-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathmodule.py
59 lines (50 loc) · 2.36 KB
/
module.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
class Encoder(nn.Module):
def __init__(self, args):
super(Encoder,self).__init__()
self.lstm = torch.nn.LSTM(input_size=args.emb_size, hidden_size=args.hidden_size, batch_first=True, bidirectional=True)
self.init_state = nn.Parameter(torch.zeros(2 * 2, 1, args.hidden_size))
self.dropout = nn.Dropout(args.dropout)
self.attention = nn.Linear(args.hidden_size*2, args.label_size, bias=False)
nn.init.xavier_uniform_(self.attention.weight)
def forward(self, inputs, lengths, masks):
self.lstm.flatten_parameters()
init_state = self.init_state.repeat([1, inputs.size(0), 1])
cell_init, hidden_init = init_state[:init_state.size(0) // 2], init_state[init_state.size(0) // 2:]
idx = torch.argsort(lengths, descending=True)
packed_inputs = nn.utils.rnn.pack_padded_sequence(inputs[idx], lengths[idx].cpu(), batch_first=True)
temp = self.lstm(packed_inputs, (hidden_init, cell_init))[0]
outputs, _ = nn.utils.rnn.pad_packed_sequence(temp, batch_first=True)
outputs = self.dropout(outputs[torch.argsort(idx)])
masks = torch.unsqueeze(masks, 1) # N, 1, L
attention = self.attention(outputs).transpose(1, 2).masked_fill(~masks, -np.inf) # N, labels_num, L
attention = F.softmax(attention, -1)
# attention = Sparsemax(dim=-1)(attention)
representation = attention @ outputs # N, labels_num, hidden_size
return representation
class Head(nn.Module):
def __init__(self, args):
super(Head, self).__init__()
self.head = nn.Sequential(
nn.Linear(args.hidden_size * 2, args.feat_size),
nn.ReLU(inplace=True)
)
def forward(self, representation):
feats = self.head(representation)
return feats
# class Head(nn.Module):
#
# def __init__(self, args):
# super(Head, self).__init__()
# self.head = nn.Sequential(
# nn.Linear(args.hidden_size * 2, args.hidden_size * 2),
# nn.ReLU(inplace=True),
# nn.Linear(args.hidden_size * 2, args.feat_size)
# )
#
# def forward(self, representation):
# feats = F.normalize(self.head(representation), dim=-1)
# return feats