-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathreorganize_dataset.py
28 lines (21 loc) · 1.26 KB
/
reorganize_dataset.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
import os
from tqdm import tqdm
source_dir = "fadcl_wav2vec"
feature_dir = "FAD-CL-Benchmark/features"
dataset_list = ["train_fadcl_wav2vec", "test_fadcl_wav2vec"]
# os.mkdir(os.path.join(feature_dir, "train_fadcl_wav2vec"))
for i in range(1,8):
os.mkdir(os.path.join(feature_dir, "train_fadcl_wav2vec", str(i)))
os.mkdir(os.path.join(feature_dir, "train_fadcl_wav2vec", str(i), "fake"))
os.mkdir(os.path.join(feature_dir, "train_fadcl_wav2vec", str(i), "real"))
with open(source_dir, "label_exp{}.txt".format(i)) as label_f:
all_info = label_f.readlines()
for element in tqdm(all_info):
tmp_label = element.strip().split()[-1]
subset = element.split()[0].split("/")[-2]
wav_name = element.split()[0].split("/")[-1]
if subset == "train":
if tmp_label == "real":
os.system("cp {} {}".format(os.path.join(source_dir, "exp{}".format(i), "train", wav_name+".npy"), os.path.join(feature_dir, "train_fadcl_wav2vec", str(i), "real", wav_name.replace(".wav", ".npy"))))
else:
os.system("cp {} {}".format(os.path.join(source_dir, "exp{}".format(i), "train", wav_name+".npy"), os.path.join(feature_dir, "train_fadcl_wav2vec", str(i), "fake", wav_name.replace(".wav", ".npy"))))