_next = gb_mesure_no.get_group(i+1+1)
#it is assumed that the first note of the measure begins at the start of the measure
min_onset = df_group['onset'].min()
max_onset = df_group_next['onset'].min()
onset_ratio = 1/(max_onset-min_onset)
#set the onset like the first note start at the at the start of the onset
df_group['onset'] *= onset_ratio
df_group['onset'] += (i - df_group['onset'].min())
#the time signature is the same for the whole measure
duration_ratio = df_group['time_sign_den'].iloc[0]/df_group['time_sign_num'].iloc[0]
# if True change the duration to be in seconds using the BPM value
if duration =='seconds':
#so the duration is equal to the number of seconds of the quatized note
df_group['duration'] *= (4*60)/df_group['qpm'].iloc[0]
#the ratio between the time in second when the note is played and the measure relative timing
time_ratio = (4 * 60)/(duration_ratio * df_group['qpm'].iloc[0])
#the adding of the time column using the onset column as base
df_group = df_group.assign(onset_seconds=df_group['onset'].values)
df_group['onset_seconds'] += -i
df_group['onset_seconds'] *= time_ratio
df_group['onset_seconds'] += current_minimum_time
#the calculation of the time in second when the next measure begins
current_minimum_time = current_minimum_time + time_ratio
#add the group to the note sequence
ret_data = pd.concat([ret_data, df_group])
return ret_data