-
Notifications
You must be signed in to change notification settings - Fork 1
/
Copy pathtrain.py
275 lines (232 loc) · 10.6 KB
/
train.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
import os
import sys
# add dir
dir_name = os.path.dirname(os.path.abspath(__file__))
sys.path.append(os.path.join(dir_name,'./auxiliary/'))
print(dir_name)
import argparse
import options
######### parser ###########
opt = options.Options().init(argparse.ArgumentParser(description='image denoising')).parse_args()
print(opt)
import utils
######### Set GPUs ###########
os.environ["CUDA_DEVICE_ORDER"] = "PCI_BUS_ID"
os.environ["CUDA_VISIBLE_DEVICES"] = opt.gpu
import torch
torch.backends.cudnn.benchmark = True
# from piqa import SSIM
# device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
# print(device)
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from natsort import natsorted
import glob
import random
import time
import numpy as np
from einops import rearrange, repeat
import datetime
from pdb import set_trace as stx
from utils import save_img
from losses import CharbonnierLoss
from tqdm import tqdm
from warmup_scheduler import GradualWarmupScheduler
from torch.optim.lr_scheduler import StepLR
from timm.utils import NativeScaler
from utils.loader import get_training_data, get_validation_data
from torch.utils.tensorboard import SummaryWriter
######### Logs dir ###########
log_dir = os.path.join(dir_name, 'log', opt.arch+opt.env)
if not os.path.exists(log_dir):
os.makedirs(log_dir)
logname = os.path.join(log_dir, datetime.datetime.now().isoformat()+'.txt')
print("Now time is : ", datetime.datetime.now().isoformat())
result_dir = os.path.join(log_dir, 'results')
model_dir = os.path.join(log_dir, 'models')
utils.mkdir(result_dir)
utils.mkdir(model_dir)
# ######### Set Seeds ###########
random.seed(1234)
np.random.seed(1234)
torch.manual_seed(1234)
torch.cuda.manual_seed_all(1234)
######### Model ###########
model_restoration = utils.get_arch(opt)
print('# model_restoration parameters: %.2f M'%(sum(param.numel() for param in model_restoration.parameters())/ 1e6))
with open(logname,'a') as f:
f.write(str(opt)+'\n')
f.write(str(model_restoration)+'\n')
######### Optimizer ###########
start_epoch = 1
if opt.optimizer.lower() == 'adam':
optimizer = optim.Adam(model_restoration.parameters(), lr=opt.lr_initial, betas=(0.9, 0.999),eps=1e-8, weight_decay=opt.weight_decay)
elif opt.optimizer.lower() == 'adamw':
optimizer = optim.AdamW(model_restoration.parameters(), lr=opt.lr_initial, betas=(0.9, 0.999),eps=1e-8, weight_decay=opt.weight_decay)
else:
raise Exception("Error optimizer...")
######### DataParallel ###########
# model_restoration = torch.nn.DataParallel(model_restoration)
model_restoration.cuda()
######### Resume ###########
if opt.resume:
path_chk_rest = opt.pretrain_weights
utils.load_checkpoint(model_restoration,path_chk_rest)
start_epoch = utils.load_start_epoch(path_chk_rest) + 1
lr = utils.load_optim(optimizer, path_chk_rest)
for p in optimizer.param_groups: p['lr'] = lr
warmup = False
new_lr = lr
print('------------------------------------------------------------------------------')
print("==> Resuming Training with learning rate:",new_lr)
print('------------------------------------------------------------------------------')
scheduler = optim.lr_scheduler.CosineAnnealingLR(optimizer, opt.nepoch-start_epoch+1, eta_min=1e-6)
# ######### Scheduler ###########
if opt.warmup:
print("Using warmup and cosine strategy!")
