-
Notifications
You must be signed in to change notification settings - Fork 337
/
Copy pathtest_mask.py
236 lines (192 loc) · 6.87 KB
/
test_mask.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
import cv2
import numpy as np
import pytest
from PIL import Image, ImageDraw
from adetailer.mask import (
bbox_area,
dilate_erode,
has_intersection,
is_all_black,
mask_invert,
mask_merge,
offset,
)
def test_dilate_positive_value():
img = Image.new("L", (10, 10), color="black")
draw = ImageDraw.Draw(img)
draw.rectangle((3, 3, 5, 5), fill="white")
value = 3
result = dilate_erode(img, value)
assert isinstance(result, Image.Image)
assert result.size == (10, 10)
expect = np.array(
[
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 255, 255, 255, 255, 255, 0, 0, 0],
[0, 0, 255, 255, 255, 255, 255, 0, 0, 0],
[0, 0, 255, 255, 255, 255, 255, 0, 0, 0],
[0, 0, 255, 255, 255, 255, 255, 0, 0, 0],
[0, 0, 255, 255, 255, 255, 255, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
],
dtype=np.uint8,
)
assert np.array_equal(np.array(result), expect)
def test_offset():
img = Image.new("L", (10, 10), color="black")
draw = ImageDraw.Draw(img)
draw.rectangle((4, 4, 5, 5), fill="white")
result = offset(img, x=1, y=2)
assert isinstance(result, Image.Image)
assert result.size == (10, 10)
expect = np.array(
[
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 255, 255, 0, 0, 0],
[0, 0, 0, 0, 0, 255, 255, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
[0, 0, 0, 0, 0, 0, 0, 0, 0, 0],
],
dtype=np.uint8,
)
assert np.array_equal(np.array(result), expect)
class TestIsAllBlack:
def test_is_all_black_1(self):
img = Image.new("L", (10, 10), color="black")
assert is_all_black(img)
draw = ImageDraw.Draw(img)
draw.rectangle((4, 4, 5, 5), fill="white")
assert not is_all_black(img)
def test_is_all_black_2(self):
img = np.zeros((10, 10), dtype=np.uint8)
assert is_all_black(img)
img[4:6, 4:6] = 255
assert not is_all_black(img)
def test_is_all_black_rgb_image_pil(self):
img = Image.new("RGB", (10, 10), color="red")
assert not is_all_black(img)
img = Image.new("RGBA", (10, 10), color="red")
assert not is_all_black(img)
def test_is_all_black_rgb_image_numpy(self):
img = np.full((10, 10, 4), 127, dtype=np.uint8)
with pytest.raises(cv2.error):
is_all_black(img)
img = np.full((4, 10, 10), 0.5, dtype=np.float32)
with pytest.raises(cv2.error):
is_all_black(img)
class TestHasIntersection:
def test_has_intersection_1(self):
arr1 = np.array(
[
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 0],
],
dtype=np.uint8,
)
arr2 = arr1.copy()
assert not has_intersection(arr1, arr2)
def test_has_intersection_2(self):
arr1 = np.array(
[
[0, 0, 0, 0],
[0, 255, 255, 0],
[0, 255, 255, 0],
[0, 0, 0, 0],
],
dtype=np.uint8,
)
arr2 = np.array(
[
[0, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 255, 255],
[0, 0, 255, 255],
],
dtype=np.uint8,
)
assert has_intersection(arr1, arr2)
arr3 = np.array(
[
[255, 0, 0, 0],
[0, 0, 0, 0],
[0, 0, 0, 255],
[0, 0, 255, 255],
],
dtype=np.uint8,
)
assert not has_intersection(arr1, arr3)
def test_has_intersection_3(self):
img1 = Image.new("L", (10, 10), color="black")
draw1 = ImageDraw.Draw(img1)
draw1.rectangle((3, 3, 5, 5), fill="white")
img2 = Image.new("L", (10, 10), color="black")
draw2 = ImageDraw.Draw(img2)
draw2.rectangle((6, 6, 8, 8), fill="white")
assert not has_intersection(img1, img2)
img3 = Image.new("L", (10, 10), color="black")
draw3 = ImageDraw.Draw(img3)
draw3.rectangle((2, 2, 8, 8), fill="white")
assert has_intersection(img1, img3)
def test_has_intersection_4(self):
img1 = Image.new("RGB", (10, 10), color="black")
draw1 = ImageDraw.Draw(img1)
draw1.rectangle((3, 3, 5, 5), fill="white")
img2 = Image.new("RGBA", (10, 10), color="black")
draw2 = ImageDraw.Draw(img2)
draw2.rectangle((2, 2, 8, 8), fill="white")
assert has_intersection(img1, img2)
def test_has_intersection_5(self):
img1 = Image.new("RGB", (10, 10), color="black")
draw1 = ImageDraw.Draw(img1)
draw1.rectangle((4, 4, 5, 5), fill="white")
img2 = np.full((10, 10, 4), 255, dtype=np.uint8)
assert has_intersection(img1, img2)
def test_bbox_area():
bbox = [0.0, 0.0, 10.0, 10.0]
assert bbox_area(bbox) == 100
class TestMaskMerge:
def test_mask_merge(self):
img1 = Image.new("L", (10, 10), color="black")
draw1 = ImageDraw.Draw(img1)
draw1.rectangle((3, 3, 5, 5), fill="white")
img2 = Image.new("L", (10, 10), color="black")
draw2 = ImageDraw.Draw(img2)
draw2.rectangle((6, 6, 8, 8), fill="white")
merged = mask_merge([img1, img2])
assert len(merged) == 1
expect = Image.new("L", (10, 10), color="black")
draw3 = ImageDraw.Draw(expect)
draw3.rectangle((3, 3, 5, 5), fill="white")
draw3.rectangle((6, 6, 8, 8), fill="white")
assert np.array_equal(np.array(merged[0]), np.array(expect))
def test_merge_mask_different_size(self):
img1 = Image.new("L", (10, 10), color="black")
draw1 = ImageDraw.Draw(img1)
draw1.rectangle((3, 3, 5, 5), fill="white")
img2 = Image.new("L", (20, 20), color="black")
draw2 = ImageDraw.Draw(img2)
draw2.rectangle((6, 6, 8, 8), fill="white")
with pytest.raises(
cv2.error, match="-209:Sizes of input arguments do not match"
):
mask_merge([img1, img2])
def test_mask_invert():
img = Image.new("L", (10, 10), color="black")
draw = ImageDraw.Draw(img)
draw.rectangle((3, 3, 5, 5), fill="white")
inverted = mask_invert([img])
assert len(inverted) == 1
expect = Image.new("L", (10, 10), color="white")
draw = ImageDraw.Draw(expect)
draw.rectangle((3, 3, 5, 5), fill="black")
assert np.array_equal(np.array(inverted[0]), np.array(expect))