-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathTurntableFunctions.cpp
431 lines (407 loc) · 15.6 KB
/
TurntableFunctions.cpp
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
/*
* © 2023 Peter Cole
*
* This file is part of EX-Turntable
*
* This is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* It is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with EX-Turntable. If not, see <https://www.gnu.org/licenses/>.
*/
/*=============================================================
* This file contains all functions pertinent to turntable
* operation including stepper movements, relay phase switching,
* and LED/accessory related functions.
=============================================================*/
#include "TurntableFunctions.h"
#include "IOFunctions.h"
const long sanitySteps = SANITY_STEPS; // Define an arbitrary number of steps to prevent indefinite spinning if homing/calibrations fails.
const uint8_t limitSensorPin = 2; // Define pin 2 for the traverser mode limit sensor.
const uint8_t homeSensorPin = 5; // Define pin 5 for the home sensor.
const uint8_t relay1Pin = 3; // Control pin for relay 1.
const uint8_t relay2Pin = 4; // Control pin for relay 2.
const uint8_t ledPin = 6; // Pin for LED output.
const uint8_t accPin = 7; // Pin for accessory output.
const long homeSensitivity = HOME_SENSITIVITY; // Define the minimum number of steps required before homing sensor deactivates.
const int16_t totalMinutes = 21600; // Total minutes in one rotation (360 * 60)
long lastStep = 0; // Holds the last step value we moved to (enables least distance moves).
uint8_t homed = 0; // Flag to indicate homing state: 0 = not homed, 1 = homed, 2 = failed.
long fullTurnSteps; // Assign our defined full turn steps from config.h.
long halfTurnSteps; // Defines a half turn to enable moving the least distance.
long phaseSwitchStartSteps; // Defines the step count at which phase should automatically invert.
long phaseSwitchStopSteps; // Defines the step count at which phase should automatically revert.
long lastTarget = sanitySteps; // Holds the last step target (prevents continuous rotation if homing fails).
uint8_t ledState = 7; // Flag for the LED state: 4 on, 5 slow, 6 fast, 7 off.
bool ledOutput = LOW; // Boolean for the actual state of the output LED pin.
unsigned long ledMillis = 0; // Required for non blocking LED blink rate timing.
bool calibrating = false; // Flag to prevent other rotation activities during calibration.
uint8_t calibrationPhase = 0; // Flag for calibration phase.
unsigned long calMillis = 0; // Required for non blocking calibration pauses.
bool homeSensorState; // Stores the current home sensor state.
bool limitSensorState; // Stores the current limit sensor state.
bool lastHomeSensorState; // Stores the last home sensor state.
bool lastLimitSensorState; // Stores the last limit sensor state.
unsigned long lastLimitDebounce = 0; // Stores the last time the limit sensor switched for debouncing.
unsigned long lastHomeDebounce = 0; // Stores the last time the home sensor switched for debouncing.
#ifdef INVERT_DIRECTION
bool invertDirection = true;
#else
bool invertDirection = false;
#endif
#ifdef INVERT_STEP
bool invertStep = true;
#else
bool invertStep = false;
#endif
#ifdef INVERT_ENABLE
bool invertEnable = true;
#else
bool invertEnable = false;
#endif
AccelStepper stepper = STEPPER_DRIVER;
// Function configure sensor pins
