-
Notifications
You must be signed in to change notification settings - Fork 0
/
Copy pathoffline_policies.py
167 lines (131 loc) · 5.16 KB
/
offline_policies.py
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
import torch
import torch.nn as nn
import torch.optim as optim
import numpy as np
from torch.distributions.normal import Normal
from torch.distributions.categorical import Categorical
from utils import *
class BasePolicy(nn.Module):
'''Base Policy Class'''
def __init__(self):
super().__init__()
self.optimizer = None
def forward(self, states):
raise NotImplementedError('forward not implemented')
def sample(self, states):
dist = self.forward(states)
actions = dist.rsample()
log_probs = dist.log_prob(actions)
log_probs = log_probs.unsqueeze(-1)
return actions, log_probs
def choose_action(self, state, training=False):
with torch.no_grad():
dist = self.forward(T(state))
action = self._action_from_dist(dist, training)
return np.round(action, 5)
def _action_from_dist(self, dist, training=False):
if training:
action = dist.sample()
else:
action = dist.mean
return action.cpu().squeeze(0).numpy()
def train(self, loss, clip_value=1):
optimize(self.parameters(), self.optimizer, loss)
class ContinuousPolicy(BasePolicy):
'''Continuous action Policy'''
def __init__(self, state_dim, action_dim,
learning_rate, std=None):
super().__init__()
self.std = std
self.fcn = Sequential([state_dim, 128, 256, action_dim])
self.optimizer = optim.Adam(self.parameters(), learning_rate)
def forward(self, states):
x = self.fcn(states)
mean = torch.tanh(x)
if self.std is None: return mean
else: return Normal(mean, self.std)
def _action_from_dist(self, dist, training=False):
if self.std is None:
action = dist
else:
if training:
action = dist.sample()
else:
action = dist.mean
return action.cpu().squeeze(0).numpy()
class DiscretePolicy(BasePolicy):
'''Discrete action Policy'''
def __init__(self, state_dim, action_dim, learning_rate):
super().__init__()
self.fcn = Sequential([state_dim, 128, 256, action_dim])
self.optimizer = optim.Adam(self.parameters(), learning_rate)
def forward(self, states):
x = self.fcn(states)
probs = torch.softmax(x, dim=-1)
return Categorical(probs)
def _action_from_dist(self, dist, training=False):
if training:
action = dist.sample()
else:
action = dist.probs.argmax(dim=1)
return action.item()
class SquashedGaussianPolicy(BasePolicy):
'''Squashed Gaussian Policy'''
def __init__(self, state_dim, action_dim, learning_rate):
super().__init__()
self.fcn = Sequential([state_dim, 128, 256])
self.fc_mean = nn.Linear(256, action_dim)
self.fc_log_std = nn.Linear(256, action_dim)
self.optimizer = optim.Adam(self.parameters(), learning_rate)
def forward(self, states):
x = self.fcn(states)
x = torch.relu(x)
mean = self.fc_mean(x)
log_std = self.fc_log_std(x)
std = torch.exp(log_std.clamp(-20, 2))
return Normal(mean, std)
def sample(self, states):
dist = self.forward(states)
samples = dist.rsample()
actions = torch.tanh(samples)
log_probs = dist.log_prob(samples) - torch.log(1 - actions**2 + 1e-6)
return actions, log_probs
def _action_from_dist(self, dist, training=False):
sample = dist.sample() if training else dist.mean
action = torch.tanh(sample).squeeze(0)
return action.cpu().numpy()
# import jax
# import jax.numpy as jnp
# import flax.linen as nn
# import distrax
# class FlaxSquashedGaussianPolicy(nn.Module):
# '''Squashed Gaussian Policy implemented in JAX/Flax using Distrax'''
# action_dim: int
# @nn.compact
# def __call__(self, states, training=False):
# x = nn.Dense(128)(states)
# x = nn.relu(x)
# x = nn.Dense(256)(x)
# x = nn.relu(x)
# mean = nn.Dense(self.action_dim)(x)
# log_std = nn.Dense(self.action_dim)(x)
# std = jnp.exp(jnp.clip(log_std, -20, 2))
# base_dist = distrax.Normal(loc=mean, scale=std)
# dist = distrax.Transformed(distribution=base_dist, bijector=distrax.Tanh())
# if training:
# samples, log_probs = dist.sample_and_log_prob(seed=self.make_rng('sampling'))
# else:
# samples = dist.mode()
# log_probs = dist.log_prob(samples)
# return samples, log_probs
# def sample(self, states, rng):
# actions, log_probs = self.apply({'params': self.params},
# states, training=True,
# rngs={'sampling': rng})
# return actions, log_probs
# def choose_action(self, state, rng):
# state = jnp.expand_dims(state, axis=0)
# action, _ = self.apply({'params': self.params},
# state, training=False,
# rngs={'sampling': rng})
# return jnp.squeeze(action, axis=0)