-
Notifications
You must be signed in to change notification settings - Fork 6
/
Copy pathmain.py
154 lines (124 loc) · 4.73 KB
/
main.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
# Created by Chen Henry Wu
import logging
import os
import torch
import datasets
import transformers
from transformers import (
HfArgumentParser,
set_seed,
)
from utils.config_utils import get_config
from utils.program_utils import get_model, get_preprocessor, get_evaluator, get_visualizer
from preprocess.to_model import get_multi_task_dataset_splits
from utils.training_arguments import CustomTrainingArguments
from trainer.trainer import Trainer
logger = logging.getLogger(__name__)
def get_dataset_splits(args):
cache_root = os.path.join('output', 'cache')
os.makedirs(cache_root, exist_ok=True)
name2dataset_splits = dict()
for name, arg_path in args.arg_paths:
task_args = get_config(arg_path)
task_raw_data_splits = datasets.load_dataset(
path=task_args.raw_data.data_program,
cache_dir=task_args.raw_data.data_cache_dir,
)
task_preprocessor = get_preprocessor(task_args.preprocess.preprocess_program)
task_dataset_splits = task_preprocessor(task_args).preprocess(task_raw_data_splits, cache_root)
name2dataset_splits[name] = task_dataset_splits
return get_multi_task_dataset_splits(meta_args=args, name2dataset_splits=name2dataset_splits)
def setup_wandb(training_args):
if "wandb" in training_args.report_to and training_args.local_rank <= 0:
import wandb
# init_args = {}
# if "MLFLOW_EXPERIMENT_ID" in os.environ:
# init_args["group"] = os.environ["MLFLOW_EXPERIMENT_ID"]
# you might need to set up your W&B API key
# os.environ["WANDB_API_KEY"] = 'YOUR API KEY'
wandb.init(
project=os.getenv("WANDB_PROJECT", "gan"),
name=training_args.run_name,
#replace "YOUR USERNAME" with your W&B username
entity=os.getenv("WANDB_ENTITY", 'YOUR USERNAME'),
)
wandb.config.update(training_args, allow_val_change=True)
return wandb.run.dir
else:
return None
def main():
# Get training_args and args.
parser = HfArgumentParser(
(
CustomTrainingArguments,
)
)
training_args, = parser.parse_args_into_dataclasses()
set_seed(training_args.seed)
args = get_config(training_args.cfg)
# Deterministic behavior of torch.addmm.
# Please refer to https://docs.nvidia.com/cuda/cublas/index.html#cublasApi_reproducibility
# os.environ['CUBLAS_WORKSPACE_CONFIG'] = ':4096:8'
# torch.use_deterministic_algorithms(True)
# cudnn.deterministic = True
# Set up wandb.
wandb_run_dir = setup_wandb(training_args)
# Setup output directory.
os.makedirs(training_args.output_dir, exist_ok=True)
# Build dataset splits.
dataset_splits = get_dataset_splits(args)
# Initialize evaluator.
evaluator = get_evaluator(args.evaluation.evaluator_program)(args)
# Initialize visualizer.
visualizer = get_visualizer(args.visualization.visualizer_program)(args)
# Initialize model.
model = get_model(args.model.name)(args)
# Initialize Trainer.
trainer = Trainer(
args=training_args,
model=model,
compute_metrics=evaluator.evaluate,
train_dataset=dataset_splits['train'],
eval_dataset=dataset_splits['dev'],
visualizer=visualizer,
wandb_run_dir=wandb_run_dir,
)
print(f'Rank {training_args.local_rank} Trainer build successfully.')
if training_args.resume_from_checkpoint:
state_dict = torch.load(
os.path.join(training_args.resume_from_checkpoint, transformers.WEIGHTS_NAME),
map_location="cpu",
)
trainer.model.load_state_dict(state_dict, strict=True)
# Free memory
del state_dict
# Training
if training_args.do_train:
metrics = trainer.train()
trainer.save_model()
metrics["train_samples"] = len(dataset_splits['train'])
trainer.log_metrics("train", metrics)
trainer.save_metrics("train", metrics)
trainer.save_state()
# Evaluation after training
logger.info("*** Evaluate ***")
metrics = trainer.evaluate(
metric_key_prefix="eval",
)
metrics["eval_samples"] = len(dataset_splits['dev'])
trainer.log_metrics("eval", metrics)
trainer.save_metrics("eval", metrics)
# Test
if training_args.do_predict:
logger.info("*** Predict ***")
metrics = trainer.predict(
test_dataset=dataset_splits['test'],
metric_key_prefix="test",
)
metrics["predict_samples"] = len(dataset_splits['test'])
trainer.log_metrics("predict", metrics)
trainer.save_metrics("predict", metrics)
if __name__ == "__main__":
# Initialize the logger
logging.basicConfig(level=logging.INFO)
main()