void startupConfiguration() {
#if SELECTED_DRIVER == A4988_DRIVER
if (debug) {
Serial.println(F("DEBUG: invertDirection|invertStep|invertEnable: "));
Serial.print(invertDirection);
Serial.print(F("|"));
Serial.print(invertStep);
Serial.print(F("|"));
Serial.println(invertEnable);
}
stepper.setEnablePin(A2);
stepper.setPinsInverted(invertDirection, invertStep, invertEnable);
#endif
#if HOME_SENSOR_ACTIVE_STATE == LOW
pinMode(homeSensorPin, INPUT_PULLUP);
#elif HOME_SENSOR_ACTIVE_STATE == HIGH
pinMode(homeSensorPin, INPUT);
#endif
#if TURNTABLE_EX_MODE == TRAVERSER
// Configure limit sensor pin in traverser mode
#if LIMIT_SENSOR_ACTIVE_STATE == LOW
pinMode(limitSensorPin, INPUT_PULLUP);
#elif LIMIT_SENSOR_ACTIVE_STATE == HIGH
pinMode(limitSensorPin, INPUT);
#endif
#endif
// Get the current sensor state
lastHomeSensorState = digitalRead(homeSensorPin);
homeSensorState = getHomeState();
#if TURNTABLE_EX_MODE == TRAVERSER
lastLimitSensorState = digitalRead(limitSensorPin);
limitSensorState = getLimitState();
#endif
// Configure relay output pins
pinMode(relay1Pin, OUTPUT);
pinMode(relay2Pin, OUTPUT);
// Ensure relays are inactive on startup
setPhase(0);
// Configure LED and accessory output pins
pinMode(ledPin, OUTPUT);
pinMode(accPin, OUTPUT);
// If step count explicitly defined, use that
#ifdef FULL_STEP_COUNT
fullTurnSteps = FULL_STEP_COUNT;
#else
// Else read steps from EEPROM
fullTurnSteps = getSteps();
#endif
halfTurnSteps = fullTurnSteps / 2;
#if PHASE_SWITCHING == AUTO
// Calculate phase invert/revert steps
processAutoPhaseSwitch();
#endif
}
// Function to define the stepper parameters.
void setupStepperDriver() {
stepper.setMaxSpeed(STEPPER_MAX_SPEED);
stepper.setAcceleration(STEPPER_ACCELERATION);
}
// Function to find the home position.
void moveHome() {
setPhase(0);
if (getHomeState() == HOME_SENSOR_ACTIVE_STATE) {
stepper.stop();
#if defined(DISABLE_OUTPUTS_IDLE)
stepper.disableOutputs();
#endif
stepper.setCurrentPosition(0);
lastStep = 0;
homed = 1;
Serial.println(F("Turntable homed successfully"));
if (debug) {
Serial.print(F("DEBUG: Stored values for lastStep/lastTarget: "));
Serial.print(lastStep);
Serial.print(F("/"));
Serial.println(lastTarget);
}
} else if(!stepper.isRunning()) {
if (debug) {
Serial.print(F("DEBUG: Recorded/last actual target: "));
Serial.print(lastTarget);
Serial.print(F("/"));
Serial.println(stepper.targetPosition());
}
if (stepper.targetPosition() == lastTarget) {
stepper.setCurrentPosition(0);
lastStep = 0;
homed = 2;
Serial.println(F("ERROR: Turntable failed to home, setting random home position"));
} else {
stepper.enableOutputs();
stepper.move(sanitySteps);
lastTarget = stepper.targetPosition();
if (debug) {
Serial.print(F("DEBUG: lastTarget: "));
Serial.println(lastTarget);
}
Serial.println(F("Homing started"));
}
}
}
// Function to move to the indicated position.
void moveToPosition(long steps, uint8_t phaseSwitch) {
if (steps != lastStep) {
Serial.print(F("Received notification to move to step postion "));
Serial.println(steps);
long moveSteps;
Serial.print(F("Position steps: "));
Serial.print(steps);
#if PHASE_SWITCHING == AUTO
Serial.print(F(", Auto phase switch"));
#else
Serial.print(F(", Phase switch flag: "));
Serial.print(phaseSwitch);
#endif
#if TURNTABLE_EX_MODE == TRAVERSER
// If we're in traverser mode, very simple logic, negative move to limit, positive move to home.
