-
Notifications
You must be signed in to change notification settings - Fork 10
/
Copy pathfinetune.py
478 lines (414 loc) · 18.5 KB
/
finetune.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
import os
import pickle
import random
import sys
from typing import List, Optional
import fire
import torch
import transformers
from datasets import load_dataset
import wandb
from torch import nn
from torch.utils.data import Sampler
from transformers.modeling_utils import unwrap_model
from local_config import WANDB_ENTITY
from utils.datacollator import MyDataCollatorForSeq2Seq
from model.lavis.models.blip2_models.modeling_llama_imgemb import LlamaForCausalLM
from peft import (
LoraConfig,
get_peft_model,
get_peft_model_state_dict,
prepare_model_for_int8_training,
set_peft_model_state_dict,
)
from transformers import AutoTokenizer, PreTrainedModel
from utils.prompter import Prompter
import logging
logger = logging.getLogger(__name__)
#how are input and instruction put together:
'''
Below is an instruction that describes a task. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Response:
or
Below is an instruction that describes a task, paired with an input that provides further context. Write a response that appropriately completes the request.
### Instruction:
{instruction}
### Input:
{input}
### Response:
'''
class BalancedSampler(Sampler):
def __init__(self, true_indices, false_indices):
self.true_indices = true_indices
self.false_indices = false_indices
self.num_samples = 2 * min(len(self.true_indices), len(self.false_indices))
def __iter__(self):
# Randomly sample from true_indices
sampled_true_indices = random.sample(self.true_indices, len(self.false_indices))
# Merge and shuffle the two lists of indices
indices = sampled_true_indices + self.false_indices
random.shuffle(indices)
return iter(indices)
def __len__(self):
return self.num_samples
class InstructTrainer(transformers.Trainer):
def __init__(self, *args, rep_idxs=None, inst_idxs=None, **kwargs):
super().__init__(*args, **kwargs)
self.rep_idxs = rep_idxs
self.inst_idxs = inst_idxs
def _get_train_sampler(self) -> Optional[torch.utils.data.Sampler]:
return BalancedSampler(self.rep_idxs, self.inst_idxs)
WEIGHTS_NAME = "pytorch_model.bin"
WEIGHTS_NAME_FINAL = "adapter_model.bin"
TRAINING_ARGS_NAME = "training_args.bin"
class ImgTrainer(transformers.Trainer): #also save img projector
def _save(self, output_dir: Optional[str] = None, state_dict=None):
# If we are executing this function, we are the process zero, so we don't check for that.
output_dir = output_dir if output_dir is not None else self.args.output_dir
os.makedirs(output_dir, exist_ok=True)
logger.info(f"Saving model checkpoint to {output_dir}")
# Save a trained model and configuration using `save_pretrained()`.
# They can then be reloaded using `from_pretrained()`
if not isinstance(self.model, PreTrainedModel):
if state_dict is None:
state_dict = self.model.state_dict()
base_state_dict = self.model.base_model.state_dict()
if 'model.model.img_proj_layer.weight' in base_state_dict:
state_dict['base_model.model.model.img_proj_layer.weight'] = base_state_dict['model.model.img_proj_layer.weight']
state_dict['base_model.model.model.img_proj_layer.bias'] = base_state_dict['model.model.img_proj_layer.bias']
if isinstance(unwrap_model(self.model), PreTrainedModel):
unwrap_model(self.model).save_pretrained(
output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
)
else:
logger.info("Trainer.model is not a `PreTrainedModel`, only saving its state dict.")
torch.save(state_dict, os.path.join(output_dir, WEIGHTS_NAME))
else:
self.model.save_pretrained(
output_dir, state_dict=state_dict, safe_serialization=self.args.save_safetensors
)
if self.tokenizer is not None:
self.tokenizer.save_pretrained(output_dir)
# Good practice: save your training arguments together with the trained model
torch.save(self.args, os.path.join(output_dir, TRAINING_ARGS_NAME))
def save_pretrained(model, save_directory, **kwargs):
r"""
This function saves the adapter model and the adapter configuration files to a directory, so that it can be
reloaded using the [`LoraModel.from_pretrained`] class method, and also used by the [`LoraModel.push_to_hub`]
method.
