-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathentity_linking.py
162 lines (127 loc) · 6.14 KB
/
entity_linking.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
import argparse, json, torch
import matplotlib.pyplot as plt
from sklearn.metrics import f1_score
from tqdm import tqdm
from model import EntityLinkingModel, CLIP_KB, PretrainedGraphEncoder, GPT2CaptionEncoder, CaptionEncoder, RGCN, CompGCNWrapper
from transformers import AutoTokenizer
from utils import KG
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='Entity Linking.')
parser.add_argument('--dataset')
parser.add_argument('--load_model')
parser.add_argument('--graph_encoder', default="RGCN")
parser.add_argument('--text_encoder', default="gpt2")
args = parser.parse_args()
if args.dataset is not None:
entity_index = 'data/{}/ent2idx.json'.format(args.dataset)
rel_index = 'data/{}/rel2idx.json'.format(args.dataset)
graph = 'data/{}/link-prediction/train.txt'.format(args.dataset)
test_data = 'data/{}/entity-linking/test.json'.format(args.dataset)
# Set device for computation
if torch.cuda.is_available():
dev = torch.device('cuda:0')
else:
try:
dev = torch.device('mps')
except RuntimeError:
dev = torch.device('cpu')
print(f'\n> Setting device {dev} for computation.')
# load the entity id map
with open(entity_index, "r") as f:
ent2idx = json.load(f)
# load the relation id map
with open(rel_index, "r") as f:
rel2idx = json.load(f)
# load the kg
kg = KG(ent2idx=ent2idx, rel2idx=rel2idx, embedding_dim=200, dev=dev, add_inverse_edges=True)
kg.build_from_file(graph)
# prepare the graph encoder
if args.graph_encoder == 'RGCN':
conf = {
'kg': kg,
'n_layers': 2,
'indim': kg.embedding_dim,
'hdim': 200,
'rel_regularizer': 'basis',
'num_bases': 64
}
graph_encoder = RGCN(**conf)
elif args.graph_encoder == 'CompGCN':
conf = {
'kg': kg,
'n_layers': 2,
'indim': kg.embedding_dim,
'hdim': 200,
'comp_fn': 'sub',
'num_bases': -1,
'return_rel_embs' : False
}
graph_encoder = CompGCNWrapper(**conf)
# load the CLEP pretrained model
tokenizer = AutoTokenizer.from_pretrained(args.text_encoder)
if "gpt2" in args.text_encoder:
text_encoder = GPT2CaptionEncoder(pretrained_model=args.text_encoder)
else:
text_encoder = CaptionEncoder(pretrained_model=args.text_encoder)
# load
clep_model = CLIP_KB(
graph_encoder = graph_encoder,
text_encoder = text_encoder,
hdim = 200
).to(dev)
clep_model.load_state_dict(torch.load(args.load_model))
EL_model = EntityLinkingModel(clep_model, tokenizer)
# load the test data
with open(test_data, 'r') as f:
data = json.load(f)
entity_mentions, entity_labels, entity_ids = [], [], []
for d in data:
entity_mentions.append(d["text"])
entity_labels.append(d["string"])
entity_ids.append(d["correct_id"])
# evaluate the model on the test data
hits_at_k = {1: 0, 3: 0, 5: 0, 10: 0, 50: 0, 100: 0, 500: 0, 1000: 0, 5000: 0, 10000: 0}
predictions, labels = [], []
for mention, label, _id in tqdm(list(zip(entity_mentions, entity_labels, entity_ids)), total=len(entity_mentions)):
groundtruth = ent2idx[_id]
candidates = EL_model(mention, label, top_k=max(hits_at_k))
for i in hits_at_k.keys():
if groundtruth in candidates[:i]:
hits_at_k[i] += 1
labels.append(groundtruth)
predictions.append(candidates[0])
print(f"--> hits@k: {hits_at_k}")
#print(f"--> F1 score: {f1_score(labels.cpu(), predictions.cpu())}")
x, y = zip(*hits_at_k.items())
plt.plot(x, y)
plt.show()
# Notes:
# I tested this on the wikidata-disambig dataset with a CLEP(RGCN, gpt2) model trained with batch size 128
# but the results are poor:
# --> hits@k: {1: 2, 3: 3, 5: 4, 10: 11, 50: 36, 100: 71, 500: 346} (out of 10.000 test samples)
# The reasons could be several:
# - too many descriptions are missing, out of the roughly 80.000 entities, around 10.000 of them
# have missing or completely uninformative descriptions, e.g. `wikidata disambiguation page`
# - the descriptions found in Wikidata are not particularly informative, with often a large degree of overlapping
# among different entities, e.g. `american actress`, `rock band`, `capital city`. They might be ok for
# some general identification of their type, but not precise enough to enable entity disambiguation
# - the graph is rather sparse and disconnected, only roughly 6.000 edges were found among 80.000 entities
# Possible ideas to explore:
# - use more informative descriptions for the pretraining, for instance by taking the first sentence of
# corresponding wikipedia webpage to each entity, or asking an LLM to generate it
# - adapt another dataset for which we do have a comprehensive graph, e.g. FB15k-237, to the entity linking task.
# For example, by taking any sentence in the wikipedia web page of an entity that contains it as the entity
# mention to link to the KB.
# even working with the cut dataset, i.e. discarding the entities that miss descriptions, the entity linking
# performance does not get better:
# --> hits@k: {1: 2, 3: 3, 5: 5, 10: 12, 50: 51, 100: 88, 500: 328}
# with cosine similarity
# --> hits@k: {1: 1, 3: 1, 5: 3, 10: 6, 50: 20, 100: 38, 500: 186, 1000: 336, 5000: 1430, 10000: 2709}
# by using Minilm instead of gpt2 I was able to train with batchsize=10,000 on 16GB and batchsize=30,000 on 48GB
# this drastically reduce the problem of overfitting and leads to a way better alignment, even though the
# overlapping is still significant.
# candidates generation with these models improves significantly
# --> hits@k: {1: 24, 3: 48, 5: 70, 10: 129, 50: 417, 100: 653, 500: 1609, 1000: 2239, 5000: 4336, 10000: 5486}
# furthermore not normalizing the vectors seems to slightly help
# --> hits@k: {1: 31, 3: 71, 5: 125, 10: 221, 50: 753, 100: 1163, 500: 2434, 1000: 3060, 5000: 4861, 10000: 5672}
# with cosine similarity but not with l2 norm