-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathpose_estimation.py
196 lines (171 loc) · 6.97 KB
/
pose_estimation.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
# Copyright 2021 The TensorFlow Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Main script to run pose classification and pose estimation."""
import argparse
import logging
import sys
import time
import cv2
from ml import Classifier
from ml import Movenet
from ml import MoveNetMultiPose
from ml import Posenet
import utils
def run(estimation_model: str, tracker_type: str, classification_model: str,
label_file: str, camera_id: int, width: int, height: int) -> None:
"""Continuously run inference on images acquired from the camera.
Args:
estimation_model: Name of the TFLite pose estimation model.
tracker_type: Type of Tracker('keypoint' or 'bounding_box').
classification_model: Name of the TFLite pose classification model.
(Optional)
label_file: Path to the label file for the pose classification model. Class
names are listed one name per line, in the same order as in the
classification model output. See an example in the yoga_labels.txt file.
camera_id: The camera id to be passed to OpenCV.
width: The width of the frame captured from the camera.
height: The height of the frame captured from the camera.
"""
# Notify users that tracker is only enabled for MoveNet MultiPose model.
if tracker_type and (estimation_model != 'movenet_multipose'):
logging.warning(
'No tracker will be used as tracker can only be enabled for '
'MoveNet MultiPose model.')
# Initialize the pose estimator selected.
if estimation_model in ['movenet_lightning', 'movenet_thunder']:
pose_detector = Movenet(estimation_model)
elif estimation_model == 'posenet':
pose_detector = Posenet(estimation_model)
elif estimation_model == 'movenet_multipose':
pose_detector = MoveNetMultiPose(estimation_model, tracker_type)
else:
sys.exit('ERROR: Model is not supported.')
# Variables to calculate FPS
counter, fps = 0, 0
start_time = time.time()
# Start capturing video input from the camera
cap = cv2.VideoCapture(camera_id)
cap.set(cv2.CAP_PROP_FRAME_WIDTH, width)
cap.set(cv2.CAP_PROP_FRAME_HEIGHT, height)
# Visualization parameters
row_size = 20 # pixels
left_margin = 24 # pixels
text_color = (0, 0, 255) # red
font_size = 1
font_thickness = 1
classification_results_to_show = 3
fps_avg_frame_count = 10
keypoint_detection_threshold_for_classifier = 0.1
classifier = None
# Initialize the classification model
if classification_model:
classifier = Classifier(classification_model, label_file)
classification_results_to_show = min(classification_results_to_show,
len(classifier.pose_class_names))
# Continuously capture images from the camera and run inference
while cap.isOpened():
success, image = cap.read()
if not success:
sys.exit(
'ERROR: Unable to read from webcam. Please verify your webcam settings.'
)
counter += 1
image = cv2.flip(image, 1)
if estimation_model == 'movenet_multipose':
# Run pose estimation using a MultiPose model.
list_persons = pose_detector.detect(image)
else:
# Run pose estimation using a SinglePose model, and wrap the result in an
# array.
list_persons = [pose_detector.detect(image)]
# Draw keypoints and edges on input image
image = utils.visualize(image, list_persons)
if classifier:
# Check if all keypoints are detected before running the classifier.
# If there's a keypoint below the threshold, show an error.
person = list_persons[0]
min_score = min([keypoint.score for keypoint in person.keypoints])
if min_score < keypoint_detection_threshold_for_classifier:
error_text = 'Some keypoints are not detected.'
text_location = (left_margin, 2 * row_size)
cv2.putText(image, error_text, text_location, cv2.FONT_HERSHEY_PLAIN,
font_size, text_color, font_thickness)
error_text = 'Make sure the person is fully visible in the camera.'
text_location = (left_margin, 3 * row_size)
cv2.putText(image, error_text, text_location, cv2.FONT_HERSHEY_PLAIN,
font_size, text_color, font_thickness)
else:
# Run pose classification
prob_list = classifier.classify_pose(person)
# Show classification results on the image
for i in range(classification_results_to_show):
class_name = prob_list[i].label
probability = round(prob_list[i].score, 2)
result_text = class_name + ' (' + str(probability) + ')'
text_location = (left_margin, (i + 2) * row_size)
cv2.putText(image, result_text, text_location, cv2.FONT_HERSHEY_PLAIN,
font_size, text_color, font_thickness)
# Calculate the FPS
if counter % fps_avg_frame_count == 0:
end_time = time.time()
fps = fps_avg_frame_count / (end_time - start_time)
start_time = time.time()
# Show the FPS
fps_text = 'FPS = ' + str(int(fps))
text_location = (left_margin, row_size)
cv2.putText(image, fps_text, text_location, cv2.FONT_HERSHEY_PLAIN,
font_size, text_color, font_thickness)
# Stop the program if the ESC key is pressed.
if cv2.waitKey(1) == 27:
break
cv2.imshow(estimation_model, image)
cap.release()
cv2.destroyAllWindows()
def main():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter)
parser.add_argument(
'--model',
help='Name of estimation model.',
required=False,
default='movenet_lightning')
parser.add_argument(
'--tracker',
help='Type of tracker to track poses across frames.',
required=False,
default='bounding_box')
parser.add_argument(
'--classifier', help='Name of classification model.', required=False)
parser.add_argument(
'--label_file',
help='Label file for classification.',
required=False,
default='labels.txt')
parser.add_argument(
'--cameraId', help='Id of camera.', required=False, default=0)
parser.add_argument(
'--frameWidth',
help='Width of frame to capture from camera.',
required=False,
default=640)
parser.add_argument(
'--frameHeight',
help='Height of frame to capture from camera.',
required=False,
default=480)
args = parser.parse_args()
run(args.model, args.tracker, args.classifier, args.label_file,
int(args.cameraId), args.frameWidth, args.frameHeight)
if __name__ == '__main__':
main()