moveSteps = lastStep - steps;
#else
// In turntable mode we can force always moving forwards or reverse, or (default) shortest distance
#if defined(ROTATE_FORWARD_ONLY)
if (debug) Serial.println(F("Force forward move only"));
moveSteps = steps - lastStep;
if (moveSteps < 0) {
moveSteps += fullTurnSteps;
}
#elif defined(ROTATE_REVERSE_ONLY)
if (debug) Serial.println(F("Force reverse move only"));
moveSteps = steps - lastStep;
if (moveSteps > 0) {
moveSteps -= fullTurnSteps;
}
#else
if ((steps - lastStep) > halfTurnSteps) {
moveSteps = steps - fullTurnSteps - lastStep;
} else if ((steps - lastStep) < -halfTurnSteps) {
moveSteps = fullTurnSteps - lastStep + steps;
} else {
moveSteps = steps - lastStep;
}
#endif // Turntable forward/reverse/shortest distance
#endif // Turntable/traverser
Serial.print(F(" - moving "));
Serial.print(moveSteps);
Serial.println(F(" steps"));
#if PHASE_SWITCHING == AUTO
if ((steps >= 0 && steps < phaseSwitchStartSteps) || (steps <= fullTurnSteps && steps >= phaseSwitchStopSteps)) {
phaseSwitch = 0;
} else {
phaseSwitch = 1;
}
#endif
Serial.print(F("Setting phase switch flag to: "));
Serial.println(phaseSwitch);
setPhase(phaseSwitch);
lastStep = steps;
stepper.enableOutputs();
stepper.move(moveSteps);
lastTarget = stepper.targetPosition();
if (debug) {
Serial.print(F("DEBUG: Stored values for lastStep/lastTarget: "));
Serial.print(lastStep);
Serial.print(F("/"));
Serial.println(lastTarget);
}
}
}
// Function to set phase.
void setPhase(uint8_t phase) {
#if RELAY_ACTIVE_STATE == HIGH
digitalWrite(relay1Pin, phase);
digitalWrite(relay2Pin, phase);
#elif RELAY_ACTIVE_STATE == LOW
digitalWrite(relay1Pin, !phase);
digitalWrite(relay2Pin, !phase);
#endif
}
// Function to set/maintain our LED state for on/blink/off.
// 4 = on, 5 = slow blink, 6 = fast blink, 7 = off.
void processLED() {
uint16_t currentMillis = millis();
if (ledState == 4 ) {
ledOutput = 1;
} else if (ledState == 7) {
ledOutput = 0;
} else if (ledState == 5 && currentMillis - ledMillis >= LED_SLOW) {
ledOutput = !ledOutput;
ledMillis = currentMillis;
} else if (ledState == 6 && currentMillis - ledMillis >= LED_FAST) {
ledOutput = !ledOutput;
ledMillis = currentMillis;
}
digitalWrite(ledPin, ledOutput);
}
// The calibration function is used to determine the number of steps required for a single 360 degree rotation,
// or, in traverser mode, the steps between the home and limit switches.
// This should only be trigged when either there are no stored steps in EEPROM, the stored steps are invalid,
// or the calibration command has been initiated by the CommandStation.
// Logic:
// - Move away from home if already homed and erase EEPROM.
// - Perform initial home rotation, set to 0 steps when homed.
// - Perform second home rotation, set steps to currentPosition().
// - Write steps to EEPROM.
void calibration() {
setPhase(0);
#if TURNTABLE_EX_MODE == TRAVERSER
if (calibrationPhase == 3 && getLimitState() != LIMIT_SENSOR_ACTIVE_STATE) {
#else
if (calibrationPhase == 2 && getHomeState() == HOME_SENSOR_ACTIVE_STATE && stepper.currentPosition() > homeSensitivity) {
#endif
stepper.stop();
#if defined(DISABLE_OUTPUTS_IDLE)
stepper.disableOutputs();
#endif
fullTurnSteps = stepper.currentPosition();
if (fullTurnSteps < 0) {
fullTurnSteps = -fullTurnSteps;
}
halfTurnSteps = fullTurnSteps / 2;
#if PHASE_SWITCHING == AUTO
processAutoPhaseSwitch();
#endif
calibrating = false;
calibrationPhase = 0;
writeEEPROM(fullTurnSteps);
Serial.print(F("CALIBRATION: Completed, storing full turn step count: "));
Serial.println(fullTurnSteps);
stepper.setCurrentPosition(stepper.currentPosition());
homed = 0;
lastTarget = sanitySteps;
displayTTEXConfig();
#if TURNTABLE_EX_MODE == TRAVERSER
} else if (calibrationPhase == 2 && getLimitState() == LIMIT_SENSOR_ACTIVE_STATE) {
// In TRAVERSER mode, we want our full step count to stop short of the limit switch, so need phase 3 to move away.