Args:
save_directory (`str`):
Directory where the adapter model and configuration files will be saved (will be created if it does not
exist).
kwargs (additional keyword arguments, *optional*):
Additional keyword arguments passed along to the `push_to_hub` method.
"""
if os.path.isfile(save_directory):
raise ValueError(f"Provided path ({save_directory}) should be a directory, not a file")
os.makedirs(save_directory, exist_ok=True)
# save only the trainable weights
output_state_dict = get_peft_model_state_dict(model, kwargs.get("state_dict", None))
base_state_dict = model.base_model.state_dict()
if 'model.model.img_proj_layer.weight' in base_state_dict:
output_state_dict['base_model.model.model.img_proj_layer.weight'] = base_state_dict['model.model.img_proj_layer.weight']
output_state_dict['base_model.model.model.img_proj_layer.bias'] = base_state_dict['model.model.img_proj_layer.bias']
torch.save(output_state_dict, os.path.join(save_directory, WEIGHTS_NAME_FINAL))
inference_mode = model.peft_config.inference_mode
model.peft_config.inference_mode = True
model.peft_config.save_pretrained(save_directory)
model.peft_config.inference_mode = inference_mode
def train(
# model/data params
base_model: str = "", # the only required argument
lora_weights: str = None,
data_path: str = "yahma/alpaca-cleaned",
output_dir: str = "./lora-cxr",
# training hyperparams
batch_size: int = 128,
micro_batch_size: int = 2,
num_epochs: int = 10,
learning_rate: float = 3e-4,
cutoff_len: int = 1024, #256 -> need much more with examples in prompt (1024), 512 for without examples but long IG labels
val_set_size: int = 5,
# lora hyperparams
lora_r: int = 8,
lora_alpha: int = 16,
lora_dropout: float = 0.05,
lora_target_modules: List[str] = [ #default is for llama models
"q_proj",
"v_proj",
],
# llm hyperparams
train_on_inputs: bool = False, # if False, masks out inputs in loss
add_eos_token: bool = False,
group_by_length: bool = False, # faster, but produces an odd training loss curve
# wandb params
wandb_project: str = "lora_training",
wandb_run_name: str = "lora_mimic_cxr",
wandb_entity: str = WANDB_ENTITY,
wandb_watch: str = "", # options: false | gradients | all
wandb_log_model: str = "", # options: false | true
resume_from_checkpoint: str = None, # either training checkpoint or final adapter
prompt_template_name: str = "alpaca", # The prompt template to use, will default to alpaca.
use_embs=False,
use_instruct_data=False
):
if int(os.environ.get("LOCAL_RANK", 0)) == 0:
print(
f"Training Alpaca-LoRA model with params:\n"
f"base_model: {base_model}\n"
f"lora_weights: {lora_weights}\n"
f"data_path: {data_path}\n"
f"output_dir: {output_dir}\n"
f"batch_size: {batch_size}\n"
f"micro_batch_size: {micro_batch_size}\n"
f"num_epochs: {num_epochs}\n"
f"learning_rate: {learning_rate}\n"
f"cutoff_len: {cutoff_len}\n"
f"val_set_size: {val_set_size}\n"
f"lora_r: {lora_r}\n"
f"lora_alpha: {lora_alpha}\n"
f"lora_dropout: {lora_dropout}\n"
f"lora_target_modules: {lora_target_modules}\n"
f"train_on_inputs: {train_on_inputs}\n"
f"add_eos_token: {add_eos_token}\n"
f"group_by_length: {group_by_length}\n"
f"wandb_project: {wandb_project}\n"
f"wandb_run_name: {wandb_run_name}\n"
f"wandb_entity: {wandb_entity}\n"
f"wandb_watch: {wandb_watch}\n"
f"wandb_log_model: {wandb_log_model}\n"
f"resume_from_checkpoint: {resume_from_checkpoint or False}\n"
f"prompt template: {prompt_template_name}\n"
)
assert (
base_model
), "Please specify a --base_model, e.g. --base_model='huggyllama/llama-7b'"
gradient_accumulation_steps = batch_size // micro_batch_size
prompter = Prompter(prompt_template_name)
device_map = "auto"
world_size = int(os.environ.get("WORLD_SIZE", 1))
