-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathvideo_inference.py
184 lines (161 loc) · 6.09 KB
/
video_inference.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
import argparse
from fastsam import FastSAM, FastSAMVideoPrompt
import ast
import torch
from utils.tools import convert_box_xywh_to_xyxy
import cv2
def parse_args():
parser = argparse.ArgumentParser()
parser.add_argument(
"--model_path", type=str, default="./weights/FastSAM-x.pt", help="model"
)
parser.add_argument(
"--vid_path", type=str, default="./videos/lake-tahoe-clip-1080p.mp4", help="path to video file"
)
parser.add_argument(
"--show_frames", action=argparse.BooleanOptionalAction
)
parser.add_argument(
"--num_frames", type=int, default=-1, help="number of frames to write to output video"
)
parser.set_defaults(show_frames=False)
parser.add_argument("--imgsz", type=int, default=1024, help="image size")
parser.add_argument(
"--iou",
type=float,
default=0.9,
help="iou threshold for filtering the annotations",
)
parser.add_argument(
"--text_prompt", type=str, default="the water", help='use text prompt eg: "a dog"'
)
parser.add_argument(
"--conf", type=float, default=0.4, help="object confidence threshold"
)
parser.add_argument(
"--output", type=str, default="./output/", help="image save path"
)
parser.add_argument(
"--random_color", action=argparse.BooleanOptionalAction
)
parser.set_defaults(random_color=False)
parser.add_argument(
"--point_prompt", type=str, default="[[0,0]]", help="[[x1,y1],[x2,y2]]"
)
parser.add_argument(
"--point_label",
type=str,
default="[0]",
help="[1,0] 0:background, 1:foreground",
)
parser.add_argument("--box_prompt", type=str, default="[[0,0,0,0]]", help="[[x,y,w,h],[x2,y2,w2,h2]] support multiple boxes")
parser.add_argument(
"--better_quality",
type=str,
default=False,
help="better quality using morphologyEx",
)
device = torch.device(
"cuda"
if torch.cuda.is_available()
else "mps"
if torch.backends.mps.is_available()
else "cpu"
)
parser.add_argument(
"--device", type=str, default=device, help="cuda:[0,1,2,3,4] or cpu"
)
parser.add_argument(
"--retina",
type=bool,
default=True,
help="draw high-resolution segmentation masks",
)
parser.add_argument(
"--with_contours", action=argparse.BooleanOptionalAction
)
parser.set_defaults(with_contours=False)
return parser.parse_args()
def main(args):
# load model
model = FastSAM(args.model_path)
args.point_prompt = ast.literal_eval(args.point_prompt)
args.box_prompt = convert_box_xywh_to_xyxy(ast.literal_eval(args.box_prompt))
args.point_label = ast.literal_eval(args.point_label)
# Read in video
print(f'loading video: {args.vid_path}')
video = cv2.VideoCapture(args.vid_path)
success, img = video.read()
assert success, f'Video read failed! Is the path right? ({args.vid_path})'
# Set up video writer
output_file= './output/lake-tahoe.mp4'
writer = cv2.VideoWriter(filename=output_file,
fourcc=cv2.VideoWriter_fourcc(*'mp4v'),
fps=30,
frameSize=(int(video.get(3)), int(video.get(4))))
assert writer.isOpened(), f'Video writer failed to open! Path: {output_file}'
# Begin processing frames
frame_count = 1
while success:
# Check for frame count limit
if(args.num_frames != -1 and frame_count > args.num_frames):
break
# Get the results for this image
everything_results = model(
img,
device=args.device,
retina_masks=args.retina,
imgsz=args.imgsz,
conf=args.conf,
iou=args.iou
)
bboxes = None
points = None
point_label = None
# Use custom SAM Prompt instead so we pass just the image in
prompt_process = FastSAMVideoPrompt(img, everything_results, device=args.device)
assert args.text_prompt != None, "no text prompt!"
ann = prompt_process.text_prompt(text=args.text_prompt)
#if args.box_prompt[0][2] != 0 and args.box_prompt[0][3] != 0:
# ann = prompt_process.box_prompt(bboxes=args.box_prompt)
# bboxes = args.box_prompt
#elif args.text_prompt != None:
# ann = prompt_process.text_prompt(text=args.text_prompt)
#elif args.point_prompt[0] != [0, 0]:
# ann = prompt_process.point_prompt(
# points=args.point_prompt, pointlabel=args.point_label
# )
# points = args.point_prompt
# point_label = args.point_label
#else:
# ann = prompt_process.everything_prompt()
# Store result as a frame for the output video
result = prompt_process.plot(
annotations=ann,
output=args.output,
bboxes = bboxes,
points = points,
point_label = point_label,
mask_random_color = args.random_color, # actually pass the random color arg
withContours=args.with_contours,
better_quality=args.better_quality,
)
# Show the image in a window for manual inspection
if args.show_frames:
cv2.imshow(f'frame{frame_count}', result)
while cv2.getWindowProperty(f'frame{frame_count}', cv2.WND_PROP_VISIBLE) >= 1:
key = cv2.waitKey(100)
if key != -1:
cv2.destroyWindow(f'frame{frame_count}')
break
# Write out a video frame
writer.write(result)
# Try to read the next frame in
success, img = video.read()
# Update frame counter
frame_count += 1
video.release()
writer.release()
if __name__ == "__main__":
args = parse_args()
main(args)