warmup_epochs = opt.warmup_epochs
scheduler_cosine = optim.lr_scheduler.CosineAnnealingLR(optimizer, opt.nepoch-warmup_epochs, eta_min=1e-6)
scheduler = GradualWarmupScheduler(optimizer, multiplier=1, total_epoch=warmup_epochs, after_scheduler=scheduler_cosine)
scheduler.step()
else:
step = 50
print("Using StepLR,step={}!".format(step))
scheduler = StepLR(optimizer, step_size=step, gamma=0.5)
scheduler.step()
######### Loss ###########
# criterion = CharbonnierLoss().cuda()
from losses import L1_Vgg_losses
criterion = L1_Vgg_losses().cuda()
######### DataLoader ###########
print('===> Loading datasets')
img_options_train = {'patch_size':opt.train_ps}
train_dataset = get_training_data(opt.train_dir, img_options_train)
train_loader = DataLoader(dataset=train_dataset, batch_size=opt.batch_size, shuffle=True,
num_workers=opt.train_workers, pin_memory=True, drop_last=False)
val_dataset = get_validation_data(opt.val_dir)
val_loader = DataLoader(dataset=val_dataset, batch_size=1, shuffle=False,
num_workers=opt.eval_workers, pin_memory=False, drop_last=False)
len_trainset = train_dataset.__len__()
len_valset = val_dataset.__len__()
print("Sizeof training set: ", len_trainset,", sizeof validation set: ", len_valset)
######## eval ################
with torch.no_grad():
model_restoration.eval()
for ii, data_val in enumerate(tqdm(val_loader), 0):
target = data_val[0].cuda()
input_ = data_val[1].cuda()
mask = data_val[2].cuda()
filenames = data_val[3]
with torch.cuda.amp.autocast():
restored = model_restoration(input_, mask)
restored = torch.clamp(restored,0,1)
writer = SummaryWriter(comment=opt.boardname)
######### train ###########
print('===> Start Epoch {} End Epoch {}'.format(start_epoch,opt.nepoch))
best_psnr = 0
best_epoch = 0
best_iter = 0
eval_now = 20 * len(train_loader)
print("\nEvaluation after every {} Iterations !!!\n".format(eval_now))
display_iter = 100
display_iter_loss = 0
loss_scaler = NativeScaler()
torch.cuda.empty_cache()
ii=0
index = 0
for epoch in range(start_epoch, opt.nepoch + 1):
epoch_start_time = time.time()
epoch_loss = 0
train_id = 1
epoch_ssim_loss = 0
for i, data in enumerate(tqdm(train_loader), 0):
# zero_grad
index += 1
optimizer.zero_grad()
target = data[0].cuda()
input_ = data[1].cuda()
mask = data[2].cuda()
if epoch > 5 and epoch < opt.nepoch-100:
target, input_, mask = utils.MixUp_AUG().aug(target, input_, mask)
with torch.cuda.amp.autocast():
restored = model_restoration(input_, mask)
restored = torch.clamp(restored,0,1)
loss = criterion(restored, target)
loss_scaler(
loss, optimizer,parameters=model_restoration.parameters())
epoch_loss +=loss.item()
display_iter_loss += loss.item()
#### tensorboard display ######
if (index + 1) % display_iter == 0:
writer.add_scalar('Loss', display_iter_loss, index)
display_iter_loss = 0
if epoch < 50 or epoch > opt.nepoch-30:
writer.add_images('input', input_, index)
writer.add_images('mask', mask, index)
writer.add_images('GT', target, index)
writer.add_images("result", restored, index)
#### Evaluation ####
if (index+1)%eval_now==0 and i>0:
eval_shadow_rmse = 0
eval_nonshadow_rmse = 0
eval_rmse = 0
with torch.no_grad():
model_restoration.eval()
psnr_val_rgb = []
for ii, data_val in enumerate((val_loader), 0):
target = data_val[0].cuda()
input_ = data_val[1].cuda()
mask = data_val[2].cuda()
filenames = data_val[3]
with torch.cuda.amp.autocast():
restored = model_restoration(input_, mask)
restored = torch.clamp(restored,0,1)
psnr_val_rgb.append(utils.batch_PSNR(restored, target, False).item())
psnr_val_rgb = sum(psnr_val_rgb)/len(val_loader)
writer.add_scalars("PSNR", {'val': psnr_val_rgb}, epoch)
if psnr_val_rgb > best_psnr:
best_psnr = psnr_val_rgb
best_epoch = epoch
best_iter = i
torch.save({'epoch': epoch,
'state_dict': model_restoration.state_dict(),
'optimizer' : optimizer.state_dict()
}, os.path.join(model_dir,"model_best.pth"))
print("[Ep %d it %d\t PSNR : %.4f] " % (epoch, i, psnr_val_rgb))
with open(logname,'a') as f:
f.write("[Ep %d it %d\t PSNR SIDD: %.4f\t] ---- [best_Ep_SIDD %d best_it_SIDD %d Best_PSNR_SIDD %.4f] " \
% (epoch, i, psnr_val_rgb,best_epoch,best_iter,best_psnr)+'\n')
with torch.no_grad():
model_restoration.eval()
psnr_train_rgb = []
for ii, data_train in enumerate((train_loader), 0):
target = data_train[0].cuda()
input_ = data_train[1].cuda()
mask = data_train[2].cuda()
filenames = data_train[3]
with torch.cuda.amp.autocast():
restored = model_restoration(input_, mask)
restored = torch.clamp(restored,0,1)
psnr_train_rgb.append(utils.batch_PSNR(restored, target, False).item())
psnr_train_rgb = sum(psnr_train_rgb)/len(train_dataset)
writer.add_scalars("PSNR", {'train': psnr_train_rgb}, epoch)
model_restoration.train()
torch.cuda.empty_cache()
scheduler.step()
print("------------------------------------------------------------------")
print("Epoch: {}\tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, time.time()-epoch_start_time,epoch_loss,scheduler.get_lr()[0]))
print("------------------------------------------------------------------")
with open(logname,'a') as f:
f.write("Epoch: {}\tTime: {:.4f}\tLoss: {:.4f}\tLearningRate {:.6f}".format(epoch, time.time()-epoch_start_time,epoch_loss, scheduler.get_lr()[0])+'\n')
torch.save({'epoch': epoch,
'state_dict': model_restoration.state_dict(),
'optimizer' : optimizer.state_dict()
}, os.path.join(model_dir,"model_latest.pth"))
if epoch%opt.checkpoint == 0:
torch.save({'epoch': epoch,
'state_dict': model_restoration.state_dict(),
'optimizer' : optimizer.state_dict()
}, os.path.join(model_dir,"model_epoch_{}.pth".format(epoch)))
print("Now time is : ",datetime.datetime.now().isoformat())
writer.close()