ddp = world_size != 1
if ddp:
device_map = {"": int(os.environ.get("LOCAL_RANK") or 0)}
gradient_accumulation_steps = gradient_accumulation_steps // world_size
# Check if parameter passed or if set within environ
use_wandb = len(wandb_project) > 0 or (
"WANDB_PROJECT" in os.environ and len(os.environ["WANDB_PROJECT"]) > 0
)
# Only overwrite environ if wandb param passed
if len(wandb_project) > 0:
os.environ["WANDB_PROJECT"] = wandb_project
if len(wandb_watch) > 0:
os.environ["WANDB_WATCH"] = wandb_watch
if len(wandb_log_model) > 0:
os.environ["WANDB_LOG_MODEL"] = wandb_log_model
if base_model == 'vicuna_v13':
model = LlamaForCausalLM.from_pretrained("lmsys/vicuna-13b-v1.3", torch_dtype=torch.float16, device_map='auto', load_in_8bit=False)
tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-13b-v1.3", use_fast=False, truncation_side="right", padding_side="right")
else: #7b
model = LlamaForCausalLM.from_pretrained("lmsys/vicuna-7b-v1.3", torch_dtype=torch.float16, device_map='auto', load_in_8bit=False)
tokenizer = AutoTokenizer.from_pretrained("lmsys/vicuna-7b-v1.3", use_fast=False, truncation_side="right", padding_side="right")
tokenizer.pad_token = tokenizer.unk_token
if use_embs:
model.base_model.img_proj_layer = nn.Linear(768, model.base_model.config.hidden_size).to(model.base_model.device)
# add special token to tokenizer
tokenizer.add_special_tokens({"additional_special_tokens": ["<IMG>"]})
model.resize_token_embeddings(len(tokenizer))
def tokenize(prompt, add_eos_token=True):
# there's probably a way to do this with the tokenizer settings
# but again, gotta move fast
result = tokenizer(
prompt,
truncation=True,
max_length=cutoff_len,
padding=False,
return_tensors=None,
)
if (
result["input_ids"][-1] != tokenizer.eos_token_id
and len(result["input_ids"]) < cutoff_len
and add_eos_token
):
result["input_ids"].append(tokenizer.eos_token_id)
result["attention_mask"].append(1)
result["labels"] = result["input_ids"].copy()
return result
def generate_and_tokenize_prompt(data_point):
full_prompt = prompter.generate_prompt(
data_point["instruction"],
data_point["input"],
data_point["output"],
)
tokenized_full_prompt = tokenize(full_prompt)
if not train_on_inputs:
user_prompt = prompter.generate_prompt(
data_point["instruction"], data_point["input"]
)
tokenized_user_prompt = tokenize(
user_prompt, add_eos_token=add_eos_token
)
user_prompt_len = len(tokenized_user_prompt["input_ids"])
if add_eos_token:
user_prompt_len -= 1
tokenized_full_prompt["labels"] = [
-100
] * user_prompt_len + tokenized_full_prompt["labels"][
user_prompt_len:
] # could be sped up, probably
return tokenized_full_prompt
model = prepare_model_for_int8_training(model)
config = LoraConfig(
r=lora_r,
lora_alpha=lora_alpha,
target_modules=lora_target_modules,
lora_dropout=lora_dropout,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, config) #this sets requires_grad for all params to False
# unfreeze the img_proj_layer
model.model.base_model.img_proj_layer.weight.requires_grad = True
model.model.base_model.img_proj_layer.bias.requires_grad = True
print("Loading data from ", data_path)
if data_path.endswith(".json") or data_path.endswith(".jsonl"):
data = load_dataset("json", data_files=data_path)
else:
data = load_dataset(data_path)
if resume_from_checkpoint:
# Check the available weights and load them
checkpoint_name = os.path.join(
resume_from_checkpoint, "pytorch_model.bin"
) # Full checkpoint
if not os.path.exists(checkpoint_name):
checkpoint_name = os.path.join(
resume_from_checkpoint, "adapter_model.bin"
) # only LoRA model - LoRA config above has to fit
resume_from_checkpoint = (
False # So the trainer won't try loading its state
)
