-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathutils.py
194 lines (177 loc) · 7.98 KB
/
utils.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Latent space visualization
import matplotlib.pyplot as plt
from sklearn.manifold import TSNE
from sklearn.cluster import KMeans, SpectralClustering
from sklearn.metrics import silhouette_score
import numpy as np
#import colorcet as cc
import json
import bitsandbytes as bnb
def visualize_embeddings(embeddings, n_clusters=None, clusters=None, ax=plt.subplots()[1]):
if n_clusters !=None:
if n_clusters == 'auto':
sse = {}
for n in range(2,200):
print(f'k-means {n}/200', end='\r')
kmeans = KMeans(n_clusters=n, random_state=0).fit(embeddings)
sse[n] = kmeans.inertia_
plt.plot(list(sse.keys()), list(sse.values()))
plt.show()
n_clusters = input('Number of clusters: ')
#clusters = SpectralClustering(n_clusters=n_clusters, assign_labels='discretize', random_state=0).fit_predict(embeddings)
clusters = KMeans(n_clusters=n_clusters, random_state=0).fit_predict(embeddings)
elif clusters == None:
clusters = [1 for i in range(len(embeddings))]
proj = TSNE(n_components=2, init='pca').fit_transform(embeddings)
ax.scatter(proj[:,0], proj[:,1], c=clusters, cmap=cc.cm.glasbey)
return clusters
# Training
import torch
from torch.utils.data import DataLoader
from torch.cuda.amp import GradScaler, autocast
from tqdm import tqdm
def training_routine(model, step_f, train_data, test_data, epochs, batchsize, learning_rate, valid_data=None, eval_f=None, eval_each=-1, unfreezing_f=None, accum_iter=1, dev=torch.device('cpu')):
optimizer = torch.optim.AdamW(model.parameters(), lr=learning_rate)
#optimizer = bnb.optim.Adam8bit(model.parameters(), lr=learning_rate)
#optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate, weight_decay=0.)
scaler = GradScaler()
train_loader = DataLoader(
train_data,
batch_size = batchsize,
shuffle = True,
collate_fn = train_data.collate_fn
)
test_loader = DataLoader(
test_data,
batch_size = batchsize,
shuffle = True,
collate_fn = test_data.collate_fn
)
if valid_data is None:
valid_loader = test_loader
else:
valid_loader = DataLoader(
valid_data,
batch_size = batchsize,
shuffle = True,
collate_fn = test_data.collate_fn
)
train_loss, valid_loss, metrics = [], [], {}
print_steps = max(int(len(train_loader)/5), 1)
for e in range(epochs):
if unfreezing_f is not None:
unfreezing_f(model, e)
print(f'\n### EPOCH {e}')
running_loss, epoch_loss = 0., 0.
model.train()
for i, (batch, label) in tqdm(enumerate(train_loader), total=len(train_loader)):
with autocast():
#batch, label = batch.to(dev), label.to(dev)
loss = step_f(model, batch, label, dev)
running_loss += loss.item()
# normalize loss to account for batch accumulation
loss = loss / accum_iter
scaler.scale(loss).backward()
# weights update
if ((i + 1) % accum_iter == 0) or (i + 1 == len(train_loader)):
scaler.step(optimizer)
scaler.update()
optimizer.zero_grad()
if i % print_steps == print_steps - 1:
epoch_loss += running_loss
print(f'[{e}, {i*batchsize}]\t Loss: {running_loss/print_steps:.4f}') # The average is not correct if len(train_loader) % batchsize != 0
running_loss = 0.
running_loss = 0.
