-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathattack_classifier.py
232 lines (180 loc) · 8.71 KB
/
attack_classifier.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from model.ATGSL_SA import ATGSL_SA
from word_level_process import word_process
from victim.neural_networks import *
from read_files import *
from config import config
import argparse,torch
from model.Attack_Classifier import Attack_Classifier,BM_model
from model.ATGSL_FUSION import ATGSL_FUSION
from word_level_process import word_process
from transformers import BertForMaskedLM,AutoTokenizer
import ssl
from tqdm import tqdm
from model.train_BM import train_BM
from model.ATGSL_BM import ATGSL_BM
os.environ['KMP_DUPLICATE_LIB_OK']='True'
ssl._create_default_https_context = ssl._create_unverified_context
parser = argparse.ArgumentParser(
description='Craft adversarial examples for a text classifier.')
parser.add_argument('--bm_samples',
help='Amount of train samples for BM',
type=int, default=10)
parser.add_argument('--test_samples',
help='Amount of test samples for ATGSL-SA and ATGSL-BM',
type=int, default=10)
parser.add_argument('-m', '--model',
help='The model of text classifier',
choices=['cnn','lstm','bert','roberta'],
default='bert')
parser.add_argument('-d', '--dataset',
help='Dataset',
choices=['imdb', 'agnews', 'mr','mnli','snli'],
default='mr')
parser.add_argument("--bm_save_path", type=str, default='./bm_model/mr/bert')
parser.add_argument("--result_dir_path", type=str, default='result/mr/bert/')
parser.add_argument("--sa_data_path", type=str, default='result/mr/bert/sa_data.txt')
parser.add_argument("--sa_test_data_path", type=str, default='result/mr/bert/sa_test_data.txt')
parser.add_argument("--bm_test_data_path", type=str, default='result/mr/bert/bm_test_data.txt')
parser.add_argument("--fusion_test_data_path", type=str, default='result/mr/bert/fusion_test_data.txt')
parser.add_argument("--model_path", type=str, default='victim/mr/bert/')
parser.add_argument("--data_path", type=str, default='data_set/mr/')
parser.add_argument("--infer", type=bool, default=False)
parser.add_argument("--glove_path", type=str, default='victim')
parser.add_argument("--bert_model", type=str, default='./bert-base-uncased')
parser.add_argument("--roberta_model", type=str, default='./roberta-base')
parser.add_argument("--do_train", type=bool, default=True)
parser.add_argument("--gen_data", type=bool, default=True)
parser.add_argument("--BM_attack", type=bool, default=True)
parser.add_argument("--SA_attack", type=bool, default=True)
parser.add_argument("--FUSION_attack", type=bool, default=True)
parser.add_argument("--train_batch_size", type=int, default=32)
parser.add_argument("--cuda", type=bool, default=True)
parser.add_argument("--learning_rate",
default=5e-5,
type=float,
help="The initial learning rate for Adam.")
parser.add_argument("--num_train_epochs",
default=10,
type=float,
help="Total number of training epochs to perform.")
parser.add_argument("--warmup_proportion",
default=0.1,
type=float,
help="Proportion of training to perform linear learning rate warmup for. "
"E.g., 0.1 = 10%% of training.")
