-
Notifications
You must be signed in to change notification settings - Fork 3
/
Copy pathmain_gpu.py
78 lines (64 loc) · 2.35 KB
/
main_gpu.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
from config import args
from imgvision import spectra_metric
from Model.PolyAct_gpu import Modification
from Model.AngSim_init import initialization
from Model.SpeSpa_Refine_gpu import Refinement
from utils import *
def printQUI(GT,imgs,sf):
name = ['X_in','X_act','X_re']
print(''.ljust(50,'_'))
print('Name\tPSNR\tSAM\t\tERGAS\tSSIM\tRMSE'.ljust(50))
for idx,i in enumerate(imgs):
P,SAM,E,SSIM,R = spectra_metric(GT,i,scale=sf).get_Evaluation()
print(name[idx]+'\t{:.2f}\t{:.2f}\t{:.3f}\t{:.3f}\t{:.3f}'.format(P,SAM,E,SSIM,np.sqrt(R)*255))
print(''.ljust(50, '-'))
def saveQUI_txt(path,metrics):
f_list = open(path,'a')
f_list.write(metrics)
f_list.close()
def head_generator(path):
f_list = open(path, 'a')
f_list.write('PSNR\tSAM\t\tERGAS\tSSIM\tRMSE\n')
f_list.close()
class saveQUI():
def __init__(self,args):
self.path = args.save_path+str(args.sf)+'_Quantitative_Results.txt'
self.sf = args.sf
head_generator(self.path)
def step(self,GT,recon):
P, SAM, E, SSIM, R = spectra_metric(GT, recon, scale=self.sf).get_Evaluation()
self.metrics = '{:.2f}\t{:.2f}\t{:.3f}\t{:.3f}\t{:.3f}\n'.format(P,SAM,E,SSIM,np.sqrt(R)*255)
def save(self):
saveQUI_txt(self.path,self.metrics)
def print(self,name):
print(name)
print('PSNR\tSAM\tERGAS\tSSIM\tRMSE\n')
print(self.metrics)
print(''.center(50,'—'))
print('\n\n')
if __name__ =='__main__':
# Quick Settings
args.save_path='Result/'
args.path = 'Dataset/'
args.sf = 32
args.d = 2
srf = np.load('NikonD700.npy')
saver = saveQUI(args)
index = 0
# For simulated experiment
# Data preprocessing
Dataset = Dataloader(args, 'HSI', True)
GT, name = Dataset.load(index)
LR_HSI, HR_RGB = get_pairs(GT, args.sf, srf)
# Stage1: Initialization
X_in = initialization(LR_HSI.copy(), HR_RGB.copy(), args.d, srf, 64, args.sf)
# Stage2: Modificaiton
X_mod = Modification(X_in.copy(), HR_RGB.copy(), srf, 64)
# Stage3: Refinement
X_re = Refinement(X_mod, HR_RGB, args.beta, args.gamma, srf.T)
# Quantitative Result
saver.step(GT, X_re)
saver.save()
saver.print(name)
# Save Reconstructed HR-HSI
Dataset.save(args,X_re)