# The two files above have a different name depending on how they were saved, but are actually the same.
if os.path.exists(checkpoint_name):
print(f"Restarting from {checkpoint_name}")
adapters_weights = torch.load(checkpoint_name)
set_peft_model_state_dict(model, adapters_weights)
else:
print(f"Checkpoint {checkpoint_name} not found")
model.print_trainable_parameters() # Be more transparent about the % of trainable params.
if val_set_size > 0:
train_val = data["train"].train_test_split(
test_size=val_set_size, shuffle=True, seed=42
)
train_data = (
train_val["train"].shuffle().map(generate_and_tokenize_prompt)
)
val_data = (
train_val["test"].shuffle().map(generate_and_tokenize_prompt)
)
else:
train_data = data["train"].shuffle().map(generate_and_tokenize_prompt)
val_data = None
if use_instruct_data:
report_indices = [i for i, item in enumerate(train_data) if item['is_report']][:5]
instruct_indices = [i for i, item in enumerate(train_data) if not item['is_report']][:5]
if not ddp and torch.cuda.device_count() > 1:
# keeps Trainer from trying its own DataParallelism when more than 1 gpu is available
model.is_parallelizable = True
model.model_parallel = True
wandb.init(
project=wandb_project,
entity=wandb_entity,
name=wandb_run_name
)
if use_instruct_data:
trainer = InstructTrainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
rep_idxs = report_indices,
inst_idxs = instruct_indices,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=200 if val_set_size > 0 else None,
save_steps=200,
output_dir=output_dir,
save_total_limit=None,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
max_steps=-1,
dataloader_num_workers=8,
remove_unused_columns=False if use_embs else True,
),
data_collator=MyDataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
) if use_embs else
transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
else:
trainer = ImgTrainer(
model=model,
train_dataset=train_data,
eval_dataset=val_data,
args=transformers.TrainingArguments(
per_device_train_batch_size=micro_batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
warmup_steps=100,
num_train_epochs=num_epochs,
learning_rate=learning_rate,
fp16=True,
logging_steps=10,
optim="adamw_torch",
evaluation_strategy="steps" if val_set_size > 0 else "no",
save_strategy="steps",
eval_steps=400 if val_set_size > 0 else None,
save_steps=400,
output_dir=output_dir,
save_total_limit=None,
load_best_model_at_end=True if val_set_size > 0 else False,
ddp_find_unused_parameters=False if ddp else None,
group_by_length=group_by_length,
report_to="wandb" if use_wandb else None,
run_name=wandb_run_name if use_wandb else None,
max_steps=-1,
dataloader_num_workers=8,
remove_unused_columns=False if use_embs else True
),
data_collator=MyDataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
) if use_embs else
transformers.DataCollatorForSeq2Seq(
tokenizer, pad_to_multiple_of=8, return_tensors="pt", padding=True
),
)
model.config.use_cache = False
old_state_dict = model.state_dict
model.state_dict = (
lambda self, *_, **__: get_peft_model_state_dict(
self, old_state_dict()
)
).__get__(model, type(model))
if torch.__version__ >= "2" and sys.platform != "win32":
model = torch.compile(model)
trainer.train(resume_from_checkpoint=resume_from_checkpoint)
save_pretrained(model, output_dir)
print(
"\n If there's a warning about missing keys above, please disregard :)"
)
if __name__ == "__main__":
fire.Fire(train)