def write_sa_gen_texts(path, test_texts):
with open(path, 'w', encoding='utf-8') as f:
f.writelines(str(test_texts))
f.close()
args = parser.parse_args()
def main():
print('gen_data', args.gen_data)
if args.dataset == 'imdb':
train_texts, train_labels, test_texts, test_labels = split_imdb_files(args.data_path)
elif args.dataset == 'mr':
train_texts, train_labels, test_texts, test_labels = split_MR_test_files(args.data_path)
elif args.dataset == 'agnews':
train_texts, train_labels, test_texts, test_labels = split_agnews_files(args.data_path)
print(args.model_path,'model_path')
if args.cuda:
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')
else:
device = torch.device('cpu')
# print(args.cuda, 'args.device',device,'device')
if args.model == "cnn":
model = word_cnn(args.data_path, args.dataset, glove_path=args.glove_path)
model_path = args.model_path + '{}.dat'.format(args.model)
# print('model_path',model_path)
model.load_weights(model_path)
elif args.model == "lstm":
model = bd_lstm(args.data_path, args.dataset, glove_path=args.glove_path)
model_path = args.model_path + '{}.dat'.format(args.model)
model.load_weights(model_path)
elif args.model == "bert":
# model_path = r'../../runs/{}/bert'.format(args.dataset)
model = word_bert_model(args.dataset,args.model_path, device)
model.eval()
elif args.model == "roberta":
model = word_roberta_model(args.dataset,args.model_path, device)
model.eval()
wrapmodel = Attack_Classifier(model, args.model, config, args.data_path, args.dataset)
if not os.path.isdir(args.result_dir_path):
os.makedirs(args.result_dir_path)
if args.gen_data:
print('gen_data', args.gen_data)
x, y = np.array(test_texts[:args.bm_samples]), np.array(test_labels[:args.bm_samples])
total_acc, total_class = wrapmodel.total_acc_class(x, y)
print('total_acc', total_acc)
# device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
asa = ATGSL_SA( max_len = config.word_max_len[args.dataset], do_train= True)
sa_res = []
total, success = 0, 0
for index, text in enumerate(tqdm(x)):
# print('index',index)
if total_class[index] == np.argmax(y[index]):
tmp_res = asa.run_sa(wrapmodel,text)
sa_res += tmp_res
if len(tmp_res): success +=1
total +=1
print('attack_acc',success/total)
print(len(sa_res),'len(gen_res)')
write_sa_gen_texts(args.sa_data_path, sa_res)
if args.do_train:
print('do_train', args.do_train)
with open(args.sa_data_path, 'r', encoding='utf-8') as f:
train_data = eval(f.readlines()[0])
if not os.path.isdir(args.bm_save_path):
os.makedirs(args.bm_save_path)
train_BM(train_data, args, device)
x, y = np.array(test_texts[args.bm_samples: args.bm_samples + args.test_samples]), np.array(test_labels[args.bm_samples: args.bm_samples+ args.test_samples])
total_acc, total_class = wrapmodel.total_acc_class(x, y)
print('total_acc', total_acc)
############sa_attack_first
if args.SA_attack:
print('start sa attack')
asa = ATGSL_SA(max_iters=1, max_len = config.word_max_len[args.dataset])
sa_res,total, success =[], 0, 0
for index, text in enumerate(tqdm(x)):
# print('index',index)
if total_class[index] == np.argmax(y[index]):
tmp_res = asa.run_sa(wrapmodel,text)
sa_res += tmp_res
if len(tmp_res): success +=1
total +=1
print('attack_acc',success/total)
print(len(sa_res),'len(sa_res)')
write_sa_gen_texts(args.sa_test_data_path, sa_res)
############bm_attack
if args.BM_attack:
print('start bm attack')
bm_model = BM_model(args.bm_save_path,device)
bsa = ATGSL_BM(max_len = config.word_max_len[args.dataset],model = bm_model)
bm_res, total, success = [], 0, 0
for index, text in enumerate(tqdm(x)):
# print('index',index)
if total_class[index] == np.argmax(y[index]):
# print(index,'index', asa.run_sa(wrapmodel, text, 'first'))
tmp_res = bsa.run_sa(wrapmodel, text)
bm_res += tmp_res
if len(tmp_res): success += 1
total += 1
write_sa_gen_texts(args.bm_test_data_path, bm_res)
print('attack_acc', success / total)
print(len(bm_res), 'len(bm_res)')
if args.FUSION_attack:
print('start fusion attack')
bm_model = BM_model(args.bm_save_path, device)
fusion_model = ATGSL_FUSION(max_len = config.word_max_len[args.dataset], model = bm_model)
fusion_res, total, success = [], 0, 0
for index, text in enumerate(tqdm(x)):
# print('index',index)
if total_class[index] == np.argmax(y[index]):
tmp_res = fusion_model.run_sa(wrapmodel, text)
fusion_res += tmp_res
if len(tmp_res): success += 1
total += 1
print('attack_acc',success/total)
print(len(fusion_res),'len(fusion_res)')
write_sa_gen_texts(args.fusion_test_data_path, fusion_res)
if __name__ == "__main__":
main()