model.eval()
for i, (batch, label) in enumerate(valid_loader):
with torch.no_grad():
loss = step_f(model, batch, label, dev)
running_loss += loss.item()
valid_loss.append(running_loss/(len(valid_loader)))
train_loss.append(epoch_loss/len(train_loader))
print(f'> Valid Loss: {running_loss/(len(valid_loader)):.4f}')
if e % eval_each == eval_each -1 and eval_f != None: # run evaluation every eval_each epochs
with torch.no_grad():
metrics['Epoch '+str(e)] = eval_f(model, valid_data) if valid_data is not None else eval_f(model, test_data)
print(f'### Evaluation Metrics after {e+1} epochs:')
print(json.dumps(metrics['Epoch '+str(e)], indent=2))
return train_loss, valid_loss, metrics
# Graph
from dgl import graph, heterograph
import sys
sys.path.append('CompGCN')
from compgcn_utils import in_out_norm
class KG(object):
"""
Simple wrapper to the dgl graph object.
"""
def __init__(self, embedding_dim, ent2idx, rel2idx, triples=None, dev=torch.device('cpu'), add_inverse_edges=False):
super().__init__()
self.dev = dev
self.emb_dim = embedding_dim
self.add_inverse_edges = add_inverse_edges
self.r2idx = rel2idx
self.e2idx = ent2idx
if triples != None:
if add_inverse_edges:
inv_triples = triples[:,[2,1,0]]
inv_triples[:,1] += len(rel2idx)
triples = torch.vstack((triples, inv_triples))
self.g = graph((triples[:,0], triples[:,2]), num_nodes=len(ent2idx), device=self.dev)
self.etypes = triples[:,1].to(self.dev)
self.g.edata['etype'] = self.etypes
#self.node_feat = torch.nn.Embedding(self.g.num_nodes(), self.emb_dim).to(self.dev) # random initial node features
# identify in and out edges
in_edges_mask = [True] * (self.g.num_edges() // 2) + [False] * (
self.g.num_edges() // 2
)
out_edges_mask = [False] * (self.g.num_edges() // 2) + [True] * (
self.g.num_edges() // 2
)
self.g.edata["in_edges_mask"] = torch.Tensor(in_edges_mask).to(dev)
self.g.edata["out_edges_mask"] = torch.Tensor(out_edges_mask).to(dev)
self.g = in_out_norm(self.g)
def build_from_file(self, infile):
triples = []
with open(infile, 'r') as f:
for l in f:
head, rel, tail = l.split()
head, rel, tail = self.e2idx[head], self.r2idx[rel], self.e2idx[tail]
triples.append([head, rel, tail])
if self.add_inverse_edges:
triples.append([tail, rel+len(self.r2idx), head])
triples = torch.as_tensor(triples)
self.g = graph((triples[:,0], triples[:,2]), num_nodes=len(self.e2idx), device=self.dev)
self.etypes = triples[:,1].to(self.dev)
self.g.edata['etype'] = self.etypes
#self.node_feat = torch.nn.Embedding(self.g.num_nodes(), self.emb_dim).to(self.dev) if node_features == None else node_features# random initial node features
# identify in and out edges
in_edges_mask = [True] * (self.g.num_edges() // 2) + [False] * (
self.g.num_edges() // 2
)
out_edges_mask = [False] * (self.g.num_edges() // 2) + [True] * (
self.g.num_edges() // 2
)
self.g.edata["in_edges_mask"] = torch.Tensor(in_edges_mask).to(self.dev)
self.g.edata["out_edges_mask"] = torch.Tensor(out_edges_mask).to(self.dev)
self.g = in_out_norm(self.g)
@property
def n_rel(self):
return len(set(self.etypes.tolist()))
@property
def embedding_dim(self):
return self.emb_dim
"""
class SimilarityQA(object):
def __init__(self, clep_model, tokenizer):
super(self, ).__init__()
self.clep = clep_model
self.tok = tokenizer
def answer(self, query, top_k=10):
query = self.tok(query)
query_emb = torch.nn.functional.normalize(self.clep.t_nn(query, p=2, dim=-1))
node_embs = torch.nn.functional.normalize(self.clep.g_nn(None))
similarities = (query_emb*node_embs).sum(-1)
values, indices = similarities.sort(descending=True)
return list(zip(indices[:top_k], values[:top_k]))
"""