stepper.stop();
stepper.setCurrentPosition(stepper.currentPosition());
Serial.println(F("CALIBRATION: Phase 3, counting limit steps..."));
stepper.moveTo(0);
lastStep = 0;
calibrationPhase = 3;
#endif
#if TURNTABLE_EX_MODE == TRAVERSER
} else if (calibrationPhase == 1 && lastStep == sanitySteps && getHomeState() == HOME_SENSOR_ACTIVE_STATE) {
Serial.println(F("CALIBRATION: Phase 2, finding limit switch..."));
#else
} else if (calibrationPhase == 1 && lastStep == sanitySteps && getHomeState() == HOME_SENSOR_ACTIVE_STATE && stepper.currentPosition() > homeSensitivity) {
Serial.println(F("CALIBRATION: Phase 2, counting full turn steps..."));
#endif
stepper.stop();
stepper.setCurrentPosition(0);
calibrationPhase = 2;
stepper.enableOutputs();
#if TURNTABLE_EX_MODE == TRAVERSER
stepper.moveTo(-sanitySteps);
lastStep = sanitySteps;
#else
stepper.moveTo(sanitySteps);
lastStep = sanitySteps;
#endif
} else if (calibrationPhase == 0 && !stepper.isRunning() && homed == 1) {
Serial.println(F("CALIBRATION: Phase 1, homing..."));
calibrationPhase = 1;
#if TURNTABLE_EX_MODE == TRAVERSER
if (getHomeState() == HOME_SENSOR_ACTIVE_STATE) {
Serial.println(F("Turntable already homed"));
} else {
stepper.enableOutputs();
stepper.moveTo(sanitySteps);
}
#else
stepper.enableOutputs();
stepper.moveTo(sanitySteps);
#endif
lastStep = sanitySteps;
} else if ((calibrationPhase == 2 || calibrationPhase == 1) && !stepper.isRunning() && stepper.currentPosition() == sanitySteps) {
Serial.println(F("CALIBRATION: FAILED, could not home, could not determine step count"));
#if defined(DISABLE_OUTPUTS_IDLE)
stepper.disableOutputs();
#endif
calibrating = false;
calibrationPhase = 0;
}
}
// If phase switching is set to auto, calculate the trigger point steps based on the angle.
#if PHASE_SWITCHING == AUTO
void processAutoPhaseSwitch() {
if (PHASE_SWITCH_ANGLE + 180 >= 360) {
Serial.print(F("ERROR: The defined phase switch angle of "));
Serial.print(PHASE_SWITCH_ANGLE);
Serial.println(F(" degrees is invalid, setting to default 45 degrees"));
}
#if PHASE_SWITCH_ANGLE + 180 >= 360
#undef PHASE_SWITCH_ANGLE
#define PHASE_SWITCH_ANGLE 45
#endif
phaseSwitchStartSteps = fullTurnSteps / 360 * PHASE_SWITCH_ANGLE;
phaseSwitchStopSteps = fullTurnSteps / 360 * (PHASE_SWITCH_ANGLE + 180);
}
#endif
// Function to debounce and get the state of the homing sensor
bool getHomeState() {
bool newHomeSensorState = digitalRead(homeSensorPin);
if (newHomeSensorState != lastHomeSensorState && (millis() - lastHomeDebounce) > DEBOUNCE_DELAY) {
lastHomeDebounce = millis();
lastHomeSensorState = newHomeSensorState;
}
return lastHomeSensorState;
}
// Function to debounce and get the state of the limit sensor
bool getLimitState() {
bool newLimitSensorState = digitalRead(limitSensorPin);
if (newLimitSensorState != lastLimitSensorState && (millis() - lastLimitDebounce) > DEBOUNCE_DELAY) {
lastLimitDebounce = millis();
lastLimitSensorState = newLimitSensorState;
}
return lastLimitSensorState;
}
// Function to reset home state, triggering homing to happen
void initiateHoming() {
homed = 0;
lastTarget = sanitySteps;
}
// Function to trigger calibration to begin
void initiateCalibration() {
calibrating = true;
homed = 0;
lastTarget = sanitySteps;
clearEEPROM();
}
// Function to set LED activity
void setLEDActivity(uint8_t activity) {
ledState = activity;
}
// Function to set the state of the accessory pin
void setAccessory(bool state) {
digitalWrite(